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Abstract Flow over vegetation and bottom of rivers can be characterized by some sort of
porous structure of irregular surface through which a fluid permeates. Also, in engineering
systems, one can have components that make use of a working fluid flowing over irregular
layers of porous material. This article presents numerical solutions for such hybrid medium,
considering here a channel partially filled with a flat porous layer saturated by a fluid flowing
in turbulent regime. One unique set of transport equations is applied to both the regions. A
diffusion-jump model for both the turbulent kinetic energy and its dissipation rate, across
the interface, is presented and discussed upon. The discretization steps taken for numerically
accommodating such model in the system of algebraic equations are presented. Numeri-
cal results show the effects of Reynolds number, porosity, and permeability on mean and
turbulence fields. Results indicate that when negative values for the stress jump coefficient
are applied, the peak of the turbulent kinetic energy distribution occurs at the macroscopic
interface.

Keywords Turbulence modeling · Porous media · Volume-average · Time-average ·
Interface · Stress jump · Two-equation model
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cF Forchheimer coefficient
c1, c2, ck, cµ Constant in turbulence model
D Deformation rate tensor, D = [∇u + (∇u)T]/2
G i Production rate of k due to the porous matrix, G i = ckρφ〈k〉i |uD|/√K
H Distance between the channel walls
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I Unit tensor
k Turbulent kinetic energy per unit mass, k = u′ · u′/2
〈k〉v Volume (fluid + solid) average of k
〈k〉i Intrinsic (fluid) average of k
K Permeability
L Axial length of periodic section of channel
p Thermodynamic pressure
〈p〉i Intrinsic (fluid) average of pressure p
P i Production rate of k due to mean gradients of uD, P i = −ρ〈u′u′〉i : ∇uD

R Time average of total drag per unit volume
ReH Reynolds number based on the channel height, ReH = ρ |uD| H/µ

s Clearance for unobstructed flow
Sϕ Source term
u Microscopic time-averaged velocity vector
〈u〉i Intrinsic (fluid) average of u
uD Darcy velocity vector, uD = φ 〈u〉i

uDi Darcy velocity vector at the interface
uDp Darcy velocity vector parallel to the interface
uDn, uDp Components of Darcy velocity at interface along η (normal) and ξ

(parallel) directions, respectively.
uD i

, vD i
Components of Darcy velocity at interface along x and y, respectively

x, y Cartesian coordinates

Greek Symbols

β, βt Interface stress jump coefficient for mean and turbulent flow fields, respectively
µ Fluid dynamic viscosity
µeff Effective viscosity for a porous medium
µtφ Macroscopic turbulent viscosity

ε Dissipation rate of k, ε = µ∇u′ : (∇u′)T/ρ

〈ε〉i Intrinsic (fluid) average of ε

ρ Density
φ Porosity
ϕ General dependent variable
η, ξ Generalized coordinates
σk, σε Turbulent Prandtl numbers for k and ε, respectively.

1 Introduction

Investigation of flow over layers of permeable media has many applications in several environ-
mental and engineering analyses. Turbulent atmospheric boundary layer over forests under
fire (Zhou and Pereira 2000), canopy flow (Raupach and Shaw 1982, Finnigan 2000) flow
over vegetation (Poggi and Katul 2007) and crop fields (Hoffmann 2004), currents at the
bottom of rivers (Lane and Hardy 2002) and water channels (White and Nepf 2003, Nepf and
Ghisalberti 2008), as well as grain storage and drying, are examples of flows which can be
characterized by some sort of porous layer over which a fluid permeates. Also, practical anal-
ysis of engineering flows can further benefit from more realistic mathematical and numerical
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modeling, as in the case of shell-and-tube heat exchangers (Prithiviraj and Andrews 1998)
and nuclear reactor core (Sha 1981), for example, where the rod bundles can be seen, in a
macroscopic view, as a permeable medium.

When the domain of analysis presents a macroscopic interfacial area between a porous
substrate and a clear flow region, the literature proposes the existence of a discontinuity in
the momentum diffusion flux between the two media (Ochoa-Tapia and Whitaker 1995a,b).
Analytical solutions involving such models have been published (Kuznetsov 1996, 1997,
1999). Also, in such works, volume average properties for a homogenous treatment of flow
in porous media were obtained by means of the Volume-Average Theorem, VAT (Whitaker
1969, Gray and Lee 1977).

Purely numerical solutions for two-dimensional hybrid medium (porous region–clear
flow) in an isothermal channel have been considered in de Lemos and Pedras (2000) based on
the turbulence model proposed in Pedras and de Lemos (2000, 2001a,b,c, 2003). That work
has been developed under the double decomposition concept, which has been reviewed in
an article (de Lemos 2005a) and thoroughly detailed in a book (de Lemos 2006), as well as
extended to non-buoyant heat transfer (Rocamora and de Lemos 2000a), buoyant flows (de
Lemos and Braga 2003, Braga and de Lemos 2004), mass transfer (de Lemos and Mesquita
2003), double diffusion (de Lemos and Tofaneli 2004) and moving porous beds (de Lemos
2008). Non-isothermal flows in channels past a porous obstacle (Rocamora and de Lemos
2000b) and through a porous insert have also been presented (Assato et al. 2005). In all
previous works of Rocamora and de Lemos (2000b) and Assato et al. (2005), the interface
boundary condition considered a continuous function for the stress field across the interface.

Recently, the interface jump condition has been investigated for laminar flows, either
considering non-linear effects in momentum equation as well as neglecting the Forchheimer
term in the macroscopic model (Silva and de Lemos 2003a). Therein, the authors simulated
laminar flow over such interfaces and validated their results against analytical solutions by
Kuznetsov (1996, 1997, 1999). Such work was based on the numerical methodology pro-
posed for hybrid media and applied by de Lemos and Pedras (2000), Rocamora and de Lemos
(2000b), and Assato et al. (2005). The same numerical technique has been applied for com-
puting turbulent flow (Silva and de Lemos 2003b) in a channel partially filled with a flat layer
of porous material. Flows over wavy interfaces were also computed for both laminar (Silva
and de Lemos 2003c) and turbulent flows (de Lemos and Silva 2003). There, the authors
made use of the shear stress jump condition at the interface. A distinct line of investigation
on turbulent flow over permeable media is based on the assumption that within the porous
layer, the flow remains laminar (Kuznetsov 2004), which, in turn, precludes application of
such methodology to flows through highly permeable media as atmospheric boundary layer
over forests or crop fields.

Further, fine flow computations and experiments of flow over and inside a bed of rods
in a two-dimensional channel have been presented (Prinos et al. 2003). Three-dimensional
computational studies simulating flow over a layer formed by cubic blocks (Breugem and
Boersma 2005) also emphasize that depending on the permeable structure shape, turbulence
may exists inside the porous bed and, as such, a turbulence model must be employed.

As seen, all models above considered either a flat or a rough (wavy) macroscopic interface
limiting the porous substrate. The stress jump condition for the momentum equations was
applied, but in most publications so far, no such flux discontinuity for the 〈k〉v-equation has
been considered. Motivated by that, de Lemos (2005b) proposed a model that assumes dif-
fusion fluxes of turbulent kinetic energy and its dissipation rate on both sides of the interface
to be unequal, which differed from all studies presented up to then. In de Lemos (2005b),
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however, no specific detail was given on the treatment of the 〈ε〉i-equation. Therein, only for
the 〈k〉v-equation, the diffusion jump concept was commented upon.

The purpose of this contribution is therefore twofold. First, to present the proposed model
for the diffusion-jump for the 〈ε〉i-equation, which was used but not presented in full in de
Lemos (2005b). Second, to explore and further document such proposals, investigating the
behavior of 〈k〉v across the interface as medium properties, such as permeability and porosity,
are varied.

2 Macroscopic Mathematical Model

2.1 Geometry and Governing Equations

The flow under consideration is schematically shown in Fig. 1a, where a channel is partially
filled with a layer of a porous material. A constant property fluid flows longitudinally from
left to right permeating through both the clear region and the porous structure. The case in
Fig. 1a uses symmetry boundary condition at the channel center (y = 0). Also, H is the
distance in between the channel walls and s is the clearance for the non-obstructed flow
passage. It should be emphasized that the class of flow under consideration involves porous
substrates having high porosity and high permeability.

A macroscopic form of the governing equations is obtained by taking the volumetric aver-
age of the entire equation set. In this development, the porous medium is considered to be
rigid and saturated by the incompressible fluid.

The macroscopic continuity equation is given by

∇ · uD = 0, (1)

where the Dupuit–Forchheimer relationship, uD = φ 〈u〉i, has been used and 〈u〉i identifies
the intrinsic (liquid) average of the local velocity vector u (Gray and Lee 1977). Equation 1
represents the macroscopic continuity equation for an incompressible fluid in a rigid porous
medium.

The macroscopic time-mean Navier–Stokes (NS) equation for an incompressible fluid
with constant properties can be written as,

ρ

[
∂

∂t

(
φ〈u〉i) + ∇ · (

φ〈u u〉i)]

= −∇ (
φ〈p〉i) + µ∇2 (

φ〈u〉i) + ∇ ·
(
−ρφ〈u′ u′〉i

)
+ R. (2)

As usually done when treating turbulence with statistical tools, the correlation −ρu′ u′
appears after application of the time-average operator to the local instantaneous NS equation.
Applying further the volume-average procedure to the entire momentum equation (see Pedras
and de Lemos 2001a for details), results in the term −ρφ〈u′ u′〉i of (2). This term is here
recalled as the Macroscopic Reynolds Stress Tensor (MRST). In addition, R in (2) represents
the time-mean total drag per unit volume acting on the fluid by the action of the porous
structure. A common model for it is known as the Darcy–Forchheimer extended model and
is given by

R = −
[

µφ

K
uD + cFφρ |uD|uD√

K

]
, (3)

where the constant cF is known in the literature as the non-linear Forchheimer coefficient.
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Fig. 1 Turbulent channel flow with porous material a, notation for control volume discretization b, and
notation for interface treatment c

Then, making use again of the expression uD = φ 〈u〉i and (3), Eq. 2 can be rewritten as

ρ

[
∂uD

∂t
+ ∇ ·

(
uD uD

φ

)]

= −∇ (
φ〈p〉i) + µ∇2uD + ∇ ·

(
−ρφ〈u′ u′〉i

)
−

[
µφ

K
uD + cFφρ |uD|uD√

K

]
. (4)
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Further, a model for the MRST in analogy with the Boussinesq concept for clear fluid can
be written as

− ρφ〈u′ u′〉i = µtφ2〈D〉v − 2

3
φρ〈k〉iI, (5)

where

〈D〉v = 1

2

[
∇ (

φ〈u〉i) + [∇ (
φ〈u〉i)]T

]
(6)

is the macroscopic deformation tensor, 〈k〉i is the intrinsic average for k and µtφ is the mac-
roscopic turbulent viscosity. The macroscopic turbulent viscosity, µtφ , used in (5) is modeled
similarly to the case of clear fluid flow, and a proposal for it was presented in Pedras and de
Lemos (2001a) as

µtφ = ρ cµ〈k〉i2/〈ε〉i. (7)

2.2 Macroscopic Equations for 〈k〉iand 〈ε〉i

Transport equations for 〈k〉i = 〈u′ · u′〉i/2 and 〈ε〉i = µ〈∇u′ : (∇u′)T 〉i/ρ in their so-called
High Reynolds Number form are proposed in Pedras and de Lemos (2001a) as

ρ

[
∂

∂t

(
φ〈k〉i) + ∇ · (

uD〈k〉i)] = ∇ ·
[(

µ + µtφ

σk

)
∇ (

φ〈k〉i)] + P i + G i − ρφ〈ε〉i, (8)

where P i = −ρ〈u′ u′〉i : ∇uD, G i = ckρφ〈k〉i |uD/
√

K and

ρ

[
∂

∂t

(
φ〈ε〉i) + ∇ · (

uD〈ε〉i)]

= ∇ ·
[(

µ + µtφ

σε

)
∇ (

φ〈ε〉i)] + 〈ε〉i

〈k〉i [c1 P i + c2(G
i − ρφ〈ε〉i)], (9)

where c1, c2, and ck are constants, P i is the production rate of 〈k〉i due to gradients of uD ,
and G i the generation rate of the intrinsic average of k due to the action of the porous matrix.

2.3 Interface and “Jump” Conditions

The equation proposed by Ochoa-Tapia and Whitaker (1995a,b) for describing the stress
jump at the interface has been modified in Silva and de Lemos (2003b) to consider turbulent
flow, in the form,

(
µeff + µtφ

) ∂uDp

∂y

∣∣∣∣
Porous Medium

− (µ + µt)
∂uDp

∂y

∣∣∣∣
Clear Fluid

= (µ + µt)
β√
K

uDp

∣∣∣∣
interface

, (10)

where uDp is the Darcy velocity component parallel to the interface, µeff is the effective
viscosity for the porous region, which according to Ochoa-Tapia and Whitaker (1995a,b) is
given by µeff = µ/φ, and β an adjustable coefficient that accounts for the stress jump at
the interface. Continuity of velocity, pressure, statistical variables, and their fluxes across the
interface are given by (see Silva and de Lemos 2003b for details),
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uD|Porous Medium = uD|Clear Fluid (11)

〈p〉i
∣∣
Porous Medium = 〈p〉i

∣∣
Clear Fluid (12)

〈k〉v
∣∣
Porous Medium = 〈k〉v

∣∣
Clear Fluid (13)(

µ + µtφ

σk

)
∂〈k〉v

∂y

∣∣∣∣
Porous Medium

=
(

µ + µt

σk

)
∂〈k〉v

∂y

∣∣∣∣
Clear Fluid

(14)

〈ε〉v
∣∣
Porous Medium = 〈ε〉v

∣∣
Clear Fluid (15)(

µ + µtφ

σε

)
∂〈ε〉v

∂y

∣∣∣∣
Porous Medium

=
(

µ + µt

σε

)
∂〈ε〉v

∂y

∣∣∣∣
Clear Fluid

(16)

Equations 11 and 12 were also proposed by Ochoa-Tapia and Whitaker (1995a), whereas
relationships (13) through (16) were used by Lee and Howell (1987).

In Silva and de Lemos (2003b), no “jump” condition was considered when treating the
diffusion flux of 〈k〉v across the interface, as can be seen by Eq. 14. In de Lemos (2005b),
such discontinuity in the diffusion transport of 〈k〉v and 〈ε〉i between the two media was first
proposed.

Before continuing, a word about the physical reasoning for proposing a discontinuity also
for the turbulent field seems timely. Such “jump” might be a model for accounting for inter-
face roughness or be a way to comply with irregular interfaces. In addition, it can also be seen
as an accommodation of the fact that, close to the interface, the permeability K attains higher
values than those used within the porous substrate. One can also mention that, for turbulent
flow, momentum carries turbulence energy and if a discontinuity of time-mean momentum
diffusion applies across the interface, then it is reasonable to infer that a discontinuity might
also exist when transporting k across the same interface. In fact, decomposing properties in
“mean” and “fluctuating” components is the sole outcome of application of statistical tools.
The property itself has an instantaneous local value. If for the time-mean momentum equation
a diffusion-jump applies, then for the same reason a diffusion-jump for k is also justifiable.
For that, the interface condition of de Lemos (2005b) is here considered,(

µeff + µtφ

σk

)
∂〈k〉v

∂y

∣∣∣∣
Porous Medium

−
(

µ + µt

σk

)
∂〈k〉v

∂y

∣∣∣∣
Clear Fluid

=
(

µ + µt

σk

)
βt√
K

〈k〉v
∣∣∣∣
Interface

(17)

and for 〈ε〉i it reads,(
µeff + µtφ

σε

)
∂〈ε〉v

∂y

∣∣∣∣
Porous Medium

−
(

µ + µt

σε

)
∂〈ε〉v

∂y

∣∣∣∣
Clear Fluid

=
(

µ + µt

σε

)
βt√
K

〈ε〉v
∣∣∣∣
Interface

(18)

instead of Eqs. 14 and 16, respectively. Note that in de Lemos (2005b), the left-hand side of
(17) assumed a value for σk equal to unity, which was the value used in his simulations. Also,
to emphasize that a different jump coefficient might be needed for the turbulence equations,
symbol βt is used on the left of (17) and (18), instead of β. More on the use of a different
jump coefficient for the turbulent flow equations will be discussed below. Conditions (17)
and (18) are imposed along the interface shown in Fig. 1a.

Equations 17 and 18 result from the following reasoning, which is here discussed in
some more details than in de Lemos (2005b). If interface condition (10) is written in its
instantaneous form and recalling its proposition for flows parallel to the interface, it gives
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µeff
∂uDi

∂y

∣∣∣∣
Porous Medium

− µ
∂uDi

∂y

∣∣∣∣
Clear Fluid

= µ
β√
K

uDi

∣∣∣∣
interface

. (19)

After time-averaging (19) and considering the turbulent viscosity, one gets,

(
µeff + µtφ

) ∂uDi

∂y

∣∣∣∣
Porous Medium

− (µ + µt)
∂uDi

∂y

∣∣∣∣
Clear Fluid

= (µ + µt)
β√
K

uDi

∣∣∣∣
interface

. (20)

Assuming now that the Darcy velocity at the interface varies with time, a standard time decom-
position for it can be written as uDi = uDi + u′

Di. Next, considering that only velocities
fluctuate in time, subtracting (20) from (19) with turbulent viscosity results in the following
relationship for the fluctuating interface velocity u′

Di,

(
µeff + µtφ

) ∂u′
Di

∂y

∣∣∣∣
Porous Medium

− (µ + µt)
∂u′

Di

∂y

∣∣∣∣
Clear Fluid

= (µ + µt)
β√
K

u′
Di

∣∣∣∣
interface

. (21)

Taking the scalar product of u′
Di and Eq. 21, one gets

(µeff + µtφ)
∂

(
(u′

Di · u′
Di)/2

)
∂y

∣∣∣∣∣
Porous Medium

−(µ + µt)
∂

(
(u′

Di · u′
Di)/2

)
∂y

∣∣∣∣∣
Clear Fluid

= (µ + µt)
β√
K

(
(u′

Di · u′
Di)/2

)∣∣∣∣
interface

. (22)

If one now applies the time-averaging operation to Eq. 22 and note that the turbulence kinetic
energy at the interface is given by 〈k〉v = u′

Di · u′
Di/2, condition (17) is recovered after

introducing the constant σk and using βt , instead of β. Similar arguments would have led
to (18), which represents the rate at which 〈k〉v is dissipated as it crosses the interface. Had
a corresponding diffusion-jump model for 〈ε〉v not been applied, then a possible unbalance
among generation, transport, and dissipation of turbulent energy across the interface would
occur. This situation would possibly lead to physical and numerical instabilities. This inves-
tigation, however, was not the objective of this study. Here, both macroscopic equations for
k and ε considered a jump at the interface.

Further, as already observed in de Lemos (2005b), one should clarify that a different
coefficient βt might be necessary on the right-hand side of (17) and (18) to accommodate
real engineering flows over porous substrates with rough interfaces, above vegetation, forest,
crops, finite engineering equipment, or any other condition which might cause the use of β to
be inadequate. Propositions (17) and (18), as such, should be regarded as a first step toward
realistic modeling subjected to improvements as more experimental data on macroscopic
interfaces become available.

Also, one should emphasize that the only continuum intrinsic variable across the interface
is the liquid pressure because pressure on both sides of the liquid phase, at the interface, has
to be the same. Other intrinsic quantities cannot be continuous if one side of the interface
contains less void space. For example, for one-dimensional flows normal to the interface, the
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intrinsic fluid velocity 〈u〉i has to increase (be discontinuous) as the fluid enters the porous
material. However, the same mass flow rate, and therefore uD, flows from the clear region to
the inside the porous matrix. By the same token, in Eqs. 14–18, the terms referent to the clear
side will have the intrinsic average equal to the volumetric average (〈〉v = 〈〉i) because, in the
clear region, there is no solid material to differentiate between these two values. Likewise,
in the clear region, the turbulent viscosity is given by µt . Further, it is important to note that
Eq. 8 is valid for inside the porous medium where no jump is considered. Equation 17, on
the other hand, compares the difference between the stresses on both sides of the interface.
Equation 17 is not derived from Eq. 8, but it is a model to accommodate the assumption
that shear stresses on both sides of the interface present a possible unbalance. If one has
µtφ = φµt with µt = ρ cµ〈k〉v2

/〈ε〉v, µeff = µ/φ, 〈k〉v = φ〈k〉i, Eq. 17 is readily applica-
ble as a suitable jump condition when Eq. 8 is used on the porous medium side (φ < 1) and
on the clear side (φ = 1, 〈k〉v = 〈k〉i = k, µtφ = µt) of the interface.

3 Numerical Details

Figure 1b shows a general control volume in a two-dimensional configuration (Patankar
1980). The faces of the volume are formed by lines of constant coordinates η–ξ . The work
in Silva and de Lemos (2003a) was set up for solving one-dimensional laminar flows in
the geometry of Fig. 1a and employed the spatially periodic boundary condition along the
x coordinate. This was done to simulate fully developed flow. An imposed mass flow rate
was set in the beginning of the calculations, which was maintained during the entire itera-
tive process. Pressure distribution was calculated along with the relaxation of the algebraic
equation system (Patankar 1980) and was not imposed anywhere in the channel. Pressure
was the outcome of the numerical solution and for less permeable porous layers, a higher
pressure head along the channel was necessary to maintain the imposed mass flow rate. The
spatially periodic condition was implemented by running the 2D solution repetitively, until
outlet profiles in x = L matched those at the inlet (x = 0). Details on the methodology here
employed for simulating fully developed flow using a two-dimensional numerical tool and
the periodic condition along the x-direction can be found in Pedras and de Lemos (2001b,c,
2003).

In Silva and de Lemos (2003a), the discretization methodology used for including the
jump condition in the numerical solutions was discussed. For that, only brief comments
about the numerical procedure are made here. Also, details of the discretization of the terms
on the left of (10) can be found in Pedras and de Lemos (2001b). Furthermore, information
on the discretization of the right of (10) appears in Silva and de Lemos (2003a) where more
particulars can be found. Here, attention is focused on the numerical treatment of (17) and
(18), whose discretization followed the nomenclature shown in Fig. 1b.

For steady state, a general form of the discrete equations for a general variable ϕ becomes

Ie + Iw + In + Is = Sϕ, (23)

where Ie, Iw, In, and Is are the fluxes of ϕ at faces east, west, north, and south of the control
volume of Fig. 1b, respectively, and Sϕ is a source term. Here, all computations were carried
out until normalized residues of the algebraic equations were brought down to 10−7.

Figure 1c shows details of the interface dividing two control volumes, one being located
in the porous region and the other lying in the clear fluid. The computational grid based on
generalized coordinate system η–ξ is such that the interface coincides with a line of constant
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η, extending itself along the ξ coordinate. In this arrangement, the interface between the two
neighbor volumes, each one located on each side of the interface, belongs to both faces of
the two volumes. Thus, according to the Fig. 1c, uDi is the Darcy velocity at the interface
and uDp its component parallel to the interface.

Also, one should emphasize that for the sake of simplicity in notation, a volume-average
velocity is given the symbol uD = φ〈u〉i. If the computational node is outside the porous
substrate, one gets uD = 〈u〉i since, by definition, porosity is equal to unity in the free flow
region. Accordingly, due to the numerical methodology used in this work (control-volume),
no distinction is made if a variable is averaged in a control-volume having only “liquid” (free
flow or clear domain) or in a control-volume containing a “solid” phase (porous matrix).
Therefore, one always is referring to a volume-based numerical value, either in the fluid or
in the porous medium.

Further, in Fig. 1c one can identify all variables located at the interface. The modulus of
the macroscopic interfacial area can be expressed as

|Ai| = Ai = 
i × 1 =
√

(xne − xnw)2 + (yne − ynw)2. (24)

Integrating the left-hand side of (17) over the macroscopic interfacial area Ai, and consid-
ering further constant 〈k〉i and constant properties prevailing over the integration area, one
has

I βk
i = ∫

Ai

(
µ + µt

σk

)
βt√
K

〈k〉v

∣∣∣∣
i
dAi ≈

(
µ + µt

σk

)
i

βt√
K

〈k〉v

∣∣∣∣
i

Ai (25)

or

I βk
i ≈

(
µ + µt

σk

)
i

βt√
K

〈k〉v

∣∣∣∣
i

Ai =
(

µ + µt

σk

)
i

βt√
K

〈k〉v
i

=
(

µ + µt

σk

)
i

βt√
K

〈k〉v
√

(xne − xnw)2 + (yne − ynw)2. (26)

Following similar steps for the ε-equation, one gets

I βε

i ≈
(

µ + µt

σε

)
i

βt√
K

〈ε〉v

∣∣∣∣
i

Ai =
(

µ + µt

σε

)
i

βk√
K

〈ε〉v
i

=
(

µ + µt

σε

)
i

βt√
K

〈ε〉v
√

(xne − xnw)2 + (yne − ynw)2. (27)

The terms on the right of (26) and (27) are added to the discretized k- and ε-equation
components, respectively, when the nodal point in question has a face coincident with the
interface. For ease of implementation, these additional terms are treated in an explicit form
and are added to the right-hand side of (23).

Before proceeding, it is important to emphasize the following. It is a well-known feature
in the turbulence modeling community that when using standard k–ε models, profiles of ε

follows the same features as those of the results of k. The reason is that such standard two-
equation model is based on two quantities that are intimately linked by one unique time scale,
which measures k/ε. Therefore, major features in the k behavior are as well reflected in its
dissipation rate. For example, in boundary layer flows close to walls, the rise of levels of k
is accompanying by an elevation on ε values, otherwise no balance between production of
turbulent kinetic energy and its dissipation rate would result in a physically stable solution.
For this reason, rarely in the literature, results for ε are also presented in conjunction with
simulations for k, which is, in fact, the important quantity for which simulations are per-
formed. Distinct two-equation models such as k–
, k–ω, and others, also aim at simulating
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the behavior or k being the secondary transported quantity of a less important nature. Essen-
tially, a velocity scale (k1/2), and a length scale (
 = k3/2/ε in the particular case of k–ε

model) are needed to characterize the turbulent eddy viscosity. Accordingly, in this work,
attention is focused on the numerical results obtained for k.

4 Results and Discussion

The flow in Fig. 1a was computed with the set of Eqs. 4, 8, and 9 with additional constitutive
Eq. 5 and the macroscopic Kolmogorov–Prandtl expression (7). The wall function approach
was used for treating the flow close to the wall. Grid independence studies were conducted
in Silva and de Lemos (2003a) and, for more than 40 nodal points in the cross-stream direc-
tion, the solution was essentially grid independent. One should emphasize that the numerical
methodology here considered was focused on two-dimensional flows, so that simulating the
fully developed situation shown in the figure required the use of nodal points along the axial
direction as well as the employment of the spatially periodic condition mentioned earlier. For
all runs studied here, a total of 50 nodes in the axial direction were found to suffice. It is also
important to note that the sign of coefficient β in expression (10) and (17) depends on the
orientation of the y-axis in relation to the porous layer location. Here, the same orientation
given by Kuznetsov (1996, 1997, 1999) was used, which considers the porous layer at the
top of the channel with its normal pointing toward the minus y-direction. In this article, sim-
ulations with positive and negative values of β were conducted to investigate its effect on the
profiles of mean velocity and k. Determination of its numerical values, however, was not the
objective of this work. One possibility to obtain β is to resolve numerically for the intra-pore
flow structure with a fine computational grid, volume-average the results, and compare the
macroscopic values with models such as the diffusion-jump model.

As such, coherent computations for laminar flow (Silva and de Lemos 2003a) were ob-
tained. As mentioned, grid independence studies were carried out by Silva and de Lemos
(2003a), indicating the proper number of nodal points used around the interface. There, the
authors correctly reproduced, with their numerical tool, the boundary layers around the inter-
face proposed by the analytical study of Kuznetsov (1996, 1997, 1999). Also, for the case of
turbulent flow, the number of grid point used seems to be appropriate. In all computations
herein, the following condition and values were used (de Lemos 2005b, Lee and Howell
1987): βt = β, cµ = 0.09, c1 = 1.44, c2 = 1.92, ck = 0.28, σk = 1.0 and σε = 1.33. It
is also important to mention that while comparisons with experimental results greatly ben-
efits and are paramount to evaluation of any theoretical and numerical analyses, the set of
results herein focus on the behavior of the model as certain parameters are varied. Full model
evaluation and verification is under way, and shall be the subject of future work.

The effect of ReH is shown in Fig. 2. Plots on the left (a, c) are for mean velocity, whereas
curves on the right of the figure (b, d) details the behavior of the turbulent filed. Also, draw-
ings on the top (a, b) were calculated for β < 0, whereas figures on the bottom (c, d) used
positive values of β. The mean velocity profiles in Fig. 2a and c confirms the increasing mass
flow rate within either the porous material or the clear passage as ReH increases. In Fig. 2b
and d, the collapse of curves for the turbulent kinetic energy divided by the mean mechanical
energy shows that, for the range of ReH analyzed here, the percentage of energy transformed
into turbulence remains the same, regardless of the diffusion-jump model used. The most
striking feature in Fig. 2 is the different response, in the turbulence field (b, d), when using
values for β of different sign. Negative values for β (Fig. 2b) indicate that the peaks in the
curves lie lower than when no jump condition is used, and that this peak is at the interface.
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Fig. 2 Effect of Reynolds number, ReH, on macroscopic field. β ≤ 0: a mean velocity, b turbulent kinetic
energy; β ≥ 0: c mean velocity, d turbulent kinetic energy

On the other hand, for a positive β, the levels of k are higher than if no jump condition is
applied. In addition, the peaks are moved toward the center of the channel. The behavior of
the curves is associated with corresponding mean velocity profiles. Within the clear fluid,
the production of turbulent kinetic energy is known to be dictated by gradients of the mean
velocity (P i on the right of (8)), whereas inside the permeable structure, the model of Pedras
and de Lemos (2001a) proposes a factor proportional to uD as a generating mechanism for
k(G i in Eq. 8).

Figure 3 shows the effect of the permeability K on both the mean and statistical fields.
Plots a, b, c, and d follow the same convention described in Fig. 2. The figure indicates that,
the greater the permeability, more flow crosses the porous substratum located in the region
0.5< y/H <1 (Fig. 3a–c). The curves representing the statistical field in Fig. 3b–d show that
the levels of k increase with increasing K . As more fluid flows in less resistant media, more
mean mechanical energy is transformed into turbulence increasing the overall level of k.

Finally, Fig. 4 investigates the effect of the value of φ on the behavior of the mean and
turbulent fields, here also following the same convention established when presenting Fig.
2 (plots a, b, c, and d). For the mean field (a, c), one can note that close to y/H=0.5 the
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Fig. 3 Effect of permeability, K , on macroscopic field. β ≤ 0: a mean velocity, b turbulent kinetic energy;
β ≥ 0: c mean velocity, d turbulent kinetic energy

greater the porosity, the higher the velocity at the interface, and the greater the mass flow rate
closer to this region. At the center of the channel, the velocity decreases to keep the imposed
mass flow rate the same. It is interesting to observe that since the overall mass flow rate is
forced to be constant, instead of the overall pressure loss along the channel, an enhancement
of the mass flow rate along the porous bed in the interface region is compensated by a slight
reduction on local velocities close to the wall. Figure 4b–d shows corresponding curves for
the behavior of the turbulent kinetic energy. Values of k present a slight reduction as φ is
incremented. Lower values for the turbulence level within the porous layer are coherent with
the model of Eq. 8 for the extra generation rate due to the porous matrix. As said, this extra
G i term (3rd on the right of (8)) was modeled as proportional to uD and, inside the porous
layer, the mean Darcy velocity is reduced as φ increases.

Ultimately, results in Figs. 2, 3, and 4 indicates that for flows where models with β <0 are
suitable, a smaller portion of the mean mechanical energy of the flow is converted into turbu-
lence. Results herein might be useful to environmentalists and engineers analyzing important
natural and engineering flows. Although in the porous substrate, mean velocity profiles are
flatter, reducing the production rate P i, the generating mechanism G i is proportional to uD,
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Fig. 4 Effect of porosity, φ, on macroscopic field. β ≤ 0: a mean velocity, b turbulent kinetic energy; β ≥ 0:
c mean velocity, d turbulent kinetic energy

increases the overall value of k. In the clear fluid, steeper gradients in the fluid layer also
contributes for increasing the value of the turbulent kinetic energy. Then, either by P i in the
clear fluid or by G i in the porous layer, turbulent kinetic energy is generated at a faster rate
for positive values of β.

5 Concluding Remarks

For flat interfaces, numerical solutions for turbulent flow in composite channels were obtained
for different values of ReH, K , and β parameters. Results were compared with previous
computations by Silva and de Lemos (2003b), which did not include a diffusion jump for k.
Inclusion of such term resulted in qualitatively different profiles for the turbulence kinetic
energy, ultimately indicating a different portion of the available mechanical energy that is
converted into turbulence. Although simulations were presented for one-dimensional flows,
the implementation herein was done for two-dimensional situations and carried out on a
generalized coordinate system.
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Results herein may contribute to the analysis of important environmental and engineer-
ing flows, where an irregular interface surrounding a porous body may be identified. Future
applications of the model may be useful in determining the overall exchange rates of energy
and mass transport across a interface between a porous medium and a clear region.
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