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olid phase is considered to have an imposed constant velocity. Additional drag
terms appearing in the momentum equation are assumed to be a function of the relative velocity between
the fluid and solid phase. Turbulence equations are influenced by the speed of the solid phase in relation to
that of the flowing fluid. Results show the decrease of turbulent kinetic energy levels as the solid speed
approaches the speed of the moving bed.
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f transport equations for solving problems involving turbulent flow in a moving
seen as a porous matrix with a moving solid phase. Equations are time-and-
1. Introduction

When analyzing turbulent flow in porous media, there are many
situations of practical relevance in which the porous substrate moves
along with the flow, usually with a different velocity than that of the
working fluid. Several manufacturing processes deal with such
configuration and applied computations can be found in the literature
[1–4]. Biomass pelletization and preparation for energy production
may also consider systems having a moving porous bed [5,6].
Therefore, the ability to realistic model such systems is of great
advantage to a number of materials, food and energy production
processes.

Accordingly, a turbulencemodel for flow in a fixed and rigid porous
media has been proposed [7,8], which is today fully documented and
available in the open literature [9]. However, in all work presented in
[9], no movement of the solid phase was considered. The purpose of
this contribution is to extend the previous work on turbulence in
porous media, exploring now configurations that consider the move-
ment of the solid material.

2. Macroscopic model for fixed bed

Amacroscopic formof the governing equations is obtained by taking
the volumetric average of the entire equation set. In this development,
the porous medium is considered to be rigid, fixed and saturated by the
incompressible fluid. As mentioned, derivation of this equation set is
already available in the literature [7–9] so that details need not to be
repeated here. Nevertheless, for the sake of completeness, transport
equations in their final modeled form are here presented.
l rights reserved.
The macroscopic continuity equation is given by,

∇ � uD ¼0 ð1Þ
where the Dupuit–Forchheimer relationship, ¯ūD=ϕ〈¯ū〉i, has been used
and 〈¯ū〉i identifies the intrinsic (fluid) average of the local velocity
vector ¯ū [10]. Eq. (1) represents the macroscopic continuity equation
for an incompressible fluid in a rigid porous medium [11].

Further, the macroscopic time-mean Navier–Stokes (NS) equation
for an incompressible fluid with constant properties can be written as
(see [7]) for details),

ρ∇ � uDuD

�
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¼−∇ �hpii

� �
þ μ∇2uDþ∇ � −ρ�hu′u′ii
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where μ is the fluid dynamic viscosity, K is the permeability, cF is the
Forchheimer coefficient and −ρ�hu′u′ii is the Macroscopic Reynolds
Stress Tensor (MRST), modeled as:

−ρ�hu′u′ii ¼ μ t�2hDiv−2
3
�ρhkiiI ð3Þ

Also,

hDiv ¼ 1
2

∇ �huii
� �

þ ∇ �huii
� �h iT� �

ð4Þ

is the macroscopic deformation tensor, 〈k〉i is the intrinsic average for
k and μt� is the macroscopic turbulent viscosity, which is modeled
here similarly to the case of clear fluid flow. A proposal for μ t� was
presented in [7] as,

μ t� ¼ ρcμhkii
2
=heii ð5Þ
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Fig. 1. Representative elementary control-volume for a moving porous bed (REV).

Nomenclature

cF Forchheimer coefficient in Eq. (2)
c’s Constants in Eqs. (5), (7), and (8)
D Deformation rate tensor, D=[▿u+(▿u)T] / 2
Gi Production rate of 〈k〉i due to the porous matrix,

Gi ¼ ckρ�hkiijuDj=
ffiffiffiffi
K

p

H Distance between channel walls
k Turbulent kinetic energy per unit mass, k ¼ u′ � u′=2
〈k〉v Volume (fluid+solid) average of k
〈k〉i Intrinsic (fluid) average of k
K Permeability
L Channel length
p Thermodynamic pressure
〈p〉i Intrinsic (fluid) average of pressure p
Pi Production rate of k due to mean gradients of ¯ūD,

Pi ¼ −ρhu′u′ii : ∇uD
¯ū Microscopic time-averaged velocity vector
〈¯ū〉i Intrinsic (fluid) average of ¯ū
¯ūD Darcy velocity vector, ¯ūD=ϕ〈¯ū〉i

¯ūrel Relative velocity based on total volume, ¯ūrel= ¯ūD − uS

¯ūrel
γ Relative velocity based on phase volume, urel

γ ¼ huii−huis
x, y Cartesian coordinates

Greek
μ Fluid dynamic viscosity
μt Turbulent viscosity
μtϕ Macroscopic turbulent viscosity

ε Dissipation rate of k, e ¼ μ∇u′ : ∇u′ð ÞT =ρ
〈ε〉i Intrinsic (fluid) average of ε
ρ Density
ϕ Porosity
γ Phase identifier
η, ξ Generalized coordinates
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For a fixed bed, a final form of Eq. (2) reads, after incorporating the
models given by Eqs. (3), (4), and (5),

ρ ∇ � uDuD
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where the last two term in Eq. (6) are known as the Darcy and the
Forchheimer drags. These terms represent the viscous and net
pressure forces felt by the fluid after passing through the porous bed.

2.1. Macroscopic equations for turbulence

Transport equations for hkii ¼ hu′ � u′ii=2 and heii ¼ μh∇u′ : ∇u′ð ÞT ii=ρ
in their so-called High Reynolds Number form are presented in [7] as:

ρ∇ � uDhkii
� �

¼ ∇ � μ þ
μt�

σk

� �
∇ �hkii
� �� �

þ Pi þ Gi−ρ�heii ð7Þ

ρ∇: uDheii
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¼ ∇ � μ þ μt�

σ e
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þ c1Pi heii
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heii
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Gi−ρ�heii
� �

ð8Þ
where the c's are constants, Pi ¼ −ρhu′u′ii : ∇uD is the production
rate of 〈k〉i due to gradients of ¯ūD and Gi ¼ ckρ�hkiijuDj=

ffiffiffiffi
K

p
is the

generation rate of the intrinsic average of k due to the action of the
porous matrix.
3. Macroscopic model for moving bed

Here, only cases where the solid phase velocity is kept constant
will be considered. The configuration analyzed can be better
visualized with the help of the Representative elementary control-
volume of Fig. 1. A moving bed crosses a fixed control volume in
addition to a flowing fluid, which is not necessarily moving with a
velocity aligned with the solid phase velocity. The steps below show
first some basic definitions prior to presenting a proposal for a set of
transport equations for analyzing the system of Fig. 1.

4. Basic definitions and hypotheses

The first step here is to defined velocities and their averages related
to a fixed representative elementary control-volume.

A general form for a volume-average of any property φ, distributed
within a phase γ that occupy volume ΔVγ, can be written as [10],

huiγ ¼ 1
ΔVγ

∫
ΔVγ

udVγ ð9Þ

In the general case, the volume ratio occupied by phase γ will be
ϕγ=ΔVγ/ΔV.

If there are two phases, a solid (γ=s) and a fluid phase (γ= f),
volume average can be established on both regions. Also,

�s ¼ ΔVs=ΔV ¼ 1−ΔVf =ΔV ¼ 1−� f ð10Þ

and for simplicity of notation one can drop the superscript “f “ to get
ϕs=1 − ϕ

As such, calling the instantaneous local velocities for the solid and
fluid phases, us and u, respectively, one can obtain the average for the
solid velocity, within the solid phase, as follows,

huis ¼ 1
ΔVs

∫
ΔVs

usdVs ð11Þ

which, in turn, can be related to an average velocity referent to the
entire REV as,

uS ¼ ΔVs

ΔV

z}|{1−�ð Þ
1

ΔVs
∫

ΔVs

usdVs|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
huis

ð12Þ

A further approximation herein is that the porous bed is rigid and
moves with a steady average velocity uS. Note that the condition of
steadiness for the solid phase gives uS=¯ūS=const where the overbar
denotes, as usual in the literature, time-averaging.



ρ
h
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For the fluid phase, the intrinsic (fluid) volume average gives, after
using the subscript “i” also for consistency with the literature,

huii ¼ 1
ΔVf

∫
ΔVf

udVf ð13Þ

Both velocities can then be written as,

uD ¼�huii;uS ¼ 1−�ð Þhuis ¼ const: ð14Þ

In the general case, ¯ūD and uS need not to be aligned with each
other as in the drawing of Fig. 1. For a general three-dimensional flow
they are written as,

uD ¼uD î þ vD ĵ þwD k̂;uS ¼ uS î þ vS ĵ þwS k̂ ð15Þ

where u,v,w are the Cartesian components.
A total-volume based relative velocity is defined as,

urel ¼uD−uS ð16Þ

Further,

urel ¼�huii− 1−�ð Þhuis;urel ¼� huii þ huis
� �

−huis ð17Þ

The modulus of urel can be calculated as,

jurelj ¼ juD−uSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uD−uSð Þ2þ vD−vSð Þ2þ wD−wSð Þ2

q
ð18Þ

One could also define a phase-volume based relative velocity as,

urel
γ ¼ huii−huis ð19Þ

and the relationship between these two relative velocities becomes,

urel

urel
γ ¼

�− 1−�ð Þ huishuii

1− huis
huii

0
B@

1
CA ð20Þ

Although it is recognized that the drag between phases can be
related to urel

γ , in the equations to follow, for simplicity, ¯ūrel will be
used for characterizing the relative movement between phases.
Further, for 〈u〉s=0 the result urel ¼�urel

γ is equivalent to ¯ūD=ϕ〈¯ū〉i

and for 〈u〉s/〈¯ū〉i=1 one gets urel
γ =urel ¼0.

5. Transport equations

Incorporating now in Eq. (6) a model for the Macroscopic Reynolds
Stresses −ρ�hu′u′ii (see [7–9] for details), and assuming that a relative
Fig. 2. Porous bed reactor wit
movement between the two phases is described by Eq. (16), the
momentum equation reads,

ρ ∇ � uDuD

�

� �� �
−∇ � μ þ μt�

� �
∇uDþ ∇uD


 �Th in o
¼−∇ �hpii

� �

−
μ�
K

urelþ
cF�ρjureljurelffiffiffiffi

K
p

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous and Form drags due to urel

ð21Þ

The last two terms in the above equation represent the drag caused
by the relative movement between phases. When the two materials
flow along with the same velocity, then the fluid feels no extra forces
caused by the porous matrix. Pressure head necessary to drive the
flow is therefore less then that required to push the fluid through the
porous substrate.

A corresponding transport equation for 〈k〉i can be written as,

∇ � uDhkii
� �i

¼ ∇ � μ þ
μ t�

σk

� �
∇ �hkii
� �� �

−ρhu′u′ii : ∇uDþ ckρ
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K
p
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Generation rate due to urel

−ρ�hei
i ð22Þ

where the generation rate due to the porous substrate, Gi, which was
included in Eq. (7), now depends on |¯ūrel|. If there is now shear
between the two phases (¯ūrel=0), than no mean kinetic energy is
additionally transformed into turbulence by the action of porous
substrate. In this case, Giwill be of null value. In addition, for a uniform
one-dimensional flow, Pi in Eq. (7) will vanish. Therefore, if within
such one-dimensional uniform flow the fluid is moving with the same
speed as the solid matrix, an initial level of 〈k〉i will die out as there is
no existing mechanism to produce turbulent kinetic energy and
maintain the initial values for 〈k〉i.

6. Application to a moving bed

A numerical example of the above is shown next. The flow under
consideration is schematically presented in Fig. 2, where a channel is
completely filled with a moving layer of a porous material. The
channel shown in the figure has length and height given by L and H,
respectively. A constant property fluid flows longitudinally from left to
right permeating through the porous structure. Results at the channel
center (y=H/2) are a representative of uniform one-dimensional fully
developed flow after a certain developing length.

7. Numerical details

The above transport equations are discretized in a generalized
coordinate system using the control volume method [12]. Faces of the
volumes are formed by lines of constant coordinates η−ξ. All
computations were carried out until normalized residues of the
algebraic equations were brought down to 10−7. Details of the
discretization of all terms in the equations can be found in [8,9].
h a moving solid matrix.



1052 M.J.S. de Lemos / International Communications in Heat and Mass Transfer 35 (2008) 1049–1052
Further, the height of the channel section was taken as H=0.075 m
and the length L was 0.75 m. For all runs here studied, a total of 200
nodes in the axial directionwere used, in addition to 100 nodes in the
transversal direction. The results were also checked for grid
independence.
Fig. 3. Effect of uS/¯ūD on non-dimensional turbulent kinetic energy 〈k〉v/|¯ūD|2: a) ϕ=0.6,
b) ϕ=0.7, c) ϕ=0.8.
8. Results and discussion

The flow in Fig. 2 was computed with the set of Eqs. (1), (18), (21),
and (22) including constitutive Eq. (3) and the Kolmogorov–Prandtl
expression (5). The wall function approach was used for treating the
flow close to the walls.

Fig. 3 shows values for of the non-dimensional turbulent kinetic
energy 〈k〉v/|¯ūD|2 along the channel mid-height. In all cases, inlet values
for 〈k〉v/|¯ūD|2 were equal to 5.23×10− 4. The figure indicates the damping
of turbulence as the solid velocity approaches the fluid velocity. As the
relative velocity decreases, the amount of disturbance past the solid
obstacles is reduced, implying then in a reduction of the final level of 〈k〉i

according to Gi in Eq. (7). For a fixed incoming mass flow rate into the
channel (fixed ¯ūD), the figure further indicates the effect of porosity ϕ.
Low porosities increase the intrinsic fluid velocity 〈¯ū〉i, reflecting a
greater conversion of mechanical kinetic energy into turbulence [13].

Ultimately, results in Fig. 3 indicate that for flowswhere the porous
bed also moves, in the same direction of the flow, a smaller portion of
the available meanmechanical energy is converted into turbulence by
the action of the porous substrate. If that is the case occurring in
industrial processes, results herein might be useful in analyzing
engineering equipment and contributing towards more realistic
simulation of flow in moving porous beds.

9. Conclusions

Numerical solutions for turbulent flow in a moving porous bed
were obtained for different ratios uS/¯ūD. Governing equations were
discretized and numerically solved. Increasing the solid speed reduces
the interfacial drag, which minimizes the conversion of mean
mechanical energy into turbulence. Results herein may contribute to
the design and analysis of engineering equipment where a moving
porous body is identified.
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