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A block-implicit numerical procedure for simulation
of buoyant swirling �ows in a model furnace
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SUMMARY

This work reports numerical results for the case of incompressible laminar heated �ow with a swirl
in a vertical cylindrical chamber. Computations are obtained with a point-wise block-implicit scheme.
Flow governing equations are written in terms of the so-called primitive variables and are recast into a
general form. The discretized momentum equations are applied to each cell face and then, together with
the mass-continuity, tangential velocity and energy equations, are solved directly in each computational
node. The e�ects of Rayleigh, Reynolds and Swirl numbers on the temperature �eld are discussed.
Flow pattern and scalar residual history are reported. Further, it is expected that more advanced parallel
computer architectures can bene�t from the error smoothing operator here described. Copyright ? 2003
John Wiley & Sons, Ltd.
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INTRODUCTION

The growing trend in environment regulations points towards ever tighter pollutant release
limits of modern combustion systems. Today, new technologies for e�cient energy production
are based on the so-called lean and low-NOx combustion. Accordingly, most �ow �elds in such
systems are characterized by an ascending stream with an induced swirling motion. Swirling
induces �ame stabilization allowing peak temperature reduction, ultimately reducing pollutant
formation rates. Recently, the design and analysis of such systems, driven by increased
microprocessor performance and associated low computational costs, have made systematic
use of numerical tools. In the end, the growing number of available software packages for
�uid system design has helped engineers in reducing the necessary time before a new concept
is �nally available in the market.
In spite of the increasing use of CFD tools, the numerical solution of such �ows im-

poses additional di�culties due to the intricate coupling between temperature, tangential
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velocity and cross-�ow �elds. Buoyancy term, centripetal and Coriollis accelerations make
the system of governing equations of a high degree of coupling. For instance, for a system
oriented vertically, with the W-component of velocity in the vertical direction, the temperature
T appears in the W-equation. Also, the radial U-component of velocity is governed by an
equation that includes the V-component in the centripetal acceleration term. In addition, the
tangential velocity V is a�ected by U through the Corriolis acceleration. Therefore, U ,W ,V
and T are further connected to each other when buoyancy and rotation are simultaneously
present in the �ow, increasing the aforementioned degree of coupling among all variables
involved.
Linearization of governing equations followed by the use of iterative solvers is the com-

mon route found in the literature for solving such nonlinear problems. Accordingly, the rate
of convergence of any algorithm is essentially dictated by the degree in which physical cou-
pling is mimicked by the method in question. Ultimately, this is an indication that numerical
solutions of swirling �ows, in most cases, su�er from the disadvantage of longer computing
times when compared to their non-swirling counterpart.
Segregated methods, in which one individual �ow variable is relaxed while holding the

others still, are known to be rather sensitive when handling strong physical coupling. For that,
the so-called coupled solvers, where all dependent variables are relaxed in the same domain
location, have received much attention lately.
For buoyancy-driven laminar �ows, bench mark solutions for the �eld in a square cavity

have been presented [1]. Multi-grid solution for this problem has also been published [2].
In the great majority of those works, a segregated method is generally employed with the
repetitive solution of a pressure or pressure-correction equation, followed by subsequent up-
dates of the velocity and scalar �elds. This strategy forms the basis of the SIMPLE family
of algorithms [3]. Coupled line solvers for the temperature and velocity �elds have shown
improvements in computer time requirements for natural convection �ows with large Rayleigh
numbers [4]. The work in Reference [4] is an indication of the advantage of coupled schemes
for solving algebraic equations set with a high degree of interlinkage among the variables.
Recently, the block implicit technique has also been applied in the calculation of buoyant
�ows in a partially-coupled manner [5].
For swirling �ows, most solutions found in the literature are also based on segregated

relaxation procedures [6–8]. In the present context, a fully-implicit treatment is associated
with the idea of simultaneously updating �ow and scalar �elds at each step within the error
smoothing operator. To the best of the author’s knowledge, in all published work, neither
temperature nor tangential velocity �elds, seen here as scalars, are treated in a fully implicit
manner.
Following the aforementioned and based on Vanka’s SGCS method [9, 10], De Lemos

[11] simulated lid-driven cavity �uid motion through a cylindrical tank using a block-implicit
numerical scheme. In addition, the same algorithm has been applied to calculation of swirling
�ows in model combustor [12]. Later, the technique was extended to buoyancy-driven streams
[13], including vertical [14] and inclined cavities [15]. Recently, full documentation of coupled
treatment for swirling [16] and buoyant �ows [17] has been made available in the open
literature. In those papers, a fully-implicit treatment for the scalar quantities (temperature or
tangential velocity) has been made use.
The objective of this paper is to further extend the technique presented in References

[12, 16] for the azimuthal velocity and in References [12–15, 17] for temperature, combining
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Figure 1. Vertical cylindrical chamber.

now the solution of both scalars into a single fully-implicit numerical treatment. To this
end, computations are presented for a model furnace comprising incompressible laminar �ow
simultaneously heated and subjected to an incoming �ow with swirl. E�ects of Reynolds,
Rayleigh number and swirling strength on temperature patterns and convergence rates are
reported.

GOVERNING EQUATIONS AND NUMERICAL METHOD

Geometry

The geometry here considered is schematically shown in Figure 1. A typical furnace com-
bustion zone is approximated by a model consisting of a circular chamber of constant radius
R. At inlet, the mixture air+fuel enters through a circular slot of clearance r1 − r2. At one
diameter downstream the entrance, combustion gases are able to exit through an annulus of
thickness r3 − r4. The temperature level is prescribed over the entire lateral wall and on the
bottom and top lids, except at the exit area where a null temperature gradient is assumed to
be established by the outward motion of the �uid.
Although it is recognized that the geometry of Figure 1 might be an oversimpli�cation of

state-of-the-art of industrial furnaces, essential elements, namely swirl, buoyancy and recircu-
lating zones provide a good test case for the numerical method here discussed.

Compact notation

The conservation equations for mass, momentum and energy here analysed can be written
in a compact form if the existing analogies among the processes of accumulation, transport,
convection and generation=destruction of those quantities are observed. This generic equation
is commonly known in the literature as the general transport equation and can be written in
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Table I. Terms in the general transport.
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its conservative two-dimensional form for axi-symmetric laminar cases as

@
@z

[
�W�− �� @�

@z

]
+
1
r
@
@r

[
r
(
�U�− �� @�

@r

)]
= S� (1)

In Equation (1) � can represent any quantity of vectorial or scalar nature (velocity or
temperature), � is the �uid density, U and W are the velocity components in the r- and
z-directions, respectively, �� is the transport coe�cient for di�usion and S� is the source
term. Table I identi�es corresponding terms for the di�erent equations represented by (1). In
both Table I and Equation (1) gravity acts in the z-direction, � is the �uid viscosity, Pr the
Prandtl number, T the temperature and V the tangential velocity component.

Boundary conditions

Boundary conditions used for all velocity components were given value at the �ow inlet
and non-slip condition at chamber walls. For cells facing the outlet plane, overall mass-
conservation balance at each computational cell was used to calculate the control-volume
outgoing axial velocity (at the top lid). Initial null values were set for all velocities.
For temperature, a linear pro�le along the vertical direction was assumed to prevail over

the lateral wall (see Figure 1). Except in the opened areas, at the bottom and at the top, the
non-dimensional temperature took the values +1 and −1, respectively. Through the inlet and
outlet areas, the applied boundary conditions for the temperature were �=0 and @�=@z=0,
respectively.
Numerical implementation of boundary conditions was achieved by maintaining the constant

initial values at the boundaries, where applicable, or by updating them at each iteration, as in
the cases of outlet surfaces or symmetry line.
All computations below used a 18 × 36 single grid equally distributed in the calculation

domain. An essential characteristic of Vanka’s work, the multigrid arti�ce, has not been used
in the present work due to the relatively modest grid analysed here. Multigrid techniques are
known to perform well with mid-size to large grids [18], but are rather ine�ective when applied
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to small size problems. For this reason, no multigrid or any other large grid accelerating
scheme was implemented.

Computational grid and �nite-di�erence formulation

In this work, the set of equations for mass, momentum and energy above is di�erentiated
by means of the widely-used control-volume approach of Patankar, 1980 [3]. The di�erential
equations are integrated over each volume yielding a set of algebraic equations. Internodal
variation for the dependent variables can be of di�erent kind corresponding to di�erent �nite-
di�erence formulations. In the present work, for simplicity, the Upwind Di�erencing Scheme
is used to model convective �uxes across volume faces. However, the formulation below is
presented in such way that no di�culties arise if another di�erencing scheme is employed.

Discretized equations

The block-implicit arrangement below for the �ow and continuity equations, as mentioned,
was �rst presented by Vanka [9, 10]. For the sake of completeness when extending it to
buoyant and swirling problems, the �ow equations are here also included. Integrating then the
continuity equation around point (ij) (see notation in Figure 1) following standard practices
in numerical di�erentiation, one has [3]

F1i Ui+1=2; j − F2i Ui−1=2; j + F1j Wi; j+1=2 − F2j Wi; j−1=2 = 0 (2)

where the geometric coe�cients Fs make computations convenient and e�cient and can be
interpreted as (area of �ow)/(volume of computational node).
For the radial momentum equation the �nal form for the Ui−1=2; j component contains co-

e�cients representing in�uences by convection and di�usion mechanisms in addition to all
sources and pressure gradient terms. For application in the numerical algorithm below, the
equation can be written in such a way that [12]

Ui−1=2; j= Ûi−1=2; j + d̂i−1=2[Pi−1; j − Pi; j] +
(
Vi; j + Vi−1; j

2

)2 1
aui−1=2ri−1=2

(3)

where

d̂i−1=2 =
Ai−1=2
�aui−1=2

(4)

Ûi−1=2; j =

∑4
nb=1 a

u
nbUnb + f

u
i−1=2

aui−1=2
(5)

and the last term on (3) represents the discrete form on the centripetal acceleration shown in
Table I. Any other discrete term is accounted for in the “f” parameter. Equation (3) can be
further manipulated to give

Ui−1=2; j= Ûi−1=2; j + d̂i−1=2[Pi−1; j − Pi; j] + êi−1=2Vi; j (6)
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where

êi−1=2 =
(Vi; j + Vi−1; j)
2ri−1=2aui−1=2

(7)

and the pseudo-velocity Û i−1=2; j has been modi�ed for accommodating all remaining terms.
Further, in (6) the last term on the right hand side represents the in�uence of V on the
radial velocity U and entails a linearization of the centripetal acceleration (see details in
References [12, 16]). All sources terms, except the pressure gradient and the contribution due
to the tangential velocity, are compacted in the �rst term on the right-hand side. For the
coupled treatment here presented, the explicit contribution of V in the source term of U is
necessary, as it will be seen below.
A similar equation for the axial velocity component Wi; j−1=2 is given by

Wi; j−1=2 = Ŵi; j−1=2 + d̂j−1=2[Pi; j−1 − Pi; j] + gz�(T1 − T0)awj−1=2

(
�i; j +�i; j−1

2

)
(8)

where,

d̂i−1=2 =
Aj−1=2
�awj−1=2

(9)

Ŵj−1=2 =

∑4
nb=1 a

w
nbUnb + f

w
j−1=2

awj−1=2
(10)

In (8) � is the thermal expansion coe�cient and gz is the z-component of the gravity
vector. For natural convection �ows oriented as in Figure 1, the non-dimensional temperature
� appearing in (11) is de�ned as �=(T − T0)=(T1 − T0) and is based on the maximum
temperature drop across the computational domain �T =(T1 − T0). Further rearranging (8),
one has

Wi; j−1=2 = Ŵi;j−1=2 + d̂j−1=2[Pi; j−1 − Pi; j] + ĝj−1=2�i; j (11)

where

ĝj−1=2 =
gz�(T1 − T0)
2awj−1=2

(12)

Here also the pseudo-velocity Ŵi; j−1=2 has been modi�ed for including all additional terms
(details in Reference [17]). Similarly to what has been mentioned above, it is important to
notice that the source term in (11) explicitly shows the contribution of T (or �) on W . For
the coupled treatment here presented, this explicit arrangement is also as shown later.
Following a similar procedure for the � and V equations, �nal �nite-di�erence equations

can be assembled in the following form:

a�ij�i; j = b
�
ij�i+1; j + c

�
ij�i−1; j + d

�
ij�i; j+1 + e

�
ij�i; j−1 (13)

avijVi; j = b
v
ijVi+1; j + c

v
ijVi−1; j + d

v
ijVi; j+1 + e

v
ijVi; j−1 + f

v
ij + g

v
ijUi; j (14)
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It is interesting to observe that the last term in (14) comes from discretization of the Coriollis
acceleration in the V-equation and represents the feedback e�ect of the cross-�ow on the
tangential velocity (see Table I). Consideration of the Corriollis acceleration in the block-
implicit treatment shown below would hamper a proper matrix arrangement suitable for fast
inversion. This point will be clear after presenting the Numerical Strategy in the next section.
In this work, however, this term is not treated implicitly and, when solving for V , it is
compacted in the explicitly-treated source term. The centripetal acceleration, however (see
Table I and Equation (6)), is here implicitly handled. The explicit treatment is also employed
when discretizing the convection terms in the T and V equations since no particular terms
with U s or W s are shown in (13)–(14).
For simplicity, Equations (13)–(14) can be rearranged such that

�i; j=�̂i; j; Vi; j= V̂i; j (15)

where,

�̂i; j =
{
b�i; j�i+1; j + c

�
i; j�i−1; j + d

�
i; j�i; j+1 + e

�
i; j�i; j−1

}
=a�i; j

V̂i; j =
{
bvi; jVi+1; j + c

v
i; jVi−1; j + d

v
i; jVi; j+1 + e

v
i; jVi; j−1 + f

v
i; j + g

v
i; jUi; j

}
=avi; j

(16)

Numerical strategy

In order to smooth out errors due to initial guessed �elds, corrections are de�ned as di�erences
between exact and not-yet-converged variables. Residuals for momentum transport at each
control volume face, continuity of mass and � equations are obtained by applying the just
de�ned approximate values into (6)–(11)–(15).
Taking the west face of the control volume show in Figure 1 as an example (see Equation

(6)), and assuming that for a general variable � a decomposition �=�∗+�′ applies, where
�∗ is a guessed value and �′ a correction, one has

(U ∗ +U ′)i−1=2; j= Ûi−1=2; j + d̂i−1=2[Pi−1; j − (P∗ + P′)i; j] + êi−1=2(V ∗ + V ′)i; j (17)

For a given set of guessed or “starred” variables, Equation (6) will yield a residue, Ri−1=2; j,
related to the incorrect velocity such that

U ∗
i−1=2; j= Ûi−1=2; j + d̂i−1=2[Pi−1; j − P∗

i; j] + êi−1=2V
∗
i; j − Ri−1=2; j (18)

Subtracting now (18) from (17), an equation for the correction U ′ is obtained in the form

U ′
i−1=2; j + d̂i−1=2P

′
i; j − êi−1=2V ′

i; j=Ri−1=2; j (19)
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Writing similar equations for all four faces, a system connecting the residuals and corrections
can be written into matrix form as



1 0 0 0 d̂i−1=2 0 −êi−1=2
0 1 0 0 −d̂i+1=2 0 −êi+1=2
0 0 1 0 d̂j−1=2 −ĝj−1=2 0

0 0 0 1 −d̂j+1=2 −ĝj+1=2 0

−F1i F2i −F1j F2j 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







U ′
i−1=2; j

U ′
i+1=2; j

W ′
i; j−1=2

W ′
i; j+1=2

P′
i; j

�′
i; j

V ′
i; j




=




Ri−1=2; j

Ri+1=2; j

Ri; j−1=2

Ri; j+1=2

Ri; j

R�i; j

RVi; j




(20)

where the subscript identify locations in the grid, the superscript ′ distinguishes corrections
and the left hand side represents the residue vector calculated at previous iteration.
In (20) the in�uence of � on the �ow �eld is directly accounted for by the g-terms.

Similarly, the in�uence of V on U is implicitly considered by the e-terms. For the radial
and axial directions, the g- and e-terms are of null value, respectively. As mentioned before,
the reverse e�ect, or say the cross-�ow in�uence on the � and V �elds is here not treated
implicitly. The solution of system (20) is then easily obtained by �nding �rst corrections for
� and V , calculating later the pressure P and velocity components U and W . Essentially,
the method consists of �nding the corrective values for U , V and P, such that the balance
equations are correctly satis�ed.

Computational parameters

The same relaxation parameters (�=0:55 for U;W; P; V and �) were used in all calculations.
The swirling strength, S, Reynolds number, Re, and Rayleigh number, Ra, are de�ned as,

S=
V
W

)
in
; Re=

Win2R
�

; Ra=
Pr�2�gz�TR3

�2
(21)

These three parameters were varied in the range 1¡S¡103, 2¡Re¡103 and 102¡Ra¡105.
The incoming axial velocity at inlet, Win, was such that the Reynolds number, in most of the
cases run, took the value in the range 2–200. This relatively small input value for Win in-
dicates that although the �ow comes inside the chamber with appreciable rotation (S up to
103), it carries almost no momentum in the axial direction. This incoming velocity level was
found to be consistent with the weak currents driven in a thermally-driven �ow. With that,
cases with balanced natural and forced convection mechanisms could be analyzed.

Partially segregated scheme

The algebraic equations for the velocity �eld were solved, in addition to the fully-coupled
scheme here described, by performing outer iterations for the components � and V while
keeping U–W–P from the previous iteration. A line-by-line smoothing operator, fully de-
scribed elsewhere (e.g. Reference [3]), was used to relax � and V , being the secondary �ow
�eld (U;W ) calculated by the locally-coupled method seen above. This partially segregated
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solution was set in such a way that the same number of sweeps throughout the scalar (�; V )
and cross-�ow �elds (U;W; P) was obtained. Since in the coupled scheme every sweep for
U–W–P also implies in smoothing out �–V errors, this procedure was found to be a reason-
able way to fairly compare the two methods. In all partially segregated computations, a total
of four sweeps per scalar per outer iteration was performed.
The reason for recalling this second procedure a partial rather than a full segregated

scheme lies in the fact that in full segregated methods all variables, including U;W and
P, are solved independently and in sequence along the entire algorithm. In the case here
presented for comparison, only � and V are excluded from the implicit treatment implied by
Equation (20).

RESULTS AND DISCUSSION

Previous results and numerical accuracy

The results shown below were obtained with a previously developed numerical tool [16, 17].
The justi�cation for using this code instead of running one of the many existing programs lies
on the fact that adapting the full block-implicit arrangement shown above, involving all vector
and scalar variables, would demand too much reprogramming since no pressure-correction or
pressure equation is here used. Yet, to the authors’ knowledge, no available source code
entails exactly the same numerical formulation shown before.
Previous computations with the numerical model herein have assured the correctness and

validation of the computer code developed [11–17]. Those previous results were taken after
reduction of all normalized residues for mass, momentum and energy equations to the pre-
selected value of 1× 10−6. Correctness of the present computer program has been checked by
comparing calculations for thermally-driven �ows in a square cavity with benchmark solutions
reported by de Vahl Davis, 1983 [1]. Results in de Lemos [17] reproduced de Vahl Davis’
calculations with less than 0.01% discrepancy for grids greater than 25× 25 and Ra=104.
Similar comparisons for the exact geometry and �ow conditions here analysed are more

di�cult to be worked on due to the scarcity of experimental data and corresponding calcu-
lations in the literature. Nevertheless, grid independence studies for the solutions herein have
also been carried out (not shown here due to lack of space). For grids greater than 18× 36,
discrepancies in the calculations fall within 0.1%. Since the main objective of this work was
to further test the proposed formulation rather than obtaining a detailed calculation of the
�ow, the chosen grid size was found to give accurate enough results. In summary, the results
shown below should be regarded as an aid in comparing segregated and coupled solution
sequences since comparisons between the performances of these two algorithms is the main
focus herein.

Absolute velocities

Figure 2 shows results for the velocities at the chamber mid-planes. The �gures present
velocities U along the vertical z (Figure 2a, R=0:5) and W along r (Figure 2b, z=H=2=R),
respectively. Inspecting those results one can conclude that, independently of the smoothing
technique used, �nal converged solutions are essentially equal. The computational e�ort to
achieve them, however, seems to be di�erent, as it is discussed below.
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Figure 2. Radial velocity U along the z-direction at r=0:5. Axial velocity along radius at z=L=2=R.

Temperature �eld

Figure 3 shows results for the temperature �eld when subjected to an increase in the incoming
mass �ow rate (increase in Re, see Equation (21)). The �gure indicates that the core of the
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Figure 3. E�ect of Re on temperature �eld, S =1, Ra=102.

�ow becomes homogenized as more �uid comes into the chamber due to higher recirculating
motion in the r–z plane. Outlet temperatures are correctly increased when the higher axial
mass �ow rate sweeps hot �uid from bottom layers through the exit (see Figure 1 for geometry
details). Increase of the central recirculating bubble is also clearly detected by the downward
wash of isolines at the centerline.
Figure 4 shows calculations for the temperature �eld done with di�erent values for Ra

spanning from 102 to 104. Distortion of the temperature pro�les also indicates strength of
convective ascending currents close to the wall with corresponding downward motion at the
central region. Interesting to note is the increase in temperature gradients close to the centre, at
the bottom lid, due to the just mentioned downward stream. When analysing real equipment,
not subjected to the imposed boundary conditions here used, steep gradients of temperature
close to walls might be an indication of possible temperature raise at some particular locations.
Design engineers may then use this sort of information to overcome potential material damage
when performing preliminary thermal design.
Figure 5 presents the temperature pattern for di�erent values of S. It is interesting to note

the small e�ect on T , even though S changes by such a large factor of 103. Considering the
assumed axi-symmetry of the �ow, a strong rotation will carry �uid tangentially, essentially
through zones of equal temperature. On the other hand, an increase in Re or Ra, shown in
Figures 3 and 4, substantially distort the temperature by increasing the ascending cross-�ow
currents. One should mention that in a real fully three-dimensional �ows in industrial equip-
ment ascending currents are quite strong, playing certainly a de�nite role in establishing the
temperature pattern inside such domains. For the simpli�ed �ow and geometry here analyzed,
however, no such e�ect was expected.
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Figure 4. E�ect of Ra on temperature �eld, Re=2, S =1.

Residue history

Normalized residues were de�ned as the norm of the cell residue for mass, energy and
tangential velocity equations as,

Rabs =

{∑
ij
(Rij)2=(N ·M)

}1=2
(22)

where � in (22) refers to the general transport variable as de�ned in Table I, N and M are
the number of cells in the r- and z-directions, respectively. For continuity equation, Rij can
be seen as the di�erence, for every cell, between the cell outgoing mass �ux, Fout, and the
incoming mass �ux, Fin. A relative mass residue can then be de�ned as,

Rrel =

{∑
ij

(
Fout − Fin
Fout + Fin

)2/
(N ·M)

}1=2
(23)

A discussion on the advantages in simultaneously monitoring Rrel in addition to Rabs is
presented in de Lemos [11, 12, 17] and it is based on the small range of the former (0;+1).
Equation (23) can be seen as normalization for the residue values for cases ranging from a
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Figure 5. E�ect of swirling strength on temperature, Ra =104, Re=2.
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Figure 6. In�uence of Re on convergence rate of T -equation.

totally “incorrect” �eld (Fout = − Fin, Rrel = 1) to a perfectly “converged” solution (Fout =Fin,
Rrel = 0).
The three parameters here investigated, namely Re, Ra and S, were analysed in terms of

their in�uence on the overall convergence rates. Results are shown in Figures 6, 7 and 8,
respectively. The iteration counter refers to the total number of sweeps over the domain,
that is, the product of the outer counter times the number of inner sweeps. Here, a quick
word on the numbers of iterations to convergence seems timely. Other schemes presented
in the literature may indicate residue history as a function of outer iteration counters only.
Some, use the so-called pseudo-transient approach and plot time steps instead. Each outer
iteration, in turn, may consider a great number of internal sweeps, usually controlled by a
speci�ed residue reduction rate. Here, in this work, a �xed number of internal sweeps was
considered. The relatively large number of necessary iterations seen in the �gures below could
be associated with the use of a single grid, the tightness of the relaxation parameters and the
strong coupling among all variables involved. Ultimately, all of these factors together tend to
delay convergence.
It is interesting to note that the better convergence performance for the higher Reynolds

number (see Figure 6), possibly re�ecting the fact that, as Re increases, the �ow becomes
more forced-convection dominated decreasing the UW–T coupling in relation to the UW–P
connection. This, in turn, facilitates the solution of the energy equation once the velocity �eld
is calculated. This idea is supported when Figure 7 is inspected, showing worse convergence
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Figure 7. E�ect of Ra on RT .

rates for a higher Ra. There, the higher degree of coupling between temperature and cross-
�ow �elds makes computation more demanding, re�ecting the increase in physical coupling
among the �ow variables and temperature.
On the other hand, when S is varied, Figure 8 shows a weak dependency of RT on the

swirling strength. According to Figure 5, no substantial change on temperature patterns was
detected when inlet rotation increases (except for S=103). For such small inlet mass �ow
rates (Re=2), viscous shear driven by the incoming swirling motion enhances the cross-�ow
�eld which, in turn, distorts isothermal lines. Such an indirect or second-order relationship
between V and T is apparently also re�ected on the residue histories shown in Figure 8.
Mass residues, calculated by Equations (22) and (23), are presented in Figure 9 indicating

that, after an initial period when low frequency errors are damped, a better convergence rate
is obtained with the coupled method in either form of residue.
Residue histories for the temperature and tangential velocity �elds are presented in Fig-

ures 10 and 11, respectively. For the coupled strategy, a quicker reduction for the residue
is obtained, since in each sweep, for every cell, information on all variables propagates at
the same “time rate”. Also, the �gures show that the segregated method, for the case here
analysed, use as many as 20–30% more iterations to bring RV down to the same level as
the coupled scheme and nearly two times as many outer sweeps to reduce to the same value
of RT . Although the computational e�ort per �eld sweep in both schemes are not necessarily
equal, due to the fact that the number of �oating point operations per iteration in the two
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Figure 8. E�ect of swirling strength S on RT .

Figure 9. Mass residue history for segregated and coupled approaches.
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Figure 10. In�uence of solution scheme on residue history of energy equation.

Figure 11. In�uence of solution scheme on convergence of V-equation.
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algorithms are not the same, a primary consequence of the foregoing is that a relatively longer
computing time is expected when the decoupled solution is used with the same convergence
criteria applied to the scalar equations.
Finally, Figures 10 and 11 seem to indicate also that the cross-�ow �eld can quickly adjust

itself to changes in the scalar pro�les, and that, in the segregated case, those changes are
too slowly transferred back to �–V . The coupled solution, however, quickly transmits back
to � and V-equations changes in the cross-�ow pattern, more realistic simulating the strong
interaction among the variables involved.

CONCLUDING REMARKS

This paper detailed a fully-coupled technique for numerical prediction of ascending heated
swirling �ows in a cylindrical chamber. An extension of the numerical method in Vanka,
1986 [9, 10] towards a fully implicit solution of the energy, tangential and cross-�ow equa-
tions was reported. Outline of the numerical method showed the necessary steps for setting
up the residuals and the methodology used to calculate the corrections for all dependent
variables. Comparison of partially-segregated and fully-coupled treatments for the energy and
tangential velocity shows a lower computer e�ort when the latter method was used. The
approach herein is promising regarding numerical stability of the entire equation set since
inherent coupling among the variables is implicitly handled. Further, it is also expected that
more advanced multi-processor computer architectures can bene�t from the point wise error
smoothing operator here described. Ultimately, di�erent processors can simultaneously solve
block of control-volumes, possibly reducing the overall computational e�ort when comparisons
are made with the sequential calculation procedure used by segregated algorithms.

NOMENCLATURE

a–g coe�cients in the �nite-di�erence equations
� thermal expansion coe�cient
F ′s coe�cients for continuity equation
gz z-component of gravity vector
H chamber height
M number of cells in the axial direction
N number of cells in the radial direction
P pressure
Pr Prandtl number
R model combustor radius
Ra Rayleigh number
Rabs absolute residue for mass continuity equation
Rrel relative residue for mass continuity equation
RT residue for the energy equation
RV residue for the tangential velocity equation
Re Reynolds number
S swirl parameter
S� source term
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T temperature, T1 =max. Temp., T0 =min. Temp.
U radial velocity component
W axial velocity component
Win inlet axial velocity
V tangential velocity component
�� transport coe�cient for variable �=U ,W ,V ,�
� �uid dynamic viscosity
� �uid density
� general dependent variable, �=U ,W ,V ,�
� non-dimensional temperature: �= (T − T0)=(T1 − T0)
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