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Turbulent kinetic energy distribution across the interface between
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Abstract

For hybrid media, involving both a porous substrate and an unobstructed flow region, difficulties arise due to

the proper mathematical treatment given at the macroscopic interface. The literature proposes a jump condition in

which shear stresses on both sides of the interface are not of the same value. This paper presents numerical

solutions for such hybrid medium, considering here a channel partially filled with a porous layer through which an

incompressible fluid flows in turbulent regime. Here, diffusion fluxes of both momentum and turbulent kinetic

energy across the interface present a discontinuity in their values, which is based on a certain jump coefficient.

Effects of such parameter on mean and turbulence fields around the interface region are numerically investigated.

Results indicate that depending on the value of the stress jump parameter, a substantially different structure for the

turbulent field is obtained.
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1. Introduction

The study of important environmental and engineering flows can benefit from more realistic

mathematical modeling. For example, grain storage and drying as well as flows over forests and

vegetation can be characterized by some sort of porous structure through which a fluid permeates.

Accordingly, when the domain of analysis presents a macroscopic interfacial area between a porous
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medium and a clear flow region, the literature proposes the existence of a stress jump interface condition

between the two media [1,2]. Analytical solutions involving such models have been published [3–5].

In addition, purely numerical solutions for two-dimensional hybrid medium (porous region-clear

flow) in an isothermal channel have been considered in [6] based on the turbulence model proposed in

[7,8]. That work has been developed under the double-decomposition concept [9–11]. Non-isothermal

flows in channels past a porous obstacle [12] and through a porous insert have also been reported [13]. In

all previous work of [6,12,13], the matching condition at the interface considered a continuous function

for the stress field.

Recently, Refs. [14–17] presented numerical solutions for laminar and turbulent flow in a channel

partially filled with a flat layer of porous material. Flows over wavy interfaces were also computed for

both laminar [18] and turbulent flows [19]. There, the authors made use of the shear stress jump

condition at the interface. Those works were based on a numerical methodology specifically proposed

for hybrid media [6,12,13].

Another line of research on turbulent flow over permeable media is based on the assumption that

within the porous layer the flow remains laminar [20–23], which, in turn, precludes application of such

methodology to flows through highly permeable media (e.g. atmospheric boundary layer over forests or

crop fields).

As seen, all of the above considered either a flat or a rough (wavy) interface limiting the porous

substrate. The stress jump condition for the momentum equations was applied, but in all publications so

far, no such flux discontinuity for the hkiv-equation has been considered. Motivated by that, Ref. [24]

proposed a model that assumes diffusion fluxes of turbulent kinetic energy on both sides of the interface

to be unequal, which differs from all studies presented up to now. The purpose of this paper is to further

document and explore such proposal.
2. Macroscopic model

2.1. Geometry and governing equations

The flow under consideration is schematically shown in Fig. 1 where a channel is partially filled with

a layer of a porous material. Constant property fluid flows longitudinally from left to right permeating

through both the clear region and the porous structure. The channel section shown in the figure has

length and height given by L and H, respectively. The channel is assumed to be long enough so that fully
Fig. 1. Channel section with porous layer.
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developed flow is established. Under this condition, variable profiles along y at x=0 are coincident to

those at x=L.

A macroscopic form of the governing equations is obtained by taking the volumetric average of the

entire equation set. In this development, the porous medium is considered to be rigid and saturated by the

incompressible fluid. This equation set is already available in the open literature [17] and details do not

need to be repeated here. Nevertheless, for the sake of completeness, the final form of the equations is

here presented.

The macroscopic continuity equation is given by,

jd ūD ¼ 0 ð1Þ
where the Dupuit-Forchheimer relationship, ūD=/hūii, has been used and hūii identifies the intrinsic

(liquid) average of the local velocity vector ū [25]. Eq. (1) represents the macroscopic continuity

equation for an incompressible fluid in a rigid porous medium [26].

The macroscopic time-mean Navier-Stokes (NS) equation for an incompressible fluid with constant

properties can be written as (see Ref. [7]) for details),

qjd

�
ūDūD

/

�
¼ �j /hp̄ii

�
þ lj2ūD þjd � q/huVuVii

� �
� l/

K
ūD þ cF/qjūDjūDffiffiffiffi

K
p

���

ð2Þ
where l is the fluid dynamic viscosity, K is the permeability, cF is the Forchheimer coefficient and

� q/huVuVii is the Macroscopic Reynolds Stress Tensor (MRST) modeled as:

� q/huVuVii ¼ lt/
2hDiv � 2

3
/qhkiiI ð3Þ

Further,

hD̄iv ¼ 1

2
j /huii
� �

þ j /huii
� �h iT� �

ð4Þ

is the macroscopic deformation tensor, hkii is the intrinsic average for k and lt/
is the macroscopic

turbulent viscosity, which is modeled here similarly to the case of clear fluid flow. A proposal for lt/
was

presented in [7] as,

lt/
¼ qclhkii

2

=heii ð5Þ

2.2. Macroscopic equations for turbulence

Transport equations for hkii ¼ huVduVii=2 and heii ¼ lhjuV : juVð ÞTii=q in their so-called High

Reynolds Number form are presented in [7] as:

qjd uDhkii
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where the c’s are constants, P i ¼ � qhuVuVii : juD is the production rate of hkii due to gradients of ūD
and G i ¼ ckq/hkiijuDj=

ffiffiffiffi
K

p
is the generation rate of the intrinsic average of k due to the action of the

porous matrix.

2.3. Interface conditions

The equation proposed by [1,2] for describing the stress jump at the interface has been modified in

[17] in order to consider turbulent flow, in the form,

leff þ lt/

� �
BuDp

By

����
Porous Medium

� l þ ltð Þ
BuDp

By

����
Clear Fluid

¼ l þ ltð Þ bffiffiffiffi
K

p uDp

����
interface

ð8Þ

where uDp
is the Darcy velocity component parallel to the interface, leff is the effective viscosity for the

porous region, and b an adjustable coefficient that accounts for the stress jump at the interface.

Continuity of velocity, pressure, statistical variables and their fluxes across the interface are given by

(see Ref. [17] for details),

u¯D

����
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¼ u¯D

����
Clear Fluid

ð9Þ
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Eqs. (9) and (10) were also proposed by [1] whereas relationships (11) (12) (13) (14) were used by

[27].
3. A proposal for a diffusion flux jump for hkiv at the interface

In Ref. [17], no bjumpQ condition was considered when treating the diffusion flux of hkiv across

the interface, as can be seen by Eq. (12). Here, in order to account for some extra effect in the transport
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of hkiv between the two media, a discontinuity of the diffusion flux is considered. Such discontinuity

might be due to interface roughness or be a way to comply with irregular interfaces. In addition, it can

also be seen as an accommodation of the fact that close to the interface the permeability K attains higher

values than those used within the porous substrate. For that, the following interface condition is here

proposed,

lef f þ
lt/

rk

� �
Bhkiv

By

����
Porous Medium

� l þ lt

rk

� �
Bhkiv

By

����
Clear Fluid

¼ l þ ltð Þ bffiffiffiffi
K

p hkiv
����
Interface

ð15Þ

instead of Eq. (12). Condition (15) is imposed along the interface shown in Fig. 1.
4. Numerical details

In Ref. [16], the discretization methodology used for including the jump condition in the numerical

solutions was discussed in detail. For that, only brief comments about the numerical procedure are here

made. Transport equations are discretized in a generalized coordinate system g–n using the control

volume method [28]. Faces of the volume are formed by lines of constant coordinates D–n. The use of
the spatially periodic boundary condition along the x coordinate was also discussed in [16,17]. This was

done in order to simulate fully developed flow. The spatially periodic condition was implemented by

running the 2D solution repetitively, until outlet profiles in x=L matched those at the inlet (x=0). All

computations were carried out until normalized residues of the algebraic equations were brought down to

10�6. Details of the discretization of the terms on the left of Eq. (8) can be found in [8]. Furthermore,

information on the discretization of the right of (8) appears in [16] where more details can be found. The

height of the channel section was takes as H=0.1 m.
5. Results and discussion

The flow in Fig. 1 was computed with the set of Eqs. (1), (2), (6) and (7) including constitutive Eq. (3)

and the Kolmogorov-Prandtl expression (5). The wall function approach was used for treating the flow

close to the walls. Simulation of the fully developed condition required the use of the spatially periodic

condition mentioned earlier. For all runs here studied, a total of 51 nodes in the axial direction were used.

Fig. 2a presents numerical solutions for b varying from �0.5 to 0.5 for a fixed a fixed porosity /=0.6,

permeability K=4
10�4 m2 and ReH=1
105. When condition (12) is used instead if (15), profiles for b
change substantially as the factor b is varied (dashed lines), from a smooth variation across the interface

for a negative b, to an abrupt change in the velocity profiles when bN0. For positive b values, the Darcy

velocity ū̄D is slightly higher inside the permeable structure than at the interface, indicating that flow

resistance at this position would be higher than everywhere across the porous layer. This seemingly

unphysical result is not obtained when condition (15) is applied for hkiv (thicker solid line in Fig. 2a). In

this case, velocities close to the wall region are higher than for b=0 ( yN0.064 m), but around the

interface no such minimum in the value of ū̄D is observed. For bb0 (thin lines with symbols) no

substantial difference in the calculated profiles, with and without a jump condition for hkiv, is observed.



Fig. 2. Effect of parameter b on flow field: (a) mean velocity u [m/s]; (b) turbulent field, hkiv [m2/s2].
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Distributions for turbulent kinetic energy as a function of the interface boundary condition are shown

in Fig. 2b. The clear separation for the two distributions for positive and negative values of b calculated

by [17] (dashed lines) is not seen when interface condition (15) is applied (solid curves). The region of

maximum turbulent kinetic energy is within the clear flow ( yb0.05m) for bN0 (thicker solid line),

whereas the use of a negative value for the jump parameter causes a peak for hkiv to appear right at the

interface (thin solid curve with symbols). Fig. 3 finally shows values for turbulent kinetic energy as a

function of the jump parameter b. One can see a systematic behavior of larger values of hkiv within the



Fig. 3. Effect of b on turbulent field, hkiv [m2/s2].
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unobstructed layer for positive b values (thick lines) and its corresponding reduction when bb0 (thin

curves). The peak in hkiv profiles shifts from its position inside the clear flow for bN0 towards the

interface for negative value of b. This is an indication that turbulence structure is substantially affected

by the way the interface condition is modeled.

Ultimately, results in Figs. 2 and 3 indicate that for flows where interface condition (15) is applicable,

the use of bb0 shows that a greater portion of the mean mechanical energy of the flow is converted into

turbulence at the interface. If that is the case of environmental flows over dense and thick rain forests, for

example, results herein might be useful to environmentalists and researchers analyzing important natural

and engineering flows.
6. Conclusions

Numerical solutions for turbulent flow in a composite channel were obtained for different interface

conditions for hkiv. Governing equations were discretized and solved for both domains making use of

one unique numerical methodology. The use of a jump condition for the turbulent kinetic energy yielded

numerical results substantially different from those of [17] where no such discontinuity in the diffusion

fluxes of hkiv across the interface was considered. Results herein may contribute to the analysis of

important environmental and engineering flows where an interface surrounding a porous body is

identified.
Nomenclature

At Transversal area of channel

cF Forchheimer coefficient in Eq. (2)
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c’s Constants in Eqs. (5)–(7)

D Deformation rate tensor, D=[ju+(ju)T]/2

Gi Production rate of hkii due to the porous matrix, Gi ¼ ckq/hkiijūDj=
ffiffiffiffi
K

p

H Distance between channel walls

k Turbulent kinetic energy per unit mass, k ¼ uVd uV=2
hkiv Volume (fluid+solid) average of k

hkii Intrinsic (fluid) average of k

K Permeability

L Channel length

p Thermodynamic pressure

hpii Intrinsic (fluid) average of pressure p

Pi Production rate of k due to mean gradients of ū̄D, P
i ¼ � qhuVuVii : juD

ReH Channel height based Reynolds number, ReH=(q|ūD|H)/l
ū̄ Microscopic time-averaged velocity vector

hū̄ii Intrinsic (fluid) average of ū̄

ū̄D Darcy velocity vector, ū̄D=/hūiI
ū̄Dp

Darcy velocity vector parallel to the interface

uDn
, uDp

Components of Darcy velocity at interface along g (normal) and n (parallel) directions,
respectively.
x, y Cartesian coordinates

Greek

b Interface stress jump coefficient

l Fluid dynamic viscosity

lt Turbulent viscosity

leff Effective viscosity for a porous medium, leff=l//
lt/

Macroscopic turbulent viscosity

e Dissipation rate of k, e ¼ ljuV : juVð ÞT=q
heiI Intrinsic (fluid) average of e
q Density

/ Porosity

g, n Generalized coordinates
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