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Environmental impact analyses as well as engineering equipment
design can both benefit from reliable modeling of turbulent flow in
porous media. A number of natural and engineering systems can be
characterized by a permeable structure through which a working
fluid permeates. Turbulence models proposed for such flows de-
pend on the order of application of time and volume average op-
erators. Two methodologies, following the two orders of integrati-
on, lead to different governing equations for the statistical quanti-
ties. This paper reviews recently published methodologies to math-
ematically characterize turbulent transport in porous media. A new
concept, called double-decomposition, is here discussed and mod-
els for turbulent transport in porous media are classified in terms of
the order of application of the time and volume averaging operators,
among other peculiarities.

Within this paper Instantaneous Local Transport Equations are
reviewed for clear flow before Time and Volume Averaging Proce-
dures are applied to them. The Double-Decomposition Concept is
presented and thoroughly discussed prior the derivation of macro-
scopic governing equations. Equations for Turbulent Transport fol-
low, showing detailed derivation for the mean and turbulent field
quantities.

Key words: Turbulent flow; Double-Decomposition; Porous
Structures, Permeable media, Mathematical Modeling.

Umweltverträglichkeitsanalysen sowie das Design von techni-
scher Ausrüstung profitieren von der zuverlässigen Modellierung
turbulenter Strömung in porösenMedien. Viele natürliche und tech-
nische Systeme können mittels einer permeablen Struktur beschrie-
ben werden, welche von einem Arbeitsmedium durchdrungen wird.
Vorhandene Turbulenzmodelle solcher Strukturen sind abhängig
von der Größenordnung der Zeit und den durchschnittlichen Volu-
menoperatoren. Zwei Methoden - entsprechend den beiden Integra-
tionsgraden, führen zu verschiedenen problembeschreibenden Dif-
ferentialgleichungen zur Beschreibung der statistischen Größen.
Dieser Artikel diskutiert kürzlich veröffentlichte Methoden für
die mathematische Charakterisierung von turbulenter Strömung
in porösen Medien. Ein neues Konzept - als „double-decompositi-
on“ bezeichnet - wird diskutiert undModelle des turbulenten Trans-
ports in porösen Medien werden klassifiziert in Abhängigkeit der
Größenordnung der Zeit und von durchschnittlichen Volumenope-
ratoren zusammen mit weiteren Charakteristika.

Im Rahmen dieses Artikels werden unmittelbare lokale Trans-
portgleichungen der reinen Strömung beurteilt, bevor zeit- und vo-
lumenmittelnde Verfahren angewendet werden. Das Double-De-
composition-Konzept wird vorgestellt und vor der Ableitung ma-
kroskopischer Gleichungen ausführlich diskutiert. Des Weiteren
folgen Gleichungen für den turbulenten Transport mit detaillierter
Ableitung der mittleren und turbulenten Feldgrößen.

Schlüsselworte: Turbulente Strömung; Double-Decomposition;
poröse Strukturen; permeable Medien; mathematische Modellie-
rung.

1 Introduction

It is well established in the literature that modelling of
macroscopic transport for incompressible flows in porous me-
dia can be based on the volume-average methodology [1] for
either heat [2] or mass transfer [3-6]. If the fluid phase proper-
ties fluctuate with time, in addition to presenting spatial de-
viations, there are two possible methodologies to follow in
order to obtain macroscopic equations: (a) application of
time-average operator followed by volume-averaging [7-
11], or (b) use of volume-averaging before time-averaging
is applied [12-15]. In fact, these two sets of macroscopic trans-
port equations are equivalent when examined under the re-
cently established double decomposition concept [16-20]. Re-
cent reviews on the topic of turbulence in permeable media
can be found in References [21-23]. Advances on the general
area of porous media are found in recently published books
devoted to the subject [24-26].

The double-decomposition idea was initially developed for
the flow variables in porous media and has been extended to
non-buoyant heat transfer [27-28], buoyant flows [29-31],
mass transfer [32], non-equilibrium heat transfer [33], dou-
ble-diffusive transport [34], and hybrid media (clear/porous
domains) [35]. The problem of treating macroscopic inter-
faces bounding finite porous media, considering a diffusi-
on-jump condition for the mean [36, 37] and turbulence fields
[38], has also been investigated under the concept first pro-
posed by Ref. [17]. A general classification of all proposed
models for turbulent flow and heat transfer in porous media
has been recently published [39]. Here, a systematic review of
this new concept is presented.

2 Transport equations

The steady-state local or microscopic instantaneous trans-
port equations for an incompressible fluid with constant prop-
erties are given by:
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r � u ¼ 0 ð1Þ

qr � ðuuÞ ¼ �rpþ lr2uþ qg ð2Þ

where u is the velocity vector, q is the density, p is the pres-
sure, l is the fluid viscosity and g is the gravity acceleration
vector.

As mentioned, there are, in principle, two ways that one can
follow in order to treat turbulent flow in porous media. The
first method applies a time average operator to the governing
Eqs. (1)–(2) before the volume average procedure is applied.
In the second approach, the order of application of the two
average operators is reversed. Both techniques aim at deriva-
tion of suitable macroscopic transport equations.

Volume averaging in a porous medium, described in detail
in Refs. [40-42], makes use of the concept of a Representative
Elementary Volume (REV) over which local equations are in-
tegrated. In a similar fashion, statistical analysis of turbulent
flow leads to time mean properties. Transport equations for
statistical values are considered in lieu of instantaneous infor-
mation on the flow.

2.1 Time and Volume Averaging Procedures

Traditional analyses of turbulence are based on statistical
quantities, which are obtained by applying time-averaging
to the flow governing equations. As such, the time average
of a general quantity u is defined as follows:

�uu ¼ 1

�t

ðþ�t

udt ð3Þ

where the time interval Dt is small compared to the fluctua-
tions of the average value, �uu, but large enough to capture tur-
bulent fluctuations of u. Time decomposition can then be writ-
ten as follows:

u ¼ �uuþ u 0 ð4Þ

with �uu 0 ¼ 0, where u 0 is the time fluctuation of u around its
average value �uu.

The volume average of a general property u taken over a
REV in a porous medium can be written as [40],

huim ¼ 1

�V

ð
�V

udV ð5Þ

The value huim is defined for any point x surrounded by a
REVof sizeDV. This average is related to the intrinsic average
for the fluid phase as follows:

huim ¼ fhuii ð6Þ

where f =�Vf /�V is the local medium porosity and�Vf

is the volume occupied by the fluid in a REV. Furthermore, we
can write,

u ¼ huii þiu ð7Þ

with hiuii ¼ 0. In Eq. (7), iu is the spatial deviation of u
with respect to the intrinsic average huii.

For deriving the flow governing equations, it is necessary to
know the relationship between the volumetric average of de-
rivatives and the derivatives of the volumetric average. These
relationships are presented in a number of works, e.g. Ref [1,
41], being known as the Theorem of Local Volumetric Aver-
age. They are written as follows:

hruim ¼ rðfhuiiÞ þ 1

�V

ð
Ai

nudS ð8Þ

hr � uim ¼ r � ðfhuuiiÞ þ 1

�V

ð
Aj

n � udS ð9Þ

h@u
@t

im ¼ @

@t
ðfhuiiÞ � 1

�V

ð
Ai

n � ðuiuÞdS ð10Þ

where Ai, ui and n are the interfacial area, the velocity of
phase f and the unit vector normal to Ai, respectively.

The area Ai should not be confused with the surface area
surrounding volume DV. To the interested reader, mathemati-
cal details and proof of the Theorem of Local Volumetric Av-
erage can be found in Refs. [1, 40-42]. For single-phase flow,
phase f is the fluid itself and ui¼0 if the porous substrate is
assumed to be fixed. In developing Eqs. (8)-(10), the only re-
striction applied is the independence of DV in relation to time
and space. If the medium is further assumed to be rigid, then
DVf is dependent only on space and not time-dependent [42].

2.2 Time Averaged Transport Equations

In order to apply the time average operator to equations (1),
(2) and (8), we consider:

u ¼ �uuþ u 0 p ¼ �ppþ p 0 ð12Þ

Substituting expression (12) into Eqs. (1), (2) and (8), re-
spectively, we obtain after considering constant flow proper-
ties,

r � �uu ¼ 0 ð13Þ

qr � ð�uu�uuÞ ¼ �ðr�ppÞ þ lr2�uuþr � ð�qu 0u 0Þ ð14Þ

For a clear fluid, the use of the eddy-diffusivity concept for
expressing the stress-rate of strain relationship for the Rey-
nolds stress appearing in Eq. (14) gives,

�qu 0u 0 ¼ lt2�DD� 2

3
qkI ð15Þ

where �DD is the mean deformation tensor, k is the turbulent
kinetic energy per unit mass, lt is the turbulent viscosity and I
is the unity tensor.

The transport equation for the turbulent kinetic energy is
obtained by multiplying first the difference between the in-
stantaneous and the time-averaged momentum equations by
u 0. Thus, applying further the time average operator to the
resulting product, we obtain,

qr � ð�uukÞ ¼ �qr � u 0 p 0

q
þ q

� �� �
þ lr2k þ Pk � qe ð16Þ
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where Pk ¼ � qu 0u 0 : r�uu is the generation rate of k due to
gradients of the mean velocity and q ¼ u 0 � u 0/2.

3 The Double-decomposition concept

The double decomposition idea, herein used for obtaining
macroscopic equations, has been detailed in Refs. [16-20].
Here, a general overview is presented. Further, the resulting
equations using this concept for the flow [17] and non-buoy-
ant thermal fields [27, 28] are already available in the litera-
ture and because of this they are not reviewed here in great
detail. As already mentioned, extensions of the double-de-
composition methodology to buoyant flows [29-30], to
mass transport [32], and to double-diffusive convection
[34], have also been presented in the open literature.

Basically, for porous media analysis, a macroscopic form of
the governing equations is obtained by taking the volumetric
average of the entire equation set. In that development, the
porous medium is considered to be rigid and saturated by
an incompressible fluid.

Basic Relationships. From the work in References [16, 27],
one can write for any flow property u combining decomposi-
tions (7) and (4),

huii ¼ h�uuii þ hu 0ii; �uu ¼ h�uuii þi �uu;

iu ¼i �uuþi u 0; u 0 ¼ hu 0ii þi u 0 ð17Þ

or further

u 0 ¼ huii
0
þi u 0 ¼ hu 0ii þi u 0 ð18Þ

where iu 0 can be understood as either the time fluctuation of
the spatial deviation or the spatial deviation of the time fluc-
tuation. After some manipulation, we can prove that [17],

huim ¼ h�uuim; or huii ¼ h�uuii ð19Þ

i.e. the time and volume averages commute. Also,

i�uu ¼ iu; hu 0ii ¼ huii
0

ð20Þ

or say,

huii ¼ 1

�Vf

ð
�Vf

udV ¼ 1

�Vf

ð
�Vf

ð�uuþ u 0ÞdV ð21Þ

¼ h�uuii þ hu 0ii

iu ¼i ð�uuÞ þi ðu 0Þ ¼ ðiuÞ þ ðiuÞ 0 ð22Þ

so that,

u 0 ¼ hu 0ii þiðu 0Þ where

iðu 0Þ ¼ u 0 � hu 0ii and also ðiuÞ 0 ¼ iu� iu ð23Þ

Finally, we can have a full variable decomposition as fol-
lows:

u ¼ h�uuii þ hu 0ii þi �uuþi ðu 0Þ ¼ huii þ huii
0
þ iuþ ðiu 0Þ ð24Þ

or further,

u ¼ h�uuii þ hu 0ii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
huii

þ i�uuþi ðu 0Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{iu

¼ huii þ iu�uu þ huii
0
þ ðiuÞ 0

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{u 0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} ð25Þ

Equation (24) comprises the double decomposition con-
cept. The significance of the four terms in expression (25)
can be reviewed as: (a) h�uuii, is the intrinsic average of the
time mean value of f, i.e. we compute first the time averaged
values of all points composing the REV, and then we find their
volumetric mean to obtain h�uuii. Instead, we could also con-
sider a certain point x surrounded by the REV, according to
Eq. (5) and (6), and take the volumetric average at different
time steps. Thus, we calculate the average over such different

values of huii in time. We get then huii and, according to ex-

pression (19), h�uuii ¼ huii, i.e. the volumetric and time average
commute. (b) If we now take the volume average of all fluc-
tuating components of u, which compose the REV, we end up
with hu 0ii. Instead, with the volumetric average around point x
taken at different time steps we can determine the difference
between the instantaneous and a time averaged value. This
will be huii 0 that, according to expression (20), equals huii 0.
Further, on performing first a time averaging operation
over all points that contribute with their local values to the
REV, we get a distribution of �uu within this volume. If now
we calculate the intrinsic average of this distribution of �uu,
we get h�uuii. The difference or deviation between these two
value is i�uu. Now, using the same space decomposition ap-
proach, we can find for any instant of time t the deviation
iu. This value also fluctuates with time, and as such a time
mean can be calculated as iu. Again the use of expression
(20) gives i�uu ¼ iu. Finally, it is interesting to note the meaning
of the last term on each side of Eq. (25). The first term, i(u 0), is
the time fluctuation of the spatial component whereas i(u 0)
means the spatial component of the time varying term. If,
however, one makes use of relationships (19) and (20) to sim-
plify expression (25), we finally conclude,

iðu 0Þ ¼ ðiuÞ 0 ð26Þ

and, for simplicity of notation, we can drop the parantheses
and write both superscripts at the same level in the format: iu 0.

Also, hiu 0ii ¼ iu 0 ¼ 0.
The basic advantage of the double decomposition concept

is to serve as a mathematical framework for analysis of flows
where within the fluid phase there is enough room for turbu-
lence to be established. As such, the double-decomposition
methodology would be useful in situations where a solid phase
is present in the domain under analysis so that a macroscopic
view is appropriate. At the same time, properties in the fluid
phase are subjected to the turbulent regime, and a statistical
approach is appropriate. Examples of possible applications of
such methodology can be found in engineering systems such
as heat exchangers, porous combustors, nuclear reactor cores,
etc. Natural systems include atmospheric boundary layer over
forests and crops.
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4 Momentum transport

Mean Flow
The development to follow assumes single-phase flow in a

saturated, rigid porous medium (DVf independent of time) for
which, in accordance with expression (19), time average ope-
ration on the variable u commutes with the space average. Ap-
plication of the double decomposition idea in Eq. (25) to the
inertia term in the momentum equation leads to four different
terms. Not all of these terms are considered in the same ana-
lysis in the literature.

Continuity. The microscopic continuity equation for an in-
compressible fluid flowing in a clear (non-porous) domain
was given by equation (1). Using the double decomposition
idea embodied in expression (25) results,

r � u ¼ r � ðh�uuii þ hu 0ii þi �uuþi u 0Þ ¼ 0 ð27Þ

On applying both volume and time-average operators in
either order gives,

r � ðfh�uuiiÞ ¼ 0 ð28Þ

As such, for the continuity equation the averaging order is
immaterial.

Momentum - one average operator. The transient form of
the microscopic momentum Eq. (2) for a fluid with constant
properties is given by the Navier-Stokes equation as follows:

q
@u

@t
þr � ðuuÞ

� �
¼ �rpþ lr2uþ qg ð29Þ

Its time-average, using u ¼ �uu þu 0, gives

q
@�uu

@t
þr � ð�uu�uuÞ� ¼ �r�ppþ lr2�uuþr � ð�qu 0u 0Þ þ qg

�
ð30Þ

where the stresses, �qu 0u 0, are the well-known Reynolds
stresses. On the other hand, the volumetric average of Eq. (29)
using the Theorem of Local Volumetric Average, Eqs. (8)-
(10), results in the following:

q
@

@t
ðfhuiiÞ þ r � ½fhuuii�

� �

¼ �rðfhpiiÞ þ lr2ðfhuiiÞ þ fqgþ R ð31Þ

where

R ¼ l

�V

ð
Ai

n � ðruÞdS� 1

�V

ð
Ai

npdS ð32Þ

represents the total drag force per unit volume due to the
presence of the porous matrix, being composed by both vis-
cous drag and form (pressure) drags. Further, using spatial de-
composition to write u¼ huiiþiu in the inertia term we obtain
the following:

q
@

@t
ðfhuiiÞ þ r � ½fhuiihuii�

� �
¼ �rðfhpiiÞ

þlr2ðfhuiiÞ � r � ½fhiuiuii� þ fqgþ R ð33Þ

Reference [2] pointed out that the third term on the right
hand side represents the hydrodynamic dispersion due to spa-
tial deviations. Note that equation (33) models typical porous
media flow for Rep<150-200. When extending the analysis to
turbulent flow, time varying quantities have to be considered.

Momentum equation – two average operators. The set of
Eq. (30) and (33) are used when treating turbulent flow in
clear fluid, or low Rep porous media flow, respectively. In
each one of those equations only one averaging operator
was applied, either time or volume, respectively. In this
work, an investigation on the use of both operators in now
conducted with the objective of modeling turbulent flow in
porous media.

The volume average of Eq. (30) gives for the time mean
flow in a porous medium,

q
@

@t
ðfh�uuiiÞ þ r � ðfh�uu�uuiiÞ� ¼ �ðfh�ppiiÞ

�

þlr2ðfh�uuiiÞ þ r � ð�qfhu 0u 0iiÞ þ fqgþ �RR; ð34Þ

where,

�RR ¼ l
�V

ð
Ai

n � ðr�uuÞdS� 1

�V

ð
Ai

n�ppdS ð35Þ

is the time-averaged total drag force per unit volume, due to
solid particles, composed by both viscous and form (pressure)
drags.

Likewise, applying now the time average operation to Eq.
(31), we obtain,

q
@

@t
ðfhuþ u 0iiÞ þ r � ðfhð�uuþ u 0Þð�uuþ u 0ÞiiÞ

� �

¼ �rðfh�ppþ p 0iiÞ þ lr2ðfh�uuþ u 0iiÞ þ fqgþ �RR ð36Þ

Dropping terms containing only one fluctuating quantity re-
sults in,

q
@

@t
ðfh�uuiiÞ þ r � ðfh�uu�uuiiÞ

� �
¼ �rðfh�ppiiÞ

þlr2ðfh�uuiiÞ þ r � ð�qfhu 0u 0iiÞ þ fqgþ �RR ð37Þ

where

�RR ¼ l

�V

ð
Ai

n � ½rð�uuþ u 0Þ�dS� 1

�V

ð
Ai

nð�ppþ p 0ÞdS

¼ l
�V

ð
Ai

n � ðr�uuÞdS� 1

�V

ð
Ai

n�ppdS ð38Þ

Comparing Eq. (34) and (37), we can see that also for the
momentum equation the order of the application of both aver-
aging operators is immaterial.

It is interesting to emphasize that both views in the litera-
ture use the same final form for the momentum equation. The
term �RR is modeled by the Darcy-Forchheimer (Dupuit) ex-
pression after either order of application of the average opera-
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tors. Since both orders of integration lead to the same equa-
tion, namely expression (35) or (38), there would be no reason
for modeling them in a different form. Had the outcome of
both integration processes been distinct, the use of a different
model for each case would have been consistent. In fact, it has
been pointed out by Ref [16] that the major difference between
those two paths lies in the definition of a suitable turbulent
kinetic energy for the flow. Accordingly, the source of contro-
versies comes from the inertia term, as seen below.

Inertia term - space and time (double) decomposition:
Applying the double decomposition idea seen before for ve-
locity (Eq. (25) ), to the inertia term of Eq. (29) will lead to
different sets of terms. In the literature, not all of them are used
in the same analysis.

Starting with time decomposition and applying both aver-
age operators, see Eq. (34), gives,

r � ðfhuuiiÞ ¼ r � ðfhð�uuþ u 0Þð�uuþ uÞiiÞ

¼ r � ½fðhuuii þ hu 0u 0iiÞ� ð39Þ

usingspatialdecompositiontowrite�uu ¼ h�uuii þi �uuweobtain,

r � ½fðhuuii þ hu 0u 0iiÞ�

¼ r � ff½hðh�uuii þi �uuÞðh�uuii þi �uuÞii þ hu 0u 0ii�g

¼ r � ff½h�uuiih�uuii þ hi�uui�uuii þ hu 0u 0ii�g ð40Þ

Now, applying Eq. (18) to write u 0 ¼ hu 0iiþi u 0, and sub-
stituting into expression (40) gives,

r � ff½h�uuiih�uuii þ hi�uui�uuii þ hu 0u 0ii�g

¼ r � ff½h�uuiih�uuii þ hi�uui�uuii þ hðhu 0ii þi u 0Þðhu 0ii þi u 0Þii�g

¼ r � ff½h�uuiih�uuii þ hi�uui�uuii þ hðhu 0iihu 0ii þ hu 0ii iu 0 þi u 0hu 0ii þi u 0 iu 0Þii�g

¼ r � ff½h�uuiih�uuii þ hi�uui�uuii þ hu 0iihu 0ii þ hhu 0ii iu 0ii þ iu 0hu 0iiii þ hiu 0 iu 0ii�g ð41Þ

The fourthand fifth termson the righthandsidecontainsonly
one space varying quantity and will vanish under the applica-
tion of volume integration. Eq. (41) will then be reduced to,

r � ðfhuuiiÞ ¼ r � ff½h�uuiih�uuii þ hu 0iihu 0ii þ hi�uui�uuii þ hiu 0 iu 0ii�g ð42Þ

Using the equivalence (19)-(20), Eq. (42) can be further re-
written as follows,

r � ðfhuuiiÞ ¼ r � ffrhuiihuii þ huii 0 huii 0 þ hiuiuii þ hiu 0 iu 0ii�g ð43Þ

with an interpretation of the terms in Eq. (42) given later.
Another route to follow to reach the same results is to start

out with the application of the space decomposition in the in-
ertia term, as usually done in classical mathematical treatment
of porous media flow analysis. Then we obtain,

r � ðfhuuiiÞ ¼ r � ðfhðhuii þi uÞðhuii þi uÞiiÞ

¼ r � ½fðhuiihuii þ hiuiuiiÞ� ð44Þ

and on time averaging the r.h.s, using Eq. (21) to express
huii ¼ h�uuii þ hu 0ii, becomes,

r � ½fðhuiihuii þ hiuiuiiÞ�

¼ r � ff½ðh�uuii þ hu 0iiÞðh�uuii þ hu 0iiÞ þ hiuiuii�g

¼ r � ff½h�uuiih�uuii þ hu 0iihu 0ii þ hiuiuii�g ð45Þ

With the help of Eq. (22) one can write iu ¼ i�uuþiu 0 which,
inserted into expression (45), gives,

r � ff½h�uuiih�uuii þ hu 0iihu 0ii þ hiuiuii�g

¼ r � ff½h�uuiih�uuii þ hu 0iihu 0ii þ hði�uuþi u 0Þði�uuþi u 0Þii�g

¼ r � ff½h�uuiih�uuii þ hu 0iihu 0ii þ hi�uui�uuþ i�uuiu 0 þ iu 0i�uuþ iu 0iu 0ii�g ð46Þ

Application of the time average operator to the fourth and
fifth terms on the right hand side of Eq. (46), containing only
one fluctuating component, vanishes it. In addition, remem-
bering that with expression (20) the equivalences i�uu ¼ iu
and hu 0ii ¼ huii 0 are valid, and that with expression (19)

we can write huii ¼ h�uuii, we obtain the following alternative
form for Eq. (46),

r � ½fðhuiihuii þ hiuiuiiÞ�

¼ r � f ½h�uuiih�uuii|fflfflfflffl{zfflfflfflffl}
I

þ �hhu 0iihu 0ii|fflfflfflfflffl{zfflfflfflfflffl}
II

þhi�uui�uuii|fflffl{zfflffl}
III

þh�iiu 0 iu 0ii�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
IV

g ð47Þ

which is the same result as expression (42).
The physical significance of all four terms on the right hand

side of (47) can be discussed as:
I. Convective term of macroscopic mean velocity,
II. Turbulent (Reynolds) Stresses divided by the density q

due to the fluctuating component of the macroscopic ve-
locity,

III. Dispersion associated with spatial fluctuations of micro-
scopic time mean velocity. Note that this term is also pre-
sent in the laminar flow, or say, when the pore-based Rey-
nolds number, Rep, is less than 150, and

IV. Turbulent dispersion in a porous medium due to both
time and spatial fluctuations of the microscopic velocity.

5 Fluctuating velocity

The starting point for an equation for the flow turbulent ki-
netic energy is an equation for the microscopic velocity fluc-
tuation u 0. Such a relationship can be written, after subtracting
the equation for the mean velocity �uu from the instantaneous
momentum equation, resulting in the following:

q
@u 0

@t
þr � ½�uuu 0 þ u 0�uuþ u 0u 0 � u 0u 0�

�
¼ �rp 0 þ lr2u 0 ð48Þ

Now, the volumetric average of Eq. (48) using the Theorem
of Local Volumetric Average, gives,

q
@

@t
ðfhu 0iiÞ þ qr � ff½h�uuu 0ii þ hu 0�uuii þ hu 0u 0ii � hu 0u 0ii�g

¼ �rðfhp 0iiÞ þ lr2ðfhu 0iiÞ þ R 0 ð49Þ
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where R’ is the fluctuating part of the total drag due to the
porous structure.

Expanding further the divergent operators in Eq. (49) by
means of the expression set (17), one ends up with an equation
for hu 0ii as follows,

q
@

@t
ðfhu 0iiÞ þ qr � ff½h�uuiihu 0ii þ hu 0iih�uuii

þhu 0iihu 0ii þ hi�uuiu 0ii þ hiu0 iuii þ hiu0 iu 0ii

�hu 0iihu 0ii � hiu0 iu 0ii�g

¼ �rðfhq 0iiÞ þ lr2ðfhu 0iiÞ þ R 0 ð50Þ

6 Turbulent kinetic energy

As mentioned, the determination of the flow macroscopic
turbulent kinetic energy follows two different paths in the lit-
erature. In the models of Refs. [12-15], their turbulence ki-

netic energy was based on km ¼ hu 0ii � hu 0ii=2. They started
with a simplified form of Eq. (50) neglecting the 5th, 6th, 7th.
and 9th terms (dispersion). Then they took the scalar product
of it with hu 0ii and applied the time-average operator. On the
other hand, if one starts with Eq. (48) and proceed with time-
averaging first, one ends up, after volume averaging, with hkii
¼ hu 0 � u 0ii=2. This was the path followed by Refs. [7, 8, 10].
The objective of this section is to derive both transport equa-
tions for km and hkii in order to compare similar terms.

Equation for km ¼ hu 0ii � hu 0ii=2. From the instantaneous
microscopic continuity equation for a constant property fluid
one obtains,

r � ðfhuiiÞ ¼ 0 ! r � ½fðh�uuii þ hu 0iiÞ� ¼ 0 ð51Þ

with time average,

r � ðfh�uuiiÞ ¼ 0 ð52Þ

From Eq. (51) and (52) owe obtain,

r � ðfhu 0iiÞ ¼ 0 ð53Þ

Taking the scalar product of Eq. (49) with hu 0ii, making use
of Eqs. (51)-(53) and time averaging it, an equation for kmwill
have the final form,

q
@ðfkmÞ

@t
þ qr � ½fh�uuiikm�

¼ �qr � fhu 0ii½hp
0ii

q
þ hu 0ii � hu 0ii

2
�

( )

þlr2ðfkmÞ � qfhu 0iihu 0ii : rh�uuii � qfem � Dm ð54Þ

where Dm represents the dispersion of km. It is interesting to
note that this term can be both negative and positive.

The first term on the right of Eq. (54) represents the turbu-
lent diffusion of km and is normally modeled via a diffusion-

like expression resulting for the transport equation for km [14,
15],

q
@ðfkmÞ

@t
þ qr � ½fh�uuiikm� ¼ r �

�
lþ

ltm
rkm

��
rðfkmÞ

�

þPm � qfem � Dm ð55Þ

where

Pm ¼ �qfhu 0iihu 0ii : rh�uuii ð56Þ

is the production rate of km due to the gradient of the macro-
scopic time-mean velocity h�uuii.

References [13-15] made use of the above equation for km
considering for R 0 the Darcy-Forchheimer extended model
with macroscopic time-fluctuation velocities hu 0ii. They
have also neglected all dispersion terms that were grouped
into Dm. Note also that the order of application of both vo-
lume- and time-average operators in this case cannot be chan-
ged. The quantity km is defined by applying first the volume
operator to the fluctuating velocity field.

Equation for hkii ¼ hu 0 � u 0ii=2. The other procedure for
composing the flow turbulent kinetic energy is to take the sca-
lar product of Eq. (48) by the microscopic fluctuating velocity
u 0. Then apply both time and volume-operators for obtaining

an equation for hkii ¼ hu 0 � u 0ii=2. It is worth noting that in
this case the order of application of both operations is imma-
terial since no additional mathematical operation (the scalar
product) is conducted between the averaging processes.
Therefore, this is the same as applying the volume operator
to an equation for the microscopic k.

The volumetric average of a transport equation for k has
been carried out in detail by Ref [17] and for only that final
resulting equation is presented, namely,

q
@

@t
ðfhkiiÞ þ r � ð�uuDhkiiÞ

�

¼ r � ðlþ
ltf
rk

ÞrðfhkiiÞ
� �

þ Pi þ Gi � qfheii ð57Þ

where

Pi ¼ �qhu 0u 0ii : r�uuD; Gi ¼ ckqf
hkiij�uuDjffiffiffiffi

K
p ð58Þ

are the production rate of hkii due to mean gradients of the
seepage velocity �uuD and the generation rate of intrinsic k due
the presence of the porous matrix, respectively. Also, in Eq.
(58) K is the medium permeability and ck is a constant. As
mentioned, Eq. (57) has been proposed by Ref [17]. Never-
theless, for the sake of completeness, a few steps of such de-
rivation are here reproduced. Application of the volume av-
erage theorem to the transport equation for the turbulence ki-
netic energy k gives:

q
@

@t
ðfhkiiÞ þ r � ðfh�uukiiÞ

� �

¼ �qr � f u 0 p 0

q
þ k

� �* +i( )
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þlr2ðfhkiiÞ � qfhu 0u 0 : r�uuii � qfheii: ð59Þ

where the divergence of the right hand side can be expanded
as,

r � ðfh�uukiiÞ ¼ r � ½fðh�uuiihkii þ hi�uuikiiÞ� ð60Þ

where the first term is the convection of hkii due to the
macroscopic velocity whereas the second is the convective
transport due to spatial deviations of both k and u. Likewise,
the production term on the right of Eq. (59) can be expanded
as,

�qfhu 0u 0 : r�uuii ¼ �qf½hu 0u 0ii : hr�uuii þ hiðu 0u 0Þ :iðr�uuÞii� ð61Þ

Similarly, the first term on the right of Eq. (61) is the pro-
duction of hkii due to the mean macroscopic flow and the
second is the hkii production associated with spatial deviations
of flow quantities k and u.

The extra terms appearing in Eq. (60) and (61), respec-
tively, represent extra transport/production of hkii due to
the presence of solid material inside the integration volume.
They should be null for the limiting case of clear fluid flow, or
say, when f!1!K!1. Also, they should be proportional to
the macroscopic velocity and to hkii.

In Ref [17], a proposal for those two extra transport/produc-
tion rates of hkii was made as follows:

�r � ðfhi�uuikiiÞ � qfhiðu 0u 0Þ :i ðr�uuÞii ¼ Gi ¼ ckqf
hkiij�uuDjffiffiffiffi

K
p ð62Þ

where the constant ck was numerically determined by fine
flow computations considering the medium to be formed by
circular rods [18], as well as longitudinal [19] and transversal
rods [20]. In spite of the variation in the medium morphology
and the use of a wide range of porosity and Reynolds number a
value of 0.28 was found to be suitable for most calculations.

Comparison of macroscopic transport equations. A
comparison between terms in the transport equation for km
and hkii can now be conducted. Reference [16] has already
shown the connection between these two quantities as being,

hkii ¼ hu 0 � u 0ii=2 ¼ hu 0ii � hu 0ii=2þ hiu �i u 0ii=2 ¼ km þ hiu 0 �i u 0ii=2 ð63Þ

Expanding the correlation forming the production term Pi
by means of Eq. (7), a connection between the two generation
rates can also be written as follows:

Pi ¼ �qhu 0u 0ii : r�uuD ¼ �qðhu 0iihu 0ii : r�uuD þ hiu 0 iu 0ii : r�uuDÞ

¼ Pm � qhiu0 iu 0ii : r�uuD ð64Þ

We note that all the production rate of km, due to the mean
flow, constitutes only part of the general production rate re-
sponsible for maintaining the overall level of hkii.

7 Concluding remarks

In this paper we have described a new methodology for the
analysis of turbulent flow in permeable media. A novel con-
cept, called the double-decomposition idea, was detailed

showing how a variable can be decomposed in both time
and volume in order to simultaneously account for fluctua-
tions (in time) and deviations (in space) around mean values.
Transport equations for the mean and turbulence flow have
been presented.
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