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Analysis of turbulent combustion in inert porous media☆
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The objective of this paper is to present an extension of a simplified reaction kinetics model that, combined
with a thermo-mechanical closure, entails a full-generalized turbulent combustion model for flow in porous
media. In this model, one explicitly considers the intra-pore levels of turbulent kinetic energy. Transport
equations are written in their time-and-volume-averaged form and a volume-based statistical turbulence
model is applied to simulate turbulence generation due to the porous matrix. The rate of fuel consumption is
described by an Arrhenius expression involving the product of the fuel and oxidant mass fractions. These
mass fractions are double decomposed in time and space and, after applying simultaneous time-and-volume
integration operations to them, distinct terms arise, which are here associated with the mechanisms of
dispersion and turbulence. Modeling of these extra terms remains an open question and the derivations
herein might motivate further development of models for turbulent combustion in porous media.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis and simulation of turbulent combustion has attracted
researchers for decades for their countless applications in science and
engineering. Studies on free flame flows have been presented for a
wide range of systems, including basic research [1–4] and numerical
simulations [5–9], involving, among many configurations and cases,
swirling flows [10–13] and applications spanning from fire simulation
[14–18] to equipment development [19–24].

In addition to studies on free flame flows, the advantages of
having a combustion process inside an inert porous matrix are today
well recognized [25–28]. A variety of applications of efficient radiant
porous burners can be encountered in the power and process in-
dustries, requiring proper mathematical tools for reliable design and
analysis of such efficient engineering equipment.

The literature already covers awide range of studies on combustion
in porousmedia [29–40], including recent reviews on burning of gases
[41] and liquids [42] in such burners. Hsu et al. [43] points out some
of its benefits including higher burning speed and volumetric energy
release rates, higher combustion stability and the ability to burn gases
of a low energy content. Driven by this motivation, the effects on
porous ceramics inserts have been investigated in Peard et al. [44],
among others.

The majority of the publications on combustion in porous media
consider the flow to remain in the laminar regime while undergoing
chemical exothermic reaction. However, recent awareness of the
importance of treating intra-pore turbulence hasmotivated authors in

developing models for turbulent flow in porous media, with [45] and
without combustion [46]. Accordingly, turbulence modeling of
combustion within inert porous media has been conducted by Lim
and Matthews [45] on the basis of an extension of the standard k-ε
model of Jones and Launder [47]. In [45] the ε equation was discarded
in lieu of prescription of an appropriate length scale. Work on direct
simulation of laminar premixed flames has also been reported in
Sahraoui and Kaviany [48].

In addition, non-reactive turbulence flow in porous media has
been the subject of several studies [49–51], including applications of
flows though porous baffles [52], channels with porous inserts [53]
and buoyant flows [54]. In this series of papers, a concept called
double-decomposition was proposed [55], in which variables were
decomposed simultaneously in time and space. Also, intra-pore
turbulence was accounted for in all transport equations, but only
non-reactive flow has been previously investigated in [49–55].

The objective of this paper is to apply the double-decomposition
concept, previously proposed for non-reacting flows, to a simple
combustion closure for turbulent flow through porous media. By that,
a full turbulent combustion model is presented, in which the
mechanisms of dispersion and turbulence are incorporated in the
consumption rates of the fuel. Derivations herein might contribute to
the development of more elaboratedmodels for combustion in porous
materials.

2. Macroscopic thermo-mechanical model

As mentioned, the thermo-mechanical model here employed is
based on the double-decomposition concept [49,55], which has been
also described in detail in a book [51]). In that work, transport
equations are volume averaged according to the Volume Averaging
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Theorem [56–58] in addition of using time decomposition of flow
variables followed by standard time-averaging procedure for treating
turbulence. As the entire equation set is already fully available in open
literature, these equations will be reproduced here and details about
their derivations can be obtained in the aforementioned references.
Essentially, in all the above-mentioned work the flow variables are
decomposed in a volume mean and a deviation (classical porous
media analysis) in addition of being also decomposed in a time-mean
and a fluctuation (classical turbulent flow treatment). Because

mathematical details and proofs of such concept are available in
a number of worldwide available papers in the literature, they are
not repeated here. These final equations in their steady-state form
are:

2.1. Macroscopic continuity equation

∇:ρf ̅uD = 0 ð1Þ

where, uD̅ is the average surface velocity (also known as seepage,
superficial, filter or Darcy velocity) and ρf is the fluid density. Eq. (1)
represents the macroscopic continuity equation for the gas.

2.2. Macroscopic momentum equation

∇⋅ ρf
̅uD ̅uD

ϕ

� �
= −∇ ϕ〈 p–〉i

� �
+ μ∇2 ̅uD + ∇⋅ −ρfϕ〈u

′ u′ 〉
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u
D
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cFϕ ρf j u
D
ju

Dffiffiffiffi
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p
" # ð2Þ

where the last two terms in Eq. (2), represent the Darcy and
Forchheimer contributions. The symbol K is the porous medium
permeability, cF=0.55 is the form drag coefficient, 〈p〉i is the intrinsic
(fluid phase averaged) pressure of the fluid, μ represents the fluid
viscosity and ϕ is the porosity of the porous medium.

Turbulence is handled via a macroscopic k−ε model given by,

∇⋅ðρfuD
〈k〉iÞ = ∇⋅ μ +

μ tϕ

σk

� �
∇ φ〈k〉i
� �� �

−ρf 〈u
′ u′ 〉

i : ∇uD

+ ckρf
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K
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i

ð3Þ

∇⋅ðρfuD
〈ε〉iÞ = ∇⋅ μ +

μtϕ
σε

� �
∇ ϕ〈ε〉i
� �� �

+ c1 −ρf 〈u
′ u′ 〉

i : ∇u
D
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where

−ρfϕ〈u
′ u′ 〉

i = μtϕ2〈D〉
v−2

3
ϕ ρf 〈k〉

i
I ð5Þ

and

μtφ = ρf cμ
〈k〉i2

〈ε〉i
: ð6Þ

Details on the derivation of the above equations can be found in
[51].

2.3. Macroscopic energy equations

Macroscopic energy equations are obtained for both fluid and solid
phases by also applying time and volume average operators to the
instantaneous local equations [59]. As in the flow case, volume
integration is performed over a Representative Elementary Volume
(REV). After including the heat released due to the combustion
reaction, one gets for both phases:

Gas : ∇⋅ðρf cpf uD〈Tf 〉
iÞ = ∇⋅ Keff ;f ⋅∇〈T

f
〉
i

n o
+ hiai 〈Ts 〉

i−〈Tf 〉
i

� �
+ ϕΔHSfu; ð7Þ

Solid : 0 = ∇⋅ Keff ;s ⋅∇〈Ts〉
i

n o
−hiai 〈Ts〉

i−〈Tf 〉
i

� �
; ð8Þ

Nomenclature

Latin characters
A Pre-exponential factor
cF Forchheimer coefficient
cp Specific heat
D=[∇u+(∇u)T]/2 Deformation rate tensor
Dℓ Diffusion coefficient of species ℓ
Ddiff Macroscopic diffusion coefficient
Ddisp Dispersion tensor due to dispersion
Ddisp,t Dispersion tensor due to turbulene
f2 Damping function
fμ Damping function
Deff Effective dispersion
K Permeability
kf Fluid thermal conductivity
ks Solid thermal conductivity
Keff Effective Conductivity tensor
mℓ Mass fraction of species ℓ
Pr Prandtl number
Sfu Rate of fuel consumption
T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
α Thermal diffusivity
βr Extinction coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
ΔH Heat of combustion
μ Dynamic viscosity
ν Kinematic viscosity
ρ Density
φ φ = ΔVf

	
ΔV , Porosity

ψ Excess air-to-fuel ratio

Special characters
φ General variable
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
φ Time average
iφ Spatial deviation
|φ| Absolute value (Abs)
φ Vectorial general variable
()s,f solid/fluid
()eff Effective value, ϕφf+(1−ϕ)φs

()φ Macroscopic value
()fu Fuel
()ox Oxygen
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where, ai=Ai/ΔV is the interfacial area per unit volume, hi is the film
coefficient for interfacial transport, Keff,f and Keff,s are the effective
conductivity tensors for fluid and solid, respectively, given by,

Keff ;f = ϕkf

conductionz}|{8>><
>>:

9>>=
>>; I + Kf ;s

local conduction
|{z} + Kdisp

dispersion
|{z} + Kt + Kdisp;t

turbulence

|{z} ð9Þ

Keff ;s = ð1−ϕÞ½ks

conductionz}|{
+

16σð〈T〉iÞ3
3βr

radiationz}|{
�

8>>>><
>>>>:

9>>>>=
>>>>;
I + Ks; f

local conduction
|{z} : ð10Þ

In Eqs. (7)–(10), I is the unit tensor, ΔH is the heat of combustion,
βr is the extinction coefficient, σ is the Stephan-Boltzman constant
[5.66961×10−8 W/m2K4] and Sfu is the rate of fuel consumption, to be
commented below. All mechanisms contributing to heat transfer
within the medium, together with turbulence and radiation, are
included in order to compare their effect on temperature distribution.
Further, such distinct contributions of various mechanisms are the
outcome of the application of gradient type diffusion models, in the
form (see [59] for details).

Turbulent heat flux : − ρcp
� �

f
ϕ 〈u′〉i〈T ′

f 〉
i

� �
= Kt⋅∇〈Tf 〉

i
: ð11Þ

Thermal dispersion : − ρcp
� �

f
ϕ 〈

iu iTf 〉
i

� �
= Kdisp⋅∇〈Tf 〉

i
: ð12Þ

Turbulent thermal dispersion : − ρcp
� �

f
ϕ 〈iu′ iT ′

f 〉
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� �
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i
: ð13Þ

Local conduction :
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i
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ð14Þ

In Eqs. (7) and (8) the heat transferred between the two phases
was modeled by means of a film coefficient hi. A numerical correlation
for the interfacial convective heat transfer coefficient was proposed by
Kuwahara et al. [60] for laminar flow as:

hiD
kf

= 1 +
4ð1−ϕÞ

ϕ

� �
+

1
2
ð1−Þ1 =2ReDPr1=3; valid for 0:2 < ϕ < 0:9: ð15Þ

For turbulent flow, the following expression was proposed in Saito
and de Lemos [59]:

hiD
kf

= 0:08
ReD
ϕ

� �0:8
Pr1=3; for1:0 × 104

<
ReD
ϕ

< 2:0 × 107
; valid for 0:2 < φ < 0:9;

ð16Þ

2.4. Macroscopic mass transport

Transport equation for the fuel reads,

∇⋅ðρfuD〈mfu〉
iÞ¼∇⋅ρfDeff ⋅∇ðϕ〈mfu〉

iÞ−ϕSfu ð17Þ

where 〈m̅fu〉
i is the mass fraction for the fuel. The effective mass

transport tensor, Deff, is defined as:

Deff = Ddisp

dispersion
|{z} + Ddiff

diffusionz}|{
+ Dt + Ddisp;t

turbulence

|{z} = Ddisp +
1
ρf

μϕ
Scℓ

+
μ tϕ

Scℓ;t

 !
I = Ddisp +

1
ρf

μϕ;eff
Scℓ;eff

 !
I

ð18Þ

where Scℓ and Scℓ;t are the laminar and turbulent Schmidt numbers
for species ℓ, respectively, and “eff” denotes an effective value. The
dispersion tensor is defined such that,

−ρfϕ 〈
iu imfu〉

i = ρf Ddisp⋅∇ðϕ 〈mfu〉
iÞ: ð19Þ

3. Macroscopic combustion model

3.1. Simple chemistry

In this work, for simplicity, the chemical exothermic reaction is
assumed to be instantaneous and to occur in a single step, kinetic-
controlled, which, for combustion of a mixture air/methane, is given
by the chemical reaction [36–38],

CH4 + 2ð1 + ΨÞðO2 + 3:76N2Þ→CO2 + 2H2O + 2ΨO2 + 7:52ð1 + ΨÞN2: ð20Þ

For N-heptane, a similar equation reads [38],

C7H16 þ 11ð1 þΨÞðO2 þ 3:76N2Þ→7CO2 þ 8H2O þ 11ΨO2 þ 41:36ð1 þΨÞN2: ð21Þ

And for Octane, we have,

C8H18 þ 12:5ð1 þΨÞðO2 þ 3:76N2Þ→8CO2 þ 9H2O þ 12:5ΨO2 þ 47ð1 þΨÞN2 ð22Þ

where Ψ is the excess air in the reactant stream at the inlet of the
porous foam. For the stoichiometric ratio, Ψ=0. In all of these
equations, the reaction is then assumed to be kinetically controlled
and occurring infinitely fast. A general expression for them can be
derived as,

CnH2m + ðn + m
2
Þð1 + ΨÞðO2 + 3:76N2Þ→

nCO2 + mH2O + ðn + m
2
ÞΨO2 + ðn + m

2
Þ3:76ð1 + ΨÞN2

ð23Þ

where the coefficients n and m can be found in Table 1. Eq. (23) is
here assumed to hold for the particular examples given in the table.

The local instantaneous rate of fuel consumption over the total
volume (fluid plus solid) was determined by a one step Arrhenius
reaction [61,62] given by,

Sfu = ρaf Am
b
fum

c
ox e

−E =R 〈T〉i ð24Þ

where mfu and mox are the local instantaneous mass fractions for
the fuel and oxidant, respectively, and coefficients a, b and c depend
on the particular reaction [62]. For simplicity in presenting the ideas
below, we assume here a=2,b=c=1, which corresponds to burning

Table 1
Coefficients in the general combustion Eq. (23).

Gas n m (n+m/2) (n+m/2)×3.76

Methane 1 2 2 7.52
N-heptane 7 8 11 41.36
Octane 8 9 12.5 47
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of a mixture of methane and air [36–38,63]. Also, in Eq. (24) A is the
pre-exponential factor and E is the activation energy, where
numerical values for these parameters depend on the fuel considered
[61].

Density ρf in the above equations is determined from the perfect
gas equation for a mixture of perfect gases:

ρf =
Po

RTf ∑
ℓ

1

mℓ
Mℓ

ð25Þ

where Po is the absolute pressure, R is the universal gas constant
[8.134 J/(mol K)] and Mℓ is the molecular weight of species ℓ.

3.2. Double-decomposition of variables

Macroscopic transport equations for turbulent flow in a porous
medium are obtained through the simultaneous application of time
and volume average operators over a generic fluid property φ. Such
concepts are defined as [56–58].

〈φ〉i =
1

ΔVf
∫
ΔVf

φdV; 〈φ〉v = ϕ〈φ〉i; ϕ =
ΔVf

ΔV
; withφ = 〈φ〉i + iφ ð26Þ

φ =
1
Δt

∫t + Δt
t φdt; withϕ = φ + φ0 ð27Þ

where ΔVf is the volume of the fluid contained in a Representative
Elementary Volume (REV) ΔV, intrinsic average and volume average
are represented, respectively, by 〈〉i and 〈〉v. Also, due to the definition
of average we have,

φ 0 = 0 ð28Þ

and

〈
iφ〉

i = 0: ð29Þ

The double decomposition idea, introduced and fully described in
[55], combines Eqs. (26) and (27) and can be summarized as:

〈φ〉i = 〈φ〉i; iφ =
―
iφ; 〈φ′〉

i = 〈φ〉i′ ð30Þ

and,

φ′ = 〈φ′〉i + iφ′

iφ =
―
iφ + iφ′ g where iφ′ = φ′−〈φ′

〉
i = iφ−

―
iφ: ð31Þ

Therefore, the quantity φ can be expressed by either,

φ = 〈φ〉i + 〈φ〉i′ +
―
iφ + iφ′ ð32Þ

or

φ = 〈φ〉i + iφ + 〈φ′〉
i + iφ′ : ð33Þ

The term iφ′ can be viewed as either the temporal fluctuation of
the spatial deviation or the spatial deviation of the temporal
fluctuation of the quantity φ.

3.3. Macroscopic fuel consumption rates

In order to derive macroscopic equations also for the simple
combustion model presented above, we can take Eq. (24) with a=2,

b=c=1 and note that the rate of fuel consumption is dictated by
product of two local instantaneous values, mfu and mox, which
represent local instantaneous mass fractions for the fuel and oxygen,
respectively. Now, if we apply to each one of them the decomposition
(32), or its Eq. (33), we get,

mfu = 〈mfu〉
i + imfu + 〈m′

fu
〉
i + im′

fu ð34Þ

mox = 〈mox〉
i + imox + 〈m′

ox〉
i + im′

ox : ð35Þ

For the sake of simplicity and manipulation, looking in Eq. (24) at
only the product of the mass fractions (mfumox), and applying the
decompositions (34) and (35), we get,

m fumox = 〈mfu〉
i
〈mox〉

i + imfu 〈mox
〉
i + 〈m′

fu〉
i
〈mox〉

i + im′
fu 〈mox

〉
i

+ 〈mfu〉
i imox + imfu

imox + 〈mi
fu〉

i imox + im′
fu

imox

+ 〈mfu〉
i
〈m′

ox〉
i + imfu 〈m

′
ox
〉
i + 〈m′

fu〉
i
〈m′

ox〉
i + im′

fu 〈m
′
ox
〉
i

+ 〈mfu〉
i im′

ox + imfu
im′

ox + 〈m′
fu〉

i im′
ox + im′

fu
im′

ox :

ð36Þ

Applying the volume-average operator (26) to the instantaneous
local product (36), we get,

〈m fumox〉
i = 〈〈mfu〉

i
〈mox〉

i
〉
i + 〈

imfu 〈mox〉
i
〉
i + 〈〈m′

fu〉
i
〈mox〉

i
〉
i

+ 〈
im′

fu 〈mox〉
i
〉
i + 〈〈mfu〉

i imox〉
i + 〈

imfu
imox 〉

i

+ 〈〈m′
fu〉

i imox 〉
i + 〈

im′
fu

imox〉
i + 〈〈mfu〉

i
〈m′

ox〉
i
〉
i

+ 〈
imfu 〈m

′
ox
〉
i
〉
i + 〈〈m′

fu〉
i
〈m′

ox〉
i
〉
i + 〈

im′
fu 〈m

′
ox
〉
i
〉
i

+ 〈〈mfu〉
i im′

ox〉
i + 〈

imfu
im′

ox 〉
i + 〈〈m′

fu〉
i im′

ox 〉
i

+ 〈
im′

fu
im′

ox 〉
i
:

ð37Þ

Now, looking back at condition (29), all terms containing only one
deviation factor in Eq. (37) will vanish, such that,

ð38Þ
and the following equation is left as,

〈mfumox〉
i = 〈m

fu
〉
i
〈mox〉

i + 〈m′
fu〉

i
〈mox〉

i + 〈
imfu

imox 〉
i

+ 〈
im′

fu
imox 〉

i + 〈mfu〉
i
〈m′

ox〉
i + 〈m′

fu〉
i
〈m′

ox〉
i

+ 〈
imfu

im
′

ox〉
i + 〈

im′
fu

im
′

ox 〉
i
:

ð39Þ

Another form to write Eq. (39), using the equivalences shown in
Eq. (30), is

〈mfumox〉
i = 〈mfu〉

i 〈mox〉
i + 〈mfu〉

i′〈mox〉
i + 〈

―
imfu

―
imox〉

i + 〈
im′

fu

―
imox〉

i

+ 〈mfu〉
i 〈mox〉

i′ + 〈mfu〉
i′〈mox〉

i′ + 〈
―
imfu

im′
ox 〉

i

+ 〈
im′

fu
im′

ox〉
i
:

ð40Þ
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If we now apply the time-averaging operator over Eq. (40) and
note that, due to condition (28), all terms containing only one time
fluctuation factor vanish, such that,

ð41Þ

we get the following time-and-volume averaged expression after
dropping all null values,

〈mfum
i
ox〉= 〈mfu〉

i 〈mox〉
i + 〈
―
imfu

―
imox 〉

i + 〈mfu〉
i′〈mox〉

i′ + 〈im′
fu

im′
ox〉

i :

ð42Þ

Again, we can make use of an alternative representation for the
same terms in Eq. (42) when looking at equivalences (30), we get,

〈mfumox〉
i = 〈mfu〉

i
〈mox〉

i + 〈
imfu

imox 〉
i + 〈m′

fu〉
i〈m′

ox〉
i + 〈im′

fu
im′

ox 〉
i:

ð43Þ

Including now the full decomposition Eq. (43) back into the
expression for Sfu, Eq. (24), we have,

〈Sfu〉
i = ρ2f A〈mfumox〉

ie−E =R〈T 〉i

= ρ2f A 〈mfu〉
im

ox
〉
i|{z}

I

+ 〈
im― fu

im―ox 〉
i|{z}

II

+ 〈m′
fu〉

i〈m′
ox〉

i|{z}
III

+ 〈im′
fu

im′
ox 〉

i|{z}
IV

0
BBB@

1
CCCAe−E =R〈T 〉i

:

ð44Þ

The four term on the right-hand-side of Eq. (44), multiplied by the
parameter ρ2f Ae

−E =R 〈T〉i , can be physically interpreted as

I Reaction rate due to volume-and-time averaged values of fuel and
oxidant mass fractions. This is the standard rate of reaction
commonly employed in the literature [36–38].

II Dispersive reaction rate due to deviation of mean time-mean fuel
and oxidant mass fractions. This rate occurs even if the flow is
laminar and is due to fact that both mass fractions present a
deviation about their volume-averaged values.

III Turbulent reaction rate due to time-fluctuation of volume-averaged
values of fuel and oxidant mass flow rates, and represents an
additional fuel consumption due to the fact that inside a
representative elementary volume (REV), the volume-averaged
mass fraction of both oxygen and fuel fluctuate with time, giving
rise to a non-null time correlation.

IV Turbulent dispersive reaction rate due to simultaneous time
fluctuations and volume deviations of both values of fuel and
oxidant mass flow rates.

In light of Eq. (31), terms II and III in Eq. (44), can be recombined to
form,

〈m′
fu〉

i〈m′
ox〉

i + 〈im′
fu

im′
ox 〉

i = 〈m′
fum

′
ox 〉

i ð45Þ

giving,

Stfu;φ = ρ2f A〈m
′
fum

′
ox 〉

i e−E =R 〈T 〉i ð46Þ

which can be seen as the overall effect of turbulence on the fuel
consumption rate. Likewise, the dispersive component reads,

Sdispfu;φ = ρ2f A〈
imfu

imox〉
i e−E =R 〈T 〉i ð47Þ

and for the first term in Eq. (44),

Sfu;φ = ρ2f A〈mfu〉
i
〈mox〉

i e−E =R 〈T 〉i ð48Þ

giving finally

〈Sfu〉
i = Sfu;φ + Sdispfu;φ + Stfu;φ ð49Þ

Models for Eqs. (46) and (47) and evaluation of their relative
values when compared to Eq. (48) remains an open question and shall
be the subject of further investigation. They might be related to
physically controlled mechanisms associated with the full reaction
rate Eq. (44).

4. Conclusions

This paper presents a proposal for a full two-energy equation
allowing for turbulent combustion in an inert porous media. Fuel
consumption rate is expressed by the kinetic controlled one-step
Arrenious expression, which contains the product of two values,
namely the mass fraction of the fuel and of the oxidant. The double-
decomposition concept is applied to these both mass fractions giving
rise to distinct terms, which could be associatedwith themechanics of
dispersion and turbulence in porous media. Modeling of these extra
terms remains an open question. The derivations herein might shed
some light on the overall developing of models for turbulent
combustion in porous media.
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