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Abstract

It is well known in the literature that eddy-diffusivity turbulence
models can only lead to isotropic turbulent coefficients for linking the
Reynolds Stresses/Fluxes to the gradients of the mean velocity/temperature.
In the particular case of axial flow through rod-bundles, however, transport
coefficients for channel faces aligned with rod centers are known to be
considerably higher than those calculated by simple isotropic theories.
Based on the foregoing application, this work presents an attempted to
describe the anisotropy of turbulent transport in rod arrays by means of an
Algebraic Stress Model. Results for all three normal components of the
Reynolds Stress tensor are presented and compared with experimental data.
Predictions show good agreement for the Reynolds number and the range of
aspect ratio (Rod pitch/Diameter) investigated.

NOMENCLATURE

c model constants

D rod diameter

f wall effect function

k turbulent kinetic energy, uj;u,;/2

1 turbulence length scale, k®/2/€

P rod pitch; - usuy g‘i: = generation rate of

turbulence energy due to mean velocity gradients

P,y kinematic production rate of usuy; by mean velocity gradients;

""""""""""" OUJ RIS—1 § PR
- “ Ui U 6Xk + U3Uy bxk g

Re Reynolds number
U, mean velocity in the mean direction
Uy fluctuating velocity component in i direction, i=r,0,z

u;u, kinematic Reynolds Stress
y distance from rod wall

(*) Department of Energy, IEME/ITA/CTA, Sao José dos Campos, Sao Paulo 12225, Brasil.



¢ distance from rod wall to maximum velocity line
9  maximum value for §, correspondent to 6~

Greek Symbols

€ kinematic dissipation rate of turbulent kinetic energy

0 angular coordinate

e~ maximum value for 0; 6%=45° for square lattice, ©6%=30° for triangular
array

T4y Ppressure-strain correlation (general),

p l 6“1 OUJ _I

bx, éx‘

R14.2 first part of n,,, associated with turbulence-velocity interacti-
ons

—cl—g[ms—g—ﬁuk]

Rig.2 second part of mx,,, associated with turbulence-velocity interact-
ions

—Ca [Ps: - g 6.5 P ]

INTRODUCTION

In axial flow through rod-bundles, transport coefficients for cell
faces aligned with rod centers are known to be considerably higher than
those calculated by simple isotropic theories. In this category it is also
included the widely-used k-€ model. And yet, it has been found that seconda-
ry flows play only a minor role in this overall transport, being turbulence
highly enhanced across that hypothetical surface [1-4]. Enhancement of that
particular mechanism is due to the intriguing fact that when two adjacent
subchannels have the "gap" between them reduced, for instance by closely
packing the pins, the total transport across that surface is nearly cons-
tant. At a first glance, one would expect that the closer the rods, the
higher the resistance to any mechanism of exchange between channels.

In order to calculate the correct amount of the quantity being trans-
ported, the approach taken by many investigators was then to artificially
increase the diffusion coefficient obtained via a simpler isotropic theory
(usually the standard k-€ model) and numerically "match" the experimentally
observed mixing rates. Solutions of this kind are presented in Refs. 2 and
3. These approaches clearly identify the need for a better understanding of
the mixing phenomena taking place in that geometry.

Based on the foregoing application, the present author, in an early
work [5], attempted to describe the enhancement of turbulence across subcha-
nnel boundaries through the modeling of the normal Reynolds Stresses. An
Algebraic Stress Model (ASM) based on the assumption of local equilibrium
for turbulence (Production = Dissipation) was used. The ASM involves an
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approximation of the full transport equations for - U,uy and carry along all
significant information on the several processes contributing to the total
level of - aymw,.

The present work extend those modeling ideas and reports predictions
for the energy exchange among stresses without the local equilibrium
restriction. The following sections present a model for turbulent normal
stresses as well as numerical results and comparison with experimental data.

A MODEL FOR THE REYNOLDS STRESSES

The concept of subchannel is often used in the literature in connection
with nuclear reactor thermal-hydraulic analysis. Typical subchannels for
triangular and square arrays are schematically shown in Fig. 1. It is
emphasized that the class of problems here studied is that associated with
fully developed situations. So no shear stresses are considered on the r-0
plane, since inclusion of these stresses would preclude the neglecting of
diffusion transport along the streamwise direction.

The complete full transport equation for the stresses - U uy can be
transformed into a more simple, easy-to-handle, algebraic equation by means
of the well-known approximation proposed by Rodi[6]

(1= cp)g= - 56, ¢ €

iY; 5015 P

(1)

where k is the turbulent kinetic energy per unit mass, and gravitational
effects are neglected. The quantities P,; and P represent the production
rates of - U;u; and k due to the mean velocity gradients, respectively. The
correlation n,, ,, is a correction applied to the "pressure-strain" term Raig,
to indicate the effect of nearby walls on the fluctuating pressure field p.
When Eq. 1 is written for the cylindrical coordinate system in Fig. 1, the
five important stresses are then:
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ok 1-1
2 k P 2 2
u_= é‘l(cl-l)*' "GI [§(3-202)P +nzz.w+ 5(01‘ 1)E] (6)
where 5U 5U
P = -0, 2 - 0 ug -t (7)
zr br z 6 rbo

In the above equations, € is the dissipation rate of k, c's are
constants and x's are components of f 3, ..

Proposal for w44,

The wall correction to =%,4,. has its origin in the integration of a
Poisson equation for the fluctuating pressure p, over a surface-bounded
field. The surface integral part of the resulting expression can then be
multiplied by the fluctuating strain-field, and, after time-averaging, it
yields my4.. [7]. The physical significance of f.5,. 1is therefore the
overall effect that a surface (a rigid wall or a free surface) has upon m,;.

An expression for m,;,. was first suggested by Shir[8), and has been
used for rod arrays by deLemos [5], giving for the several components;

'€ e 3 v 72 7z 3
Tarw -~ €1k Y2 2 R A (8)
8w 0 (9)
e 5 . '
L 2 oy up f - 5c,cfP (10)
€ ' 2 2 '
Too.w g cyu f+gc,cfP (11)
and
€ ' 2 2 '
Trow " K S Un f+5c,cfP (12)
It is noticed that
nrr,w = e "ee,w =2 Kzz,w

and that under contraction of indexes, m,,..=0, as expected. After substitu-
ting Egs. 10 through 12 back into Eqs. 4 through 6, the normal stresses are
then given by:
- P ! \
U; ) ? é C2 (1 - 202f) +c, -1
k 3 !
) c, * 2 4 £+ £ 1]

(13)
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From Eqs. 2 and 3, with assumptions os Eqs. 8 and 9, the ratio of shear
stress is given by
bU
TR 0 Z
2l 1 186 (16)
.................. o OU
u u u!‘ -
zZr or
where
'3 P
c, +tc, 5 + = -1
K = b B E (17)
c.C
3 272 P
( 1 + "2 ~(1— """" 02) f)( e + Cl 1)
Now, comparing Egq. 16 with the eddy-diffusivity expression, one has;
88 _ K %g (18)
urr uz
where Jee and y,., is a second-order tensor representing the directional
turbulent viscosity.
Using Eqs. 4 and 5, the ratio of normal stresses in Eq. 18 can be given
ug = (c, +c,c, f)y +c, - 1 + ¢, o+~ °f
i £.2..2¢2 - 2 Lk (19)
TER ' o, uE
€ (c2 2C202f ) + cy 1 3 ¢y K f
From Eq. 19 one sees that if f = 0, the normal stresses are equal, or say,
assuming all simplifications made so far, the differences in the normal

stresses are seen to be solely caused by the effect of the subchannel walls

on the fluctuating pressure field.
The functional f

Launder et al [9] suggest for "f" a linear relationship of the form
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1 k3/2

£ - cx.  c€ (20)
wn w

where c,, is a constant and "1" a turbulence length scale. Due to difficulti-
es In prescribing the 1length scale for the geometry 1in question, the
following relationship for f was adopted in Ref. [5]:

g n
f=1- [X,,,] (21)
y
where n = 1, and
“* pf p 1]
v =3 IDcose 2] (22)

Equation 21 gives f = 1 for y = 0, and f = 0 only at y = §" and 6 = 67,
This expression is in agreement with the idea that by either way (decreasing
© or P/D) one is getting closer to the wall surface. A discussion on the
effect of the exponent "n" is shown in Ref. [5]. In that work, it was found
that results for all the three normal stresses are not too sensitive to this
function. Yet, it was also reported that f could not represent the exchange
of energy between the axial and tangential direction, since variations in f
would cause changes in the same direction, for both u3/k and u2/k. Neverthe-
less, the functional f, as presented by Eq. 21, is here included for
the sake of completeness.

The functional P/€

Since the full system of equations is not solved in the present work
(including equation for k and €), predictions for the normal stresses can
only be achieved through the prescription of P/€ in the calculation domain.
In the present work, the following relationship for P/€ is adopted:

g = (1 - (y/§)°-°) - (10.283 - P/D 8.597) y/§ 6/6 (23)

where P/D is the Pitch-to-diameter ratio (It should be noticed that, for
notation simplicity, the same symbol is given for the production rate of
turbulent kinetic energy and for the rod pitch, namely P}.

The first part of the right-hand-side of (23) express the idea that
close to the wall (y,0) the turbulent energy balance should approach the
equilibrium situation (P=€). The second part is a correction applied to the
first one, and is a linear fitting to the measured values at the center
point (y = §°, © = 6*) reported by Hooper{10]. The factors y/§ and 6/6"
indicate that this correction dies out as either y or 0 approach to zero.

With the prescription of P/€ and f, the normal stresses and the ratio
of eddy diffusivity coefficients can now be calculated. The following
section presents results and comparisons with available experimental data.
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RESULTS AND DISCUSSION

The set of algebraic equations 13-15 was calculated with the functions
f and P/€ described above and the following constants:

c, = 1.8 ; c3 =0.5; cg =0.6 and cx = 0.3

Predictions were compared with data of Hooper[10] for a square lattice (6% =
45°) with Re = 48000 and for two aspect ratios P/D, equal to 1.107 and
1.194, respectively.

Before presenting results for u2/k, uZ/k and u2/k, it is interesting to
investigate the role of the functions P/€, f, and constant cp on the level
of the stresses. In addition, it is important to emphasize that it is their
combined effect which will count.

Quick hand calculations with the constants given above can readily show
that the higher P/€, the higher uZ/k. An opposite trend is obtained for
uZ/k and uZ/k. An inspection on the multipliers of P/€ in Eqs. (13)-(15)
could also have led to the same conclusions. These behaviors may have the
physical interpretation that the higher the overall production of energy,
the more unequal will be the distribution of it among the stresses. Thus,
for a high P/€ ratio, uZ/k will carry relatively more energy than the other
two components.

On the other hand, the wall correction added to m,y and represented by
Egqs. 10-12 indicates that the amount of energy being damped by the wall in
the radial direction is equally divided and fed into the 2z and © axes. In
addition, cp comes from the modeling of the mean-field part of the pressure-
-strain correlation, or

mij2 " % | Py 75 8 P] (24)
Considering that the present flow is fully dominated by radial and azimuthal
gradients of the axial velocity[11], all turbulent energy will be generated
in the axial direction and transferred by pressure fluctuations to UuZ and
uz. Then the term =x,, . will be a sink for uZ (P.. = 2P) and a source for

the other two stresses (P.,. = Pgo = 0). The combined role of P/€, f and c,
can now be assessed.

In Eq. 13, f will act to reduce c.., or say, it will act to diminish
the transfer of energy to that particular direction. On the other hand, f
greater than zero can be seen as increasing c, for u3 and uZ, and this can
be physically interpreted as an increase in the source terms fge,= and
T.x.e, respectively. These ideas, together with the sensitivity of P/€
commented above, show that an increase in c; or a reduction in P/€ will
induce both similar trends on the relative stress values. It is interesting
to point out that this state-of-affairs, together with the local equilibrium
assumption (P=€) wused in Ref.[5], led the author in that work to suggest
that better results for the turbulent normal stresses could be obtained by
means of a change in the c, value across the domain of calculation.
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With these ideas in mind, results for the stresses can now be presented
and more clearly discussed.

Figure 2 presents results for P/D = 1.107. The reduction of uZ/k as the
gap region (8 = 0°) approaches 1s well calculated. Results for uZ/k show
that the amount of enhancement at the gap region is only slightly under-
predicted. Calculated uZ/k profiles also show an over-prediction at corres-
ponding locations, probably indicating that the functional “f" should give a
greater value in the gap region. It is therefore shown that the substantial
enhancement in u3/k as the gap is approached can only be partially predicted
with the model here presented.

Figure 3 presents results for P/D = 1.194. The experimental values for
u3/k, uZ/k, and uZ/k at the center-point (8 = 8., y = 9*) and at the middle
of the gap (6 = 0°, y = ¢) was obtained as expected, since Eq. (23) was
derived with the help of those same experimental data. In using Eq. (23),
however, the curves fall higher than experimental values for u3/k as the
wall is approached. The opposite trend is obsderved for uZ/k. These predic-
tions seem to suggest that a better representation for the distribution of
P/€ is necessary. Equation (23) should then be regarded as a first approxi-
mation, subjected to refinement as more data are gathered. Also important
for improving the present calculations is certainly the combined solution of
the transport equations for k and €, giving the calculated P/€ ratio
everywhere in the flow field.

Figure 4 finally shows the calculated profiles for the anisotropy
factor pee/Hrr, for P/D = 1.107. At the line of maximum velocity (y = ¥) the
increasing ratio as the wall is approached is well predicted. However, due
to the sensitivity of the results shown so far on P/€ and f, predictions
fall below experimental values reported in the literature for the region
close to the surface. An anisotropy factor of as much as 5-10 has been
reported by Rehme[4] in that region, whereas predictions show a factor of
about 2.23. Nevertheless, the present calculations should be regarded as a
first approximation as mentioned above, identifying the need for a better
modeling of the physical processes involved.

It should be also pointed out that in spite of the difficulties which
arose, the model shown in this work represents a step toward reliable turbu-
lence modeling for closely packed rod arrays. In addition, it is certainly a
more realistic approach to represent the anisotropy of transport coeffi-
cients than to simply prescribe empirical anisotropy factors.

CONCLUDING REMARKS

This paper reported an attempt to describe the anisotropy on the levels
of normal turbulent stresses and corresponding effects on the coefficients
of turbulent transport for rod arrays. Results for the center region and gap
are well calculated with the empirical function P/€. The strong coupling
between the axial and lateral stresses at the gap region is well represen-
ted, but it is recognized that a true representation of P/€ in the subchan-
nel is necessary before any conclusion can be drawn. An analysis of the
equations representing the stresses indicates that the effect of changing
P/€ from wunity is numerically similar to varying the constant c, in the
domain. It was also pointed out that correct redistribution of turbulent
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kinetic energy extracted from the mean flow can be obtained by solving the
accompanying equations for k and €. Results were considered as a first
approximation, subject to future refinement.
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Fig. 1. (a) Subchannel for Triangular and Square Rod Arrays;

(b) Notation of Coordinates
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