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ABSTRACT

The present analysis accounts for combined convective and radiant heat
transfer to a fluid flowing in a short tube with prescribed wall heat
flux. The heat flux distribution used was of sine shape with maximum
at the middle of the tube. This solution is known to represent the
axial power variation in a nuclear reactor core. The tube wall and
gas bulk temperatures were obtained by successive substitutions for
the wall and gas energy balance equations. The integrals were
approximated by Sympson's rule and initial guesses for the iterative
process were based upon limiting cases for pure radiation and pure
convection. The results of the combined solution compared with the
pure radiation approach show a decrease of 30 percent for the maximum
wall temperature using black surface (e¢=1). For this same situation,
the increase in the gas temperature along the tube shows a reduction
of 58 percent when compared to the pure convection solution.

Introduction

High temperature heat transfer devices are often associated with large

heat fluxes which may occur by radiation and convection mechanisms. The
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superimposed effect of radiation is found mainly in cooling hot spots by
transporting heat to colder regions. In some instances, this transport will
impose an additional load on a place which is to be kept cool, and hence, this
amount of energy must be estimated. In other cases, radiation will help to

cool an undesirably heated region.

In the case of a nuclear reactor core, either rod-bundles or axial holes
through the core material, axial transport of heat might be important in pre-—
dicting high temperature locations in steady state and abnormal conditions.
In those devices, the axial power can be approximated by a sinusoidal function

of the axial position.

Based on the foregoing application, studies were done on the effect of
coupled radiation and convection in a circular channel with a specified sinus-
oidal wall heat flux and flow of a transparent gas. The convective heat
transfer coefficient h, was assumed constant throughout the tube. As pointed
out by Kays{l] for the case of a gas flowing in a channel (Pr ~ 1), the
varying heat flux has little influence on h, and it is perfectly adequate to

use a Nusselt number based upon constant heat flux theory.

In solving the integral energy equation for the heat balance at the wall,
the integrals were numerically calculated by making use of limiting case
solutions for pure radiation and pure convection as initial guesses. Subse-
quent iterations using previous output were performed until convergence was
obtained within some pre-selected tolerance. Such an approach will be
explained later, and has been used successfully to solve a wide variety of

problems, as in Sparrow et al [2], and Sparrow and Jonsson{3}.

Another common procedure to solve radiative integral equations is the
Separable Kernal Method (SKM), which consists basically in the transformation
of the integral equation into a differential equation by means of approxi-

mating the radiation Kernel as a separable function.

Literature Review

Pure radiation{4], as well as combined radiation and convection in

tubes[5,6], have been extensively studied in the literature.

Usiskin and Siegel{4] obtained a numerical solution for radiation
transport from short tubes by dividing the tube length into several isothermal
sections. A heat balance on each of these regions was taken, resulting in a
set of nonlinear algebraic equations which was solved for the wall temperature

in each isothermal zone,
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Perlmutter and Siegel[5] presented an analysis of a problem similar to
the present one, but a constant wall heat flux was studied. In Ref. 5,
aumerical solutions for a black surface case were carried out to show the
effect of each of the independent parameters, such as the gas inlet and
environment temperatures. Two methods were employed: the SKM and direct
numerical solution of the integral equation. The first led to the transfor-
mation of the energy balance into a second-order differential equation which,
together with a first-order differential equation for the gas temperature,
were integrated numerically. In the second method, the integral equation was
put into finite-difference form and the set of nonlinear algebraic relations
obtained was solved by the Newton—Raphson method. This second solution was
performed with the aim of checking the first one. Results were good for short
tubes and calculations for long tubes were not done due to the number of alge-
braic equations involved. Siegel and Perlmutter[6] used the same geometry as

in Ref. 5 and extended their analysis to a gray surface case.

The successive substitution scheme for solving linear integral equations
can be carried out by a number of methods and is well documented in the liter-
ature. Sparrow[2,3] obtained solution for cavity problems where the equations
were linear. 1In Ref. 7 it is pointed out that nonlinear problems concerning
coupling of conduction and convection are still able to be solved by such

method if appropriate modifications are made.

Analysis

The system to be analyzed in the present work is shown schematically in
Fig. l. The surface of a circular tube with diameter D and length L has been
superimposed by an axisymmetric heat flux q,(X), with sinusoidal shape and
maximum heat flux at X = L/2. The gas enters the tube with bulk temperature
Tgi and mean velocity u,, and leaves with bulk temperature Tge' The ends of
the tube are exposed to a medium or enviroument which will exchange heat with
the inside tube surface elements. At the inlet, this medium is at the arbi-
trary temperature T.;, and at the outside the temperature is T,.. The inside
surface is assumed to be a gray diffused one, with emissivity ¢ independent of
temperature level. In addition, considering gas flow (Pr = 0.7) and

temperature variations expected, fluid properties can be kept constant.
Energy Balance

The energy balance will be derived following the Radiosity method, also

used in Ref. 6. In this method, the total radiant flux leaving an element of
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surface is the difference between the outgoing radiant flux q, and the
incoming radiant flux qi. The outgoing radiant flux q, is composed by a part
emitted by the element itself, and a part reflected of the incoming radiant
flux, which in turn represents the leaving flux from another element. There-
fore, a balance of the net flux leaving the surface by radiation, convection,

aand supplied wall heat flux can be stated as follows
WX + g4 = qq + B T(X) - T(R)] (1)

In Eq. 1, the last term on the right represents the local convective heat
flux, which is proportional to the 1local temperature difference [TW(X) -

Tg(X)], since the film coefficient h is kept constant.!

The radiative flux leaving a surface element can be written as
q, = EUT; + (1 - e)qi . (2)
The incoming radiant flux 1is composed by radiation coming from flux

leaving other surface elements and radiation coming from the environment

through the tube ends. So we have

q; =0T, F(x) +oT FQO - x)

i
X A

+] q €)IR(x - E)dg + [ 4, (E)K(E - x)dE , (3)
(o] X

where x = X/D and A = L/D.

The geometric configuration factor F(x) from an element of surface to the

tube end is given by Ref. 7 as follows:
F(x) =[(x2+1/2)/(x2+1)”2] - x x 20, (4)

and the configuration factor K(x) between two rings inside the tube is[6]

las pointed out in Ref, 6, a variation on h could have been used in this
approach. Nevertheless, as already commented, such a procedure is worthless
regarding the accuracy obtained since we are dealing with a gas having a
Prandtl number of the order of 1[1].
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K(x) = 1 - [(x3 + 3x/2) (2 + 1)) X320 .
Substituting Eqs. 2 and 3 into Eq. 1, we get

q,(x) +oTh, F(x) + oTt, FA = %)
X A

+[ a )R(x -E)E + [ q (EIR(E - x)dE
o X

=T (x) - Tg(x)] +q,(x) .

Using Eqs. 1 and 2, we can write

=]
il

EUT; + Q1 - e)[qo + h(Tw - Tg) - qw(x)] ,

or

90

[(l - e)/e][h(Tw - Tg) - qw(x)] + OT: .

509

(5)

(6)

(1)

To introduce another equation to be solved together with Eq. 6, a balance

of energy in a cylindrical element of fluid of length dx is required.

The

rate of increase of internal energy for the fluid crossing dx can be written

as

pumcp(nDZ/A)dT .

Since the fluid is considered transparent, this quantity should be equal

to the convective heat flux only. Therefore, we have
hﬂDdx[Tw(x) - Tg(x)] = pumcp(nDz/A)dT ,

or
dT/dx = ﬂ:Tw(x) - Tg(x)] s

where

§ = A(H/pumD](K/ucp](hD/z)

(8)
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is the Stanton number.

Integrating Eq. 8 from 0 to x,

X

T=7T_ + T (x) =T ()] dx . (9)
gi £ q: w g ]

The energy balances for the wall surface and gas yield a system of two
equations and two variables, T, (x) and Tg(x) that can be solved numerically.

The specified wall heat flux qw(x), will now be introduced since Eq. 6 is
written for any distribution of q.(x).

The function considered is

q,(x) = q! sin(rx/A) + q2 .

This heat flux is the approximate solution for the power generated in a
nucledr reactor core. Finally, writing equations for T, (x), Tg(x), and q,(x)
introducing nondimensional parameters, defined as

H = (n/q,)(au/0) /% e = (o/a) 1,
q} = ql/q, ; a = d%/q, ;
q: = q,/q4; q: =q,/q,
where
4% = reference flux for nondimensionality,
we get

+
+ + 4 -
qw(x) tri F(x) tre F(x x)

oy Aoy
[ q EK(x - E)dE + f 4, (EIR(E - x)dg
o] X

= ot G0 - e )] +ql0 (10)
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X
tg(x) = tgi + £ S[tw(x) - tg(x)] dx (11)
where
*
q, = ql sinGx/A) + @& (12)
qZ = Lljflil {h[tw(x) - tg(x)] - q:} + t;(x) . (13

Equations 10 and 11 were solved numerically for ql = 0 and q2 = 0. The
* *

limiting cases, numerical procedure, and results are presented below.
Limiting Cases

Pure Radiation Solution

In this solution, it will be assumed the exponential kernel approximation

(SKM) which is known to give good results for short tubes[6].

Not considering the convection term in Eq. 6, it can be written as

q,(x) +<J'I“ri F(x) + c’[‘;e FOA - %)

X A
+[ q ER(x - E)dE + [ a EK(E - ¥ = q (x) . (14)
o] X

Since the above equation is linear in q,, we may divide the problem as

shown in Fig. 2. The final solution will be the sum of the three cases.
Solution for 1

Equation 14, using the SKM approximation, is

1 LK 2E A 1
q,(x) = q () + ——fo q () e d& +[ q,®) — & - (15)
e (o] X e

Differentiating it twice, and subtracting from Eq. 15,

dzqo/dx = - ql[(n/A)2Z + 4] sinCwx/x) - 4q2 .
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Integrating twice,

a, = a1+ (2m)2] - 2922 + Cix + C, .

By symmetry, dqo/dx = 0 at x = 1/2, so the constant Cy can be determined
as 2¢2A. To determine Cy, we evaluate Eq. 14 at points x = 0 and x = A, and

use the symmetry relation TW(O) = Tg(x). After doing that, C, is found to be
O+ 1.

Then the solution for I is

a, = Q1 + (2 /a)2] sintax/A) + q2[x + 1 + (= - x2)]. (16)

Solution for II

Due to equilibrium assumed for the problem, the solution for this case is

q, = oT:(x) = cT}e . (17)

Solution for III

The balance equation for this case is

qo(x) B G(Iii - T;e) F(x)
X A
] a @K(x - g)de + [ q (EIK(E - w)dE (18)
o X

Again, differentiating twice and subtracting from Eq. 18, we find dzqo/dx
0, so 4o = C3x + C4. As before, the constants can be found by applying

symmetry at the middle and ends of the tube. The solution is then

a9, = G5 +x - x) o T,

- ™ )/ + ) (19)

ri re

The final solution is the sum of Egs. 16, 17, and 19, and after using

nondimensional parameters, we get

2
q:(x) = ql [1 +<".?A) ] sin ;—'—’5+ A + 1+ 20 - x2)]



vol. 12, No. 5 FLOW OF A TRANSPARENT GAS IN A TUBE 513

“ t;i " tze
_ri __re . - 2
T \TT x0T (20)
and
1 —¢ + +
b= ~
t ( = )qw+qo from Eq. 7.

For the case of a constant heat input, qi = 0, For sinusoidal flux

vanishing at ends, qi = 0.

Pure Convection Solution

The pure convection solution is straightforward and will just be pre-
sented here. For a wall heat flux described by Eq. 10, using constant h, we

get, after integrating the balance equation, and nondimensionalizing

tg(x) L %% qi[ 1 - cos(mx/x)] + % a%x (21)

and

t:w(x) - tgi = EH%{% [1 -~ COs (;5)]-0- sin (;i)}

1
Q%
e (sx + 1) (22)

Numerical Procedure

The solution of Eqs. 10 and 11 was obtained by first guessing the pro-
files for tg and t . The integrals were then calculated in order to obtain an
improved estimate. Subsequent iterations were performed using the most recent

results until no significant variation in the variables could be detected.

For the wall temperature, the first guess was the pure radiation limiting
case, since it was known to be closer to the actual solution[6]. For the gas
temperature, an initial profile based on the pure convection solution gave

faster convergence.

The integrals in Eq. 10 were performed using Sympson's rule. A total of

50 axial segments were used for a tube length of 5 diameters. The convergence
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criterion adopted consisted of comparing the integral of the difference
between the last two trials with some pre-selected error. This error was in

the range of 0.0001 for the present calculations.

For high emissivity cases, an under-relaxation factor of 0.9 was used to
multiply the recently obtained solution. Therefore, the previous solution was
weighted in 10 percent. For low emissivities, the rate of convergence was
even more decelerated. In this case, the relaxation factor had to be as low as

0.7 to avoid oscillations in the calculated profiles.,

Results and Discussion

For the sake of simplicity and ease of comparison in all the computations
here presented, the gas and environment were assigned the same temperature at
both inlet and exit sides. This procedure reduced the number of independent
variables. In addition, the nondimensional inlet gas temperature in all cases

was taken as 1.5.

In order to check the accuracy of the program, the limiting case of pure
radiation was simulated setting adequate parameters. Figure 3 shows results
obtained for constant wall heat Fflux when the Stanton number S, and the
nondimensional film coefficient H, were set to zero. Superposition of the two
solutions indicates the correctness of the programming, regardless of the

emissivity used.

Figure 4 presents results for S = 0.01, H = 0.8, and constant wall heat
flux, The values for S and H were calculated from the fully turbulent
correlation Nu = 0.023 Re0e8 * pr0c% for Re = 100000 and Pr = 0.7. Figure 5
presents calculations using the same input parameters as above but sinusoidal
wall heat flux is used. For both fluxes, the figures show a substantial
decrease for the maximum wall temperature when surface elements are allowed to
exchange heat by radiation with each other and with the environment, As
expected, this exchange is more effective when the surface emissivity has its
maximum value. For the sinusoidal flux, Fig. 5 shows a wall temperature
decrease of 30 percent. 1In both cases, the combined solution approximates the
pure convection solution as the ability of a surface to emit radiant energy

decreases. This tendency was already observed in Ref. 6.

The increase in the gas temperature presents a decrease of 58 percent for
black body solution and sine flux. The results show that the higher the
emissivity, the smaller the amount of heat transferred to the gas, and since

the wall temperatures are reduced, more heat is transferred directly to the
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open ends. Such behavior would not be expected for a long tube where the
convective mechanism certainly plays the most important role[6]. However, in
a nuclear reactor, the number of voids through the core may contribute in some

extent for direct exchange of heat with both upper and lower plena.
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Nomenclature

¢ = Specific heat of fluid

= Tube diameter

F = Geometric configuration factor for radiation from an element on the wall
to the circular opening at the end of the tube

H = Dimensionless heat transfer coefficient (h/q*][q*/c)l/4

h = Convective heat transfer coefficient

K = Geometric configuration factor between elements on inside of tube wall

k = Thermal conductivity of gas

L = Length of tube

A = Dimensionless length, L/D

Nu = Nusselt number hD/k
Pr = Prandtl number Cﬂj/k

= Heat per unit of area at tube wall

= Stanton number 4 Nu/Re Pr = Qh/umpcp

q
Re = Reynolds number umu>AJ
S
T = Temperature

t

)I/At

= Dimensionless temperature [a/q*
u_ = Mean gas velocity
= Axial length coordinate measured from tube entrance

x = Dimensionless coordinate X/D

o™
1]

Emissivity of surface

= Viscosity of gas

N
£ = Dimensionless integration variable
p = Density of gas

o]

= Stefan-Boltzmann constant

Subscripts

e = Exit end of tube
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#
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Gas

Inlet end of tube, incoming
Outgoing

Reservoir

Nondimensional heat flux
wall

Superscripts

Referent to sin term in wall heat input equation

Referent to const. term in wall heat input equation
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