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A b s t r a c t  

The ability to realistically model flows through heterogeneous do-
mains, which contain both solid and fluid phases, can benefit the analysis 
and simulation of complex real-world systems. Environmental impact 
studies, as well as engineering equipment design, can both take advan-
tage of reliable modelling of turbulent flow in permeable media. Turbu-
lence models proposed for such flows depend on the order of application 
of volume- and time-average operators. Two methodologies, following 
the two orders of integration, lead to distinct governing equations for the 
statistical quantities. This paper reviews recently published methodolo-
gies to mathematically characterize turbulent transport in permeable media.  

A new concept, called double-decomposition, is here discussed and 
instantaneous local transport equations are reviewed for clear flow before 
the time and volume averaging procedures are applied to them. Equations 
for turbulent transport follow, including their detailed derivation and a 
proposed model for suitable numerical simulations. The case of a moving 
porous bed is also discussed and transport equations for the mean and 
turbulent flow fields are presented. 

Key words: turbulent flow, porous media, moving bed. 

1. INTRODUCTION 

A number of natural and engineering systems can be characterized by a per-
meable structure through which a working fluid permeates. For treating and 
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simulating such complex systems, it is often convenient and economical to 
resort to tools that can gather the most information using the minimum com-
putational resources. To achieve this goal, it is generally recognized that the 
use of an appropriate macroscopic view of such complex systems which re-
duce computational effort while maintaining a substantial level of informa-
tion, can bring an adequate compromise between completeness and econo-
mics of a realistic analysis. 

It is generally accepted in the open literature that mathematical model-
ling of macroscopic transport for incompressible flows in porous media can 
be based on the volume-average methodology (Whitaker 1999) for either 
heat (Hsu and Cheng 1990) or mass transfer (Bear 1972, Bear and Bachmat 
1967, Whitaker 1966, 1967). Additional important volume- and double-
averaging contributions can be found in the specialized literature (Finnigan 
1985, Gray 1975, Raupach and Shaw 1982, Wilson and Shaw 1977, Nikora 
et al. 2007). If the fluid phase properties fluctuate in time, in addition to  
presenting spatial deviations around a volume-mean value, there are two 
possible methodologies to follow in order to obtain macroscopic equations: 
(a) application of time-average operator followed by volume-averaging  
(Masuoka and Takatsu 1996, Takatsu and Masuoka 1998, Kuwahara et al. 
1996, Kuwahara and Nakayama 1998, Nakayama and Kuwahara 1999), or 
(b) use of volume-averaging before time-averaging is applied (Lee and  
Howell 1987, Wang and Takle 1995, Antohe and Lage 1997, Getachewa  
et al. 2000). 

In fact, these two sets of macroscopic transport equations are equivalent 
when examined under the recently established double decomposition con-
cept (Pedras and de Lemos 2000, 2001, 2003). Recent reviews on the topic 
of turbulence in permeable media can be found in Lage (1998) and Lage  
et al. (2002). Advances on the general area of porous media are detailed in 
recently published books (Nield and Bejan 1999, Ingham and Pop 2002,  
Vafai 2000), in addition to an entire volume dedicated to the topic of turbu-
lent flow in permeable media (de Lemos 2006). 

The double-decomposition idea was initially proposed for the flow va-
riables and has been extended to non-buoyant heat transfer (Rocamora and 
de Lemos 2000), buoyant flows (de Lemos and Braga 2003, Braga and de 
Lemos 2004, 2005, 2006a, b), mass transfer (de Lemos and Mesquita 2003), 
non-equilibrium heat transfer (Saito and de Lemos 2005, 2006), double-
diffusive transport (de Lemos and Tofaneli 2004), and hybrid media 
(clear/porous domains) (Assato et al. 2005, Santos and de Lemos 2006). The 
problem of treating macroscopic interfaces bounding finite porous media, 
considering a diffusion-jump condition for the mean (Silva and de Lemos 
2003a, b) and turbulent flow fields (de Lemos 2005, de Lemos and Silva 
2006), has also been investigated under the concept first proposed by Pedras 
and de Lemos (2001). A general classification of all proposed models for 
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turbulent flow and heat transfer in porous media has been also published  
by de Lemos and Pedras (2001). 

Although the publications refereed above have systematically extended 
the double-decomposition theory to tackle a wide range of problems, herein 
a concise introduction to this concept is offered to the reader, extending the 
previously published work to the case of a moving porous bed. 

2. AVERAGING  OPERATORS  AND  TRANSPORT  EQUATIONS 

The steady-state local or microscopic instantaneous transport equations for 
an incompressible fluid with constant properties are given by: 
 0 ,∇⋅ =u  (1) 

 2( ) ,pρ µ ρ∇⋅ = −∇ + ∇ +uu u g  (2) 

where u is the velocity vector, ρ is the density, p is the pressure, µ is the flu-
id viscosity and g is the gravity acceleration vector. 

As mentioned, there are, in principle, two ways that one can follow in 
order to treat the turbulent flow in porous media. The first method applies a 
time-average operator to the governing eqs. (1) and (2) before the volume-
average procedure is applied. In the second approach, the order of applica-
tion of the two average operators is reversed. Both techniques aim at deriva-
tion of suitable macroscopic transport equations. 

Volume averaging in a porous medium, described in detail in Slattery 
(1967), Whitaker (1969), Gray and Lee (1977), makes use of the concept of 
a Representative Elementary Volume (REV) over which local equations are 
integrated. In a similar fashion, statistical analysis of turbulent flow leads to 
time mean properties. Transport equations for statistical values are consi-
dered in lieu of instantaneous information on the flow. 

Time and volume averaging procedures 

Traditional analyses of turbulence are based on statistical quantities, which 
are obtained by applying time-averaging to the flow governing equations. As 
such, the time average of a general quantity φ is defined as follows (not to 
confuse with the porosity φ to be defined later): 

 
1 d ,

t t

t

t
t

ϕ ϕ
+∆

=
∆ ∫  (3) 

where the time interval ∆t is small compared to the fluctuations of the aver-
age value, ϕ , but large enough to capture turbulent fluctuations of ϕ. Time 
decomposition can then be written as follows: 
 ,ϕ ϕ ϕ′= +  (4) 

with 0,ϕ′ =  where ϕ′  is the time fluctuation of ϕ around its average value .ϕ  
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The volume average of a general property ϕ taken over a REV in a por-
ous medium can be written as in (Slattery 1967), 

 1 d .v

V

V
V

ϕ ϕ
∆

〈 〉 =
∆ ∫  (5) 

The value 〈ϕ〉v is defined for any point x surrounded by a REV of size ∆V. 
This average is related to the intrinsic average for the fluid phase as follows: 

 ,v iϕ φ ϕ〈 〉 = 〈 〉  (6) 

where /fV Vφ = ∆ ∆  is the local medium porosity and fV∆  is the volume 
occupied by the fluid in a REV. Furthermore, we can write, 

 ,i iϕ ϕ ϕ= 〈 〉 +  (7) 

with 0.i iϕ〈 〉 =  In eq. (7), iϕ  is the spatial deviation of ϕ with respect to the 
intrinsic average .iϕ〈 〉  

For deriving the flow governing equations, it is necessary to know the re-
lationship between the volumetric average of derivatives and the derivatives 
of the volumetric average. These relationships are presented in a number of 
works (e.g., Whitaker 1969, 1999), being known as the Theorem of Local 
Volumetric Average. They are written as follows: 

 ( ) 1 d ,
i

v i

A

S
V

ϕ φ ϕ ϕ〈∇ 〉 = ∇ 〈 〉 +
∆ ∫ n  (8) 

 ( ) 1 d ,
i

v i

A

S
V

φ〈∇⋅ 〉 = ∇⋅ 〈 〉 + ⋅
∆ ∫ nϕ ϕ ϕ  (9) 

 ( ) 1 ( )d ,
i

v
i

i
A

S
t t V
ϕ φ φ ϕ∂ ∂

= 〈 〉 − ⋅
∂ ∂ ∆ ∫ n u  (10) 

where Ai , ui and n are the interfacial area, the velocity of the interface and 
the outward unit vector normal to Ai , respectively. 

The area Ai should not be confused with the surface area surrounding vo-
lume ∆V. To the interested reader, mathematical details and proof of the 
Theorem of Local Volumetric Average can be found in: Whitaker (1969, 
1999), Slattery (1967), Gray and Lee (1977). For single-phase flow, phase f 
is the fluid itself and ui = 0 if the porous substrate is assumed to be fixed. In 
developing eqs. (8)-(10), the only restriction applied is the independence of 
∆V in relation to time and space. If the medium is further assumed to be ri-
gid, then ∆Vf  is dependent only on space and not time-dependent (Gray and 
Lee 1977). 
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Time averaged transport equations 

In order to apply the time-average operator to eqs. (1), (2) and (8), we as-
sume: 

 = + , p = p + p .′ ′u u u  (11) 

Substituting expression (11) into eqs. (1), (2) and (8), we obtain, after 
considering constant flow properties, 
 0 ,∇ ⋅ =u  (12) 

 * 2( ) ( ) ( ).pρ µ ρ ′ ′∇ ⋅ = − ∇ + ∇ +∇ ⋅ −uu u u u  (13) 

For a clear fluid, the use of the eddy-diffusivity concept for expressing 
the stress-rate of strain relationship for the Reynolds stress appearing in eq. 
(13) gives 

 22 ,
3t kρ µ ρ′ ′− = −u u D I  (14) 

where D  is the mean deformation tensor, k is the turbulent kinetic energy 
per unit mass, µt is the turbulent viscosity and I is the unity tensor. 

The transport equation for the turbulent kinetic energy is obtained by mul-
tiplying first the difference between the instantaneous and the time-averaged 
momentum equations by .′u  Thus, applying further the time-average operator 
to the resulting product, we obtain 

 2( ) ,k
pk q k Pρ ρ µ ρε
ρ

⎡ ⎤′⎛ ⎞′∇ ⋅ = − ∇⋅ + + ∇ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

u u  (15) 

where :kP ρ ′ ′= − ∇u u u  is the generation rate of k due to gradients of the 
mean velocity and 2.q ′ ′= ⋅u u  

3. DOUBLE  DECOMPOSITION 

The double decomposition idea, herein used for obtaining macroscopic equa-
tions, has been detailed in (Pedras and de Lemos 2000, 2001, 2003). Here, a 
general overview is presented. Further, the resulting equations using this 
concept for the flow (Pedras and de Lemos 2001) and non-buoyant thermal 
fields (Rocamora and de Lemos 2000) are already available in the literature 
and because of this they are not reviewed here in greater detail. As already 
mentioned, extensions of the double-decomposition methodology to buoyant 
flows (de Lemos and Braga 2003, Braga and de Lemos 2004), to mass trans-
port (de Lemos and Mesquita 2003), and to double-diffusive convection (de 
Lemos and Tofaneli 2004), have also been presented in the open literature. 

Basically, for porous media analysis, a macroscopic form of the govern-
ing equations is obtained by taking the volumetric average of the entire eq-
uation set. In that development, the porous medium is considered to be rigid 
and saturated by an incompressible fluid. 
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Basic relationships 
From the work presented by Pedras and de Lemos (2000), and Rocamora Jr. 
and de Lemos (2000), one can write for any flow property ϕ, combining de-
compositions (7) and (4), 
 , ,i i i i iϕ ϕ ϕ ϕ ϕ ϕ′〈 〉 = 〈 〉 + 〈 〉 = 〈 〉 +   
  (16) 
 ,i i i i iϕ ϕ ϕ ϕ ϕ ϕ′ ′ ′ ′= + = 〈 〉 +   

or further 
 ,i i i iϕ ϕ ϕ ϕ ϕ′′ ′ ′ ′= 〈 〉 + = 〈 〉 +  (17) 

where iϕ′  can be understood as either the time fluctuation of the spatial dev-
iation or the spatial deviation of the time fluctuation. After some manipula-
tion, we can prove that (Pedras and de Lemos 2001), 

 or ,v v i iϕ ϕ ϕ ϕ〈 〉 = 〈 〉 〈 〉 = 〈 〉  (18) 

i.e., the time and volume averages commute. Also, 

 ;i i i iϕ ϕ ϕ ϕ ′′= 〈 〉 = 〈 〉  (19) 
or say, 

 
1 1d ( )d ,

f f

i i i

f fV V

V V
V V

ϕ ϕ ϕ ϕ ϕ ϕ
∆ ∆

′ ′〈 〉 = = + = 〈 〉 + 〈 〉
∆ ∆∫ ∫  (20) 

 ( ) ( ) ( ) ( )i i i i iϕ ϕ ϕ ϕ ϕ′ ′= + = +  (21) 
so that, 
 ( ) ,i iϕ ϕ ϕ′ ′ ′= 〈 〉 +   
where 
 ( )i iϕ ϕ ϕ′ ′ ′= − 〈 〉  and also ( ) .i i iϕ ϕ ϕ′ = −  (22) 

Finally, we can have a full variable decomposition as follows: 

 ( ) ( )i i i i i i i iϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ′′ ′ ′= 〈 〉 + 〈 〉 + + = 〈 〉 + 〈 〉 + +  (23) 
or further, 

 ( ) ( ) .

i

i

i i i i i i i i

ϕϕ

ϕϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

′

〈 〉

′′ ′ ′= 〈 〉 + 〈 〉 + + = 〈 〉 + + 〈 〉 +  (24) 

Equation (23) comprises the double-decomposition concept. The signi-
ficance of the four terms in expression (24) can be reviewed as:  

(a) iϕ〈 〉  is the intrinsic average of the time mean value of ϕ , i.e., we 
compute first the time averaged values of all points composing the REV, and 
then we find their volumetric mean to obtain .iϕ〈 〉  Instead, we could also 
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consider a certain point x surrounded by the REV, according to eqs. (5) and 
(6), and take the volumetric average at different time steps. Thus, we calcu-

late the average over such different values of iϕ〈 〉  in time. We get then iϕ〈 〉  

and, according to expression (18), ,i iϕ ϕ〈 〉 = 〈 〉  i.e., the volumetric and time 
average commute.  

(b) If we now take the volume average of all fluctuating components of 
ϕ, which compose the REV, we end up with .iϕ′〈 〉  Instead, with the volu-
metric average around point x taken at different time steps we can determine 
the difference between the instantaneous and a time averaged value. This 
will be iϕ ′〈 〉  that, according to expression (19), equals .iϕ′〈 〉  Further, on 
performing first a time-averaging operation over all points that contribute 
with their local values to the REV, we get a distribution of ϕ  within this vo-
lume. If we now calculate the intrinsic average of this distribution of ,ϕ  we 
get .iϕ〈 〉  The difference or deviation between these two values is .iϕ  Now, 
using the same space decomposition approach, we can find the deviation iϕ  
for any instant of time t. This value also fluctuates with time, and as such a 
time mean can be calculated as .iϕ  Again the use of expression (19) gives 

.i iϕ ϕ=  Finally, it is interesting to note the meaning of the last term on each 
side of eq. (24). The first term, ( ) ,i ϕ′  is the time fluctuation of the spatial 
deviation whereas ( )iϕ ′  means the spatial deviation of the time varying 
term. If, however, one makes use of relationships (18) and (19) to simplify 
expression (24), we finally conclude, 

 ( ) ( )i iϕ ϕ′ ′=  (25) 

and, for simplicity of notation, we can drop the parentheses and write both 
superscripts at the same level in the format: .iϕ′  Also, 0.i i iϕ ϕ′ ′〈 〉 = =  

The basic advantage of the double decomposition concept is to serve as a 
mathematical framework for analysis of flows where within the fluid phase 
there is enough room for turbulence to be established. As such, the double-
decomposition methodology would be useful in situations where a solid 
phase is present in the domain under analysis so that a macroscopic view is 
appropriate. At the same time, properties in the fluid phase are subjected to 
the turbulent regime, and a statistical approach is appropriate. Examples of 
possible applications of such a methodology can be found in engineering 
systems such as heat exchangers, porous combustors, nuclear reactor cores, 
etc. Natural systems include atmospheric boundary layer over forests and crops. 
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4. EQUATIONS  FOR  MASS  AND  MOMENTUM 

The development to follow assumes single-phase flow in a saturated, rigid 
porous medium (∆Vf  independent of time) for which, in accordance with ex-
pression (18), time average operation on the variable ϕ commutes with the 
space average. Application of the double-decomposition idea in eq. (24) to 
the inertia term in the momentum equation leads to four different terms. Not 
all of these terms are considered in the same analysis in the literature. 

Continuity 

The microscopic continuity equation for an incompressible fluid flowing in a 
clear (non-porous) domain was given by eq. (1). Using the double-decompo-
sition idea embodied in expression (24) results, 

 ( ) 0.i i i i′ ′∇ ⋅ = ∇⋅ 〈 〉 + 〈 〉 + + =u u u u u  (26) 

On applying both volume- and time-average operators in either order gives 

 ( ) 0.iφ∇⋅ 〈 〉 =u  (27) 

As such, for the continuity equation the averaging order is immaterial. 

Momentum − one average operator 
The transient form of the microscopic momentum eq. (2) for a fluid with 
constant properties is given by the Navier-Stokes equation as follows: 

 2( ) .p
t

ρ µ ρ∂⎡ ⎤+∇⋅ = −∇ + ∇ +⎢ ⎥∂⎣ ⎦

u uu u g  (28) 

Its time-average, using ,′= +u u u  gives  

 ( ) ( )2 ,p
t

ρ µ ρ ρ∂⎡ ⎤ ′ ′+∇ ⋅ = −∇ + ∇ +∇⋅ − +⎢ ⎥∂⎣ ⎦

u uu u u u g  (29) 

where the stresses, ,ρ ′ ′− u u  are the well-known Reynolds stresses. On the 
other hand, the volumetric average of eq. (28) using the Theorem of Local 
Volumetric Average, eqs. (8)-(10), results in the following: 

 ( ) ( ) ( )2 ,i i i ip
t

ρ φ φ φ µ φ φρ∂⎡ ⎤⎡ ⎤〈 〉 +∇⋅ 〈 〉 = −∇ 〈 〉 + ∇ 〈 〉 + +⎢ ⎥⎣ ⎦∂⎣ ⎦
u uu u g R  (30) 

where 

 1( ) d d
i iA A

S p S
V V
µ

= ⋅ ∇ −
∆ ∆∫ ∫R n u n  (31) 

represents the total drag force per unit volume due to the presence of the 
porous matrix, being composed by both viscous drag and form (pressure) 
drags. Further, using spatial decomposition to write u = 〈u〉i + i u in the inertia 
term we obtain the following: 
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( )i i i

t
ρ φ φ∂⎡ ⎤⎡ ⎤〈 〉 +∇ ⋅ 〈 〉 〈 〉⎢ ⎥⎣ ⎦∂⎣ ⎦

u u u
 

  

              ( ) ( )2 .i i i i ipφ µ φ φ φρ⎡ ⎤= −∇ 〈 〉 + ∇ 〈 〉 −∇⋅ 〈 〉 + +⎣ ⎦u u u g R  (32) 

Hsu and Cheng (1990) pointed out that the third term on the right-hand 
side represents the hydrodynamic dispersion due to spatial deviations. Note 
that eq. (32) models typical porous media flow for Rep < 150-200. When ex-
tending the analysis to turbulent flow, time varying quantities have to be 
considered. 

Momentum equation – two average operators 

The set of eqs. (29) and (32) is used when treating turbulent flow in a clear 
fluid, or low Rep porous media flow, respectively. In each of those equations, 
only one averaging operator was applied, either time or volume, respective-
ly. In this work, an investigation on the use of both operators is now con-
ducted with the objective of modelling turbulent flow in porous media. 

The volume average of eq. (29) gives for the time mean flow in a porous 
medium, 

    
( ) ( )i i

t
ρ φ φ∂⎡ ⎤〈 〉 +∇ ⋅ 〈 〉⎢ ⎥∂⎣ ⎦

u uu  

           ( ) ( ) ( )2 ,i i ipφ µ φ ρφ φρ′ ′= − 〈 〉 + ∇ 〈 〉 +∇⋅ − 〈 〉 + +u u u g R  (33) 

where 

 1( )d d
i iA A

S p S
V V
µ

= ⋅ ∇ −
∆ ∆∫ ∫R n u n  (34) 

is the time-averaged total drag force per unit volume due to solid particles, 
composed by both viscous and form (pressure) drags. 

Likewise, applying now the time-average operation to eq. (30), we obtain 

         ( ) ( ( )( ) )i i

t
ρ φ φ∂⎡ ⎤′ ′ ′〈 + 〉 +∇⋅ 〈 + + 〉⎢ ⎥∂⎣ ⎦

u u u u u u   

                   2( ) ( ) .i ip pφ µ φ φρ′ ′= −∇ 〈 + 〉 + ∇ 〈 + 〉 + +u u g R  (35) 

Dropping the terms containing only one fluctuating quantity results in 

       

( ) ( )i i

t
ρ φ φ∂⎡ ⎤〈 〉 +∇ ⋅ 〈 〉⎢ ⎥∂⎣ ⎦

u uu    

                   ( ) ( ) ( )2 ,i i ipφ µ φ ρφ φρ′ ′= −∇ 〈 〉 + ∇ 〈 〉 +∇⋅ − 〈 〉 + +u u u g R  (36) 
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where 

       
1( ) d ( )d

i iA A

S p p S
V V
µ ⎡ ⎤′ ′= ⋅ ∇ + − +⎣ ⎦∆ ∆∫ ∫R n u u n   

                           
1( )d d .

i iA A

S p S
V V
µ

= ⋅ ∇ −
∆ ∆∫ ∫n u n  (37) 

Comparing eqs. (33) and (36), we can see that also for the momentum 
equation the order of the application of both averaging operators is imma-
terial. 

It is interesting to emphasize that both views in the literature use the 
same final form for the momentum equation. The term R  is modelled by the 
Darcy-Forchheimer (Dupuit) expression after either order of application of 
the average operators. Since both orders of integration lead to the same equa-
tion, namely expression (34) or (37), there would be no reason for modelling 
them in a different form. Had the outcome of both integration processes been 
distinct, the use of a different model for each case would have been consis-
tent. In fact, it has been pointed out by Pedras and de Lemos (2000) that the 
major difference between those two paths lies in the definition of a suitable 
turbulent kinetic energy for the flow. Accordingly, the source of controver-
sies comes from the inertia term, as seen below. 

Inertia term − double decomposition 

Applying to the inertia term of eq. (28) the double decomposition idea seen 
before for velocity (eq. (24)), will lead to different sets of terms. In the litera-
ture, not all of them are used in the same analysis. 

Starting with time decomposition and applying both average operators 
(see, eq. 33) gives 

 ( ) ( ( )( ) ) [ ( )]i i i iφ φ φ′ ′ ′ ′∇ ⋅ 〈 〉 = ∇⋅ 〈 + + 〉 = ∇⋅ 〈 〉 + 〈 〉uu u u u u uu u u  (38) 

using the spatial decomposition to write i i= 〈 〉 +u u u  we obtain 

 { }[ ( )] [ ( )( ) ]i i i i i i i iφ φ′ ′ ′ ′∇ ⋅ 〈 〉 + 〈 〉 = ∇⋅ 〈 〈 〉 + 〈 〉 + 〉 + 〈 〉u u u u u u u u u u   

                                { }[ ] .i i i i i iφ ′ ′= ∇⋅ 〈 〉 〈 〉 + 〈 〉 + 〈 〉u u u u u u  (39) 

Now, applying eq. (17) to write ,i i′ ′ ′= 〈 〉 +u u u  and substituting into ex-
pression (39) gives 

{ }[ ]i i i i i iφ ′ ′∇⋅ 〈 〉 〈 〉 + 〈 〉 + 〈 〉u u u u u u   

{ }[ ( )( ) ]i i i i i i i i i iφ ′ ′ ′ ′= ∇⋅ 〈 〉 〈 〉 + 〈 〉 + 〈 〈 〉 + 〈 〉 + 〉u u u u u u u u   
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{ }[ ( ) ]i i i i i i i i i i i i i iφ ′ ′ ′ ′ ′ ′ ′ ′= ∇⋅ 〈 〉 〈 〉 + 〈 〉 + 〈 〈 〉 〈 〉 + 〈 〉 + 〈 〉 + 〉u u u u u u u u u u u u   

{ }[ ] .i i i i i i i i i i i i i i i iφ ′ ′ ′ ′ ′ ′ ′ ′= ∇⋅ 〈 〉 〈 〉 + 〈 〉 + 〈 〉 〈 〉 + 〈〈 〉 〉 + 〈 〈 〉 〉 + 〈 〉u u u u u u u u u u u u  (40) 

The fourth and fifth terms on the right-hand side contain only one space-
varying quantity and will vanish under the application of volume integration. 
Equation (40) will then be reduced to 

 { }( ) [ ] .i i i i i i i i i i iφ φ ′ ′ ′ ′∇⋅ 〈 〉 = ∇⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 + 〈 〉uu u u u u u u u u  (41) 

Using the equivalence (18)-(19), eq. (41) can be further rewritten as follows: 

 ( ) [ ]i i i i i i i i i i iφ φ⎧ ⎫′ ′ ′ ′∇ ⋅ 〈 〉 = ∇ ⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 + 〈 〉⎨ ⎬
⎩ ⎭

uu u u u u u u u u  (42) 

with an interpretation of the terms in eq. (41) given later. 
Another route to follow to reach the same results is to start out with an 

application of the space decomposition in the inertia term, as usually done in 
classical mathematical treatment of porous media flow analysis. Then we ob-
tain 

 ( ) ( ( )( ) ) [ ( )]i i i i i i i i i i iφ φ φ∇⋅ 〈 〉 = ∇⋅ 〈 〈 〉 + 〈 〉 + 〉 = ∇⋅ 〈 〉 〈 〉 + 〈 〉uu u u u u u u u u  (43) 

and on time averaging the r.h.s., using eq. (20) to express i i i′〈 〉 = 〈 〉 + 〈 〉u u u , 
becomes 

 { }[ ( )] [( )( ) ]i i i i i i i i i i i iφ φ ′ ′∇⋅ 〈 〉 〈 〉 + 〈 〉 = ∇⋅ 〈 〉 + 〈 〉 〈 〉 + 〈 〉 + 〈 〉u u u u u u u u u u   

                                   { }[ ] .i i i i i i iφ ′ ′= ∇⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉u u u u u u  (44) 

With the help of eq. (21) one can write i i i ′= +u u u  which, inserted into 
expression (44), gives 

{ }[ ] ]i i i i i i iφ ′ ′∇ ⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉u u u u u u   

                        { }[ ( )( ) ]i i i i i i i i iφ ′ ′ ′ ′= ∇ ⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 + + 〉u u u u u u u u   

                        { }[ ] .i i i i i i i i i i i i iφ ′ ′ ′ ′ ′ ′= ∇⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 + + + 〉u u u u u u u u u u u u  (45) 

Application of the time-average operator to the fourth and fifth terms on 
the right-hand side of eq. (45), containing only one fluctuating component, 
vanishes it. In addition, remembering that with expression (19) the equiva-
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lences i i=u u  and i i′′〈 〉 = 〈 〉u u  are valid, and that with expression (18) we 

can write ,i i〈 〉 = 〈 〉u u  we obtain the following alternative form for eq. (45): 

I II III IV

[ ( )] [ ] ,i i i i i i i i i i i i i i iφ φ
⎧ ⎫⎪ ⎪′ ′ ′ ′∇ ⋅ 〈 〉 〈 〉 + 〈 〉 = ∇ ⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 + 〈 〉⎨ ⎬
⎪ ⎪⎩ ⎭

u u u u u u u u u u u u  (46) 

which is the same result as expression (41). 
The physical significance of all four terms on the right-hand side of (46) 

can be discussed as: 
− Convective term of macroscopic mean velocity. 
− Turbulent (Reynolds) stresses divided by the density ρ due to the 

fluctuating component of the macroscopic velocity. 
− Dispersion associated with spatial fluctuations of microscopic time 

mean velocity. Note that this term is also present in the laminar flow, 
or say, when the pore-based Reynolds number, Rep, is less than 150. 

− Turbulent dispersion in a porous medium due to both time and spa-
tial deviation of the microscopic velocity. 

5. TURBULENT  KINETIC  ENERGY 

The starting point for an equation for the flow turbulent kinetic energy is an 
equation for the microscopic velocity fluctuation u′. Such a relationship can 
be written, after subtracting the equation for the mean velocity u  from the 
instantaneous momentum equation, in the following form: 

 2[ ] .p
t

ρ µ
⎧ ⎫′∂ ′ ′ ′ ′ ′ ′ ′ ′+∇ ⋅ + + − = −∇ + ∇⎨ ⎬
∂⎩ ⎭

u uu u u u u u u u  (47) 

Now, the volumetric average of eq. (47), using the Theorem of Local 
Volumetric Average, gives 

 { }( ) [ ]i i i i i

t
ρ ϕ ρ ϕ∂ ′ ′ ′ ′ ′ ′ ′〈 〉 + ∇ ⋅ 〈 〉 + 〈 〉 + 〈 〉 − 〈 〉
∂

u uu u u u u u u   

      2( ) ( ) ,i ipϕ µ ϕ′ ′ ′= −∇ 〈 〉 + ∇ 〈 〉 +u R  (48) 

where R′ is the fluctuating part of the total drag due to the porous structure. 
Expanding further the divergent operators in eq. (48) by means of the 

expression set (16), one ends up with an equation for i′〈 〉u  as follows: 

                    {( ) [i i i i i i i

t
ρ φ ρ φ∂ ′ ′ ′ ′ ′〈 〉 + ∇ ⋅ 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉
∂

u u u u u u u   

                                  }]i i i i i i i i i i i i i i′ ′ ′ ′ ′ ′ ′ ′+ 〈 〉 + 〈 〉 + 〈 〉 − 〈 〉 〈 〉 − 〈 〉u u u u u u u u u u   

 2( ) ( ) .i ipφ µ φ′ ′ ′= −∇ 〈 〉 + ∇ 〈 〉 +u R  (49) 
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As mentioned, the determination of the flow macroscopic turbulent ki-
netic energy follows two different paths in the literature. In the models of 
Lee and Howell (1987), Wang and Takle (1995), Antohe and Lage (1997), 
Getachewa et al. (2000), their turbulence kinetic energy was based on 

/ 2.i i
mk ′ ′= 〈 〉 ⋅ 〈 〉u u  They started with a simplified form of eq. (49) neglect-

ing the 5-, 6-, 7- and 9-th terms (dispersion). Then they took the scalar prod-
uct of it with i′〈 〉u  and applied the time-average operator. 

On the other hand, if one starts with eq. (47) and proceed with time-
averaging first, one ends up, after volume averaging, with / 2.i ik ′ ′〈 〉 = 〈 ⋅ 〉u u  
This was the path followed by Masuoka and Takatsu (1996), Takatsu and 
Masuoka (1998), Kuwahara and Nakayama (1998). The objective of this 
section is to derive both transport equations, for km and ,ik〈 〉  in order to 
compare similar terms.  

Transport equation for km  

From the instantaneous microscopic continuity equation for a constant-
property fluid one obtains 

 ( ) 0 ( ) 0,i i iφ φ⎡ ⎤′∇⋅ 〈 〉 = => ∇⋅ 〈 〉 + 〈 〉 =⎣ ⎦u u u  (50) 

with the time average 
 ( ) 0.iφ∇ ⋅ 〈 〉 =u  (51) 

From eqs. (50) and (51) we obtain 
 ( ) 0.iφ ′∇ ⋅ 〈 〉 =u  (52) 

Taking the scalar product of eq. (48) with ,i′〈 〉u  making use of eqs. (50)-
(52) and time averaging it, the equation for km will have the final form: 

( )
2

i i i
i im

m
k pk
t

φ
ρ ρ φ ρ φ

ρ

⎧ ⎫⎡ ⎤′ ′ ′∂ 〈 〉 〈 〉 ⋅ 〈 〉⎪ ⎪⎡ ⎤ ′+ ∇ ⋅ 〈 〉 = − ∇ ⋅ 〈 〉 +⎢ ⎥⎨ ⎬⎣ ⎦∂ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

u uu u   

                                             2 ( ) : ,i i i
m m mk Dµ φ ρφ ρφε′ ′+ ∇ − 〈 〉 〈 〉 ∇〈 〉 − −u u u  (53) 

where Dm represents the dispersion of km . It is interesting to note that this 
term can be both negative and positive.  

The first term on the right of eq. (53) represents the turbulent diffusion 
of km and is normally modelled via a diffusion-like expression resulting for 
the transport equation for km (Antohe and Lage 1997, Getachewa et al. 2000) 

 ( )
[ ] ( ) ,m

m

tim
m m m m m

k

k
k k P D

t
µφ

ρ ρ φ µ φ ρφε
σ

⎡ ⎤∂
+ ∇ ⋅ 〈 〉 =∇ ⋅ + ∇ + − −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
u  (54) 
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where  

 :i i i
mP ρφ ′ ′= − 〈 〉 〈 〉 ∇〈 〉u u u  (55) 

is the production rate of km due to the gradient of the macroscopic time-mean 
velocity .i〈 〉u  

Wang and Takle (1995), Antohe and Lage (1997), Getachewa et al. 
(2000) made use of the above equation for km considering for R′ the Darcy-
Forchheimer extended model with macroscopic time-fluctuation velocities 

.i′〈 〉u  They have also neglected all dispersion terms that were grouped into 
Dm . Note also that the order of application of both volume- and time-average 
operators in this case cannot be changed. The quantity km is defined by ap-
plying first the volume operator to the fluctuating velocity field. 

Transport equation for 〈k〉i 

The other procedure for composing the flow turbulent kinetic energy is to 
take the scalar product of eq. (47) by the microscopic fluctuating velocity u′. 
Then apply both time- and volume-operators for obtaining an equation for 

/ 2.i ik ′ ′〈 〉 = 〈 ⋅ 〉u u  It is worth noting that in this case the order of application 
of both operations is immaterial since no additional mathematical operation 
(the scalar product) is conducted between the averaging processes. There-
fore, this is the same as applying the volume operator to an equation for the 
microscopic k. 

The volumetric average of a transport equation for k has been carried out 
in detail by Pedras and de Lemos (2001) and for only that the final resulting 
equation is presented, namely, 

( ) ( ) ( ) ,
ti i i i

D i i
k

k k k P G
t

φ
µ

ρ φ µ φ ρφ ε
σ

⎡ ⎤⎛ ⎞∂⎡ ⎤ ⎢ ⎥〈 〉 +∇ ⋅ 〈 〉 = ∇ ⋅ + ∇ 〈 〉 + + − 〈 〉⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
u  (56) 

where 

 
| |

: ,
i

i D
i D i k

k
P G c

K
ρ ρφ

〈 〉′ ′= − 〈 〉 ∇ =
u

u u u  (57) 

are the production rate of ik〈 〉  due to mean gradients of the seepage velocity 

Du  and the generation rate of intrinsic k due the presence of the porous ma-
trix, respectively. Also, in eq. (57) K is the medium permeability and ck is a 
constant. As mentioned, eq. (56) has been proposed by Pedras and de Lemos 
(2001). Nevertheless, for the sake of completeness, a few steps of such a de-
rivation are reproduced here. Application of the volume-average theorem to 
the transport equation for the turbulence kinetic energy k gives 
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   ( ) ( )
i

i i pk k k
t

ρ φ φ ρ φ
ρ

⎧ ⎫
′⎛ ⎞∂⎡ ⎤ ⎪ ⎪′〈 〉 +∇ ⋅ 〈 〉 = ∇ ⋅ +⎨ ⎬⎜ ⎟⎢ ⎥∂⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭

u u   

                                  2 ( ) : ,i i ikµ φ ρφ ρφ ε′ ′+ ∇ 〈 〉 − 〈 ∇ 〉 − 〈 〉u u u  (58) 

where the divergence of the right-hand side can be expanded as 

 ( ) ( ) ,i i i i i ik k kφ φ⎡ ⎤∇⋅ 〈 〉 =∇⋅ 〈 〉 〈 〉 + 〈 〉⎣ ⎦u u u  (59) 

where the first term is the convection of ik〈 〉  due to the macroscopic veloci-
ty whereas the second is the convective transport due to spatial deviations of 
both k and u. Likewise, the production term on the right of eq. (58) can be 
expanded as 

 : : ( ) : ( ) .i i i i i iρφ ρφ ⎡ ⎤′ ′ ′ ′ ′ ′− 〈 ∇ 〉 = − 〈 〉 〈∇ 〉 + 〈 ∇ 〉⎣ ⎦u u u u u u u u u  (60) 

Similarly, the first term on the right of eq. (60) is the production of ik〈 〉  
due to the mean macroscopic flow and the second is the ik〈 〉  production as-
sociated with spatial deviations of flow quantities k and u. 

The extra terms appearing in eqs. (59) and (60), respectively, represent 
extra transport/production of ik〈 〉  due to the presence of solid material in-
side the integration volume. They should be null for the limiting case of 
clear fluid flow, or say, when 1 .Kφ → => → ∞  Also, they should be pro-
portional to the macroscopic velocity and to .ik〈 〉  

In paper by Pedras and de Lemos (2001), a proposal for those two extra 
transport/production rates of ik〈 〉  was made as follows: 

 ( ) | |
( ) : ( ) ,

i
i i i i i D

i k
k

k G c
K

φ ρφ ρφ
〈 〉′ ′−∇ ⋅ 〈 〉 − ∇ 〉 = =

u
u u u u  (61) 

where the constant ck was numerically determined by fine flow computations 
considering the medium to be formed by circular rods, as well as longitudin-
al and transversal rods (Pedras and de Lemos 2003, de Lemos 2006). In spite 
of the variation in the medium morphology and the use of a wide range of 
porosity and Reynolds number, a value of 0.28 was found to be suitable for 
most calculations. 

Comparison of transport equations for km and 〈k〉i 

A comparison between terms in the transport equation for km and 〈k〉i can 
now be conducted. Pedras and de Lemos (2000) has already shown the con-
nection between these two quantities as being 

 .
2 2 2 2

i i i i i i i i i
i

mk k
′ ′ ′ ′ ′ ′ ′ ′〈 ⋅ 〉 〈 〉 ⋅ 〈 〉 〈 ⋅ 〉 〈 ⋅ 〉

〈 〉 = = + = +
u u u u u u u u

 (62) 
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Expanding the correlation forming the production term Pi by means of 
eq. (7), a connection between the two generation rates can also be written as 
follows: 

 ( ): : :i i i i i i
i D D DP ρ ρ′ ′ ′ ′ ′ ′= − 〈 〉 ∇ = − 〈 〉 〈 〉 ∇ + 〈 〉 ∇u u u u u u u u u   

                                                   : .i i i
m DP ρ ′ ′= − 〈 〉 ∇u u u  (63) 

We note that all the production rate of km 
, due to the mean flow, consti-

tutes only part of the general production rate responsible for maintaining the 
overall level of .ik〈 〉  

6. MOVING  POROUS  BED 

There are many situations of practical relevance where the porous substrate 
moves along the flow with a different velocity than that of the working fluid. 
Several manufacturing processes deal with such a configuration and the 
computations applied can be found in the literature (Hu Guoxin et al. 2003, 
Henda and Falcioni 2006). Biomass pelletization and preparation for energy 
production may also consider systems having a moving porous bed (Shimizu 
et al. 2006, Gobel et al. 2007). Therefore, the ability to realistically model 
such systems is of great advantage to a number of materials, food and energy 
production processes. 

None of the above mentioned publications, however, has considered an 
extension of the mathematical model detailed in Pedras and de Lomos (2000, 
2001, 2003). The purpose of this section is to propose a new model for treat-
ing moving porous beds based on the developments fully documented in de 
Lemos (2006). 

Definitions and hypotheses 

First, it is important to emphasize that only cases where the solid phase ve-
locity is kept constant will be considered here. Not considered also is the 
case where the gaps in the time series, at points intermittently occupied by 
different phases, requires alternative averaging procedures (e.g., moving 
grains). For a broader discussion on such cases, see Nikora et al. (2007). 

The situation investigated here corresponds to a moving bed crossing a 
fixed volume in addition to a flowing fluid, which is not necessarily moving 
with a velocity aligned with the solid phase velocity (see Fig. 1). The steps 
below show some basic definitions prior to presenting a proposal for a set of 
transport equations for analyzing moving bed systems. 

A general form for a volume-average of any property ϕ, distributed with-
in phase γ  that occupy volume ∆Vγ , can be written as (Gray and Lee 1977) 

 1 d .
V

V
V

γ

γ
γ

γ
ϕ ϕ

∆

〈 〉 =
∆ ∫  (64) 
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Fig. 1. Two-dimensional channel with a moving porous bed. 

The volume ratio occupied by phase γ  will be φ γ = ∆Vγ /∆V. If there are two 
phases, a solid (γ = s) and a fluid phase (γ = f), volume average can be estab-
lished on both regions. Also,  
 1 1s f

s fV V V Vφ φ= ∆ ∆ = −∆ ∆ = −  (65) 

and for simplicity of notation one can drop the superscript f to get φ s = 1 − φ. 
As such, calling the instantaneous local velocities for the solid and fluid 

phases, us and u, respectively, one can obtain the average for the solid veloc-
ity, within the solid phase, as follows: 

 
1 d

s

s
s s

s V

V
V

∆

〈 〉 =
∆ ∫u u  (66) 

which, in turn, can be related to an average velocity related to the entire 
REV as 

 

(1 )

1 d .
s

s

s
S s s

s V

V
V

V V

φ−

∆

〈 〉

∆
=
∆ ∆ ∫

u

u u  (67) 

A further approximation herein is that the porous bed is rigid and moves 
with a steady average velocity .Su  Note that the condition of steady velocity 
for the solid phase implies Su = Su = const , where the overbar denotes, as 
before, time-averaging. 

For the fluid phase, the intrinsic (fluid) volume average gives, after using 
the subscript i also for consistency with the above, 

 
1 d .

f

i
f

f V

V
V

∆

〈 〉 =
∆ ∫u u  (68) 

Both velocities can then be written as 
 , (1 ) const .i s

D Sφ φ= 〈 〉 = − 〈 〉 =u u u u  (69) 

A total-volume based relative velocity is then defined as 
 .rel D S= −u u u  (70) 
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Modelled transport equations 

A macroscopic time-mean Navier-Stokes (NS) equation for an incompressi-
ble fluid with constant properties can be modelled as (see, Pedras and de 
Lemos 2001, for details) 

( ) ( )2 | |
,i iD D F D D

D D
c

p
K K

φρµφρ φ µ ρφ
φ

⎛ ⎞ ⎡ ⎤′ ′∇ ⋅ = −∇ 〈 〉 + ∇ + ∇⋅ − 〈 〉 − +⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠

u u u u
u u u u

 
 (71) 

where the last two terms in eq. (71) are known as the Darcy and the Forch-
heimer drags, respectively. These terms represent the viscous and net pres-
sure forces felt by the fluid after passing through the porous bed, whose ana-
lytical form is presented by eq. (37). Also, in eq. (71) K is the medium 
permeability, cF is the Forchheimer coefficient and iρφ ′ ′− 〈 〉u u  is the Ma-
croscopic Reynolds Stress Tensor (MRST) modelled as 

 2
3

2 .i v i
t k
φ

ρφ µ φρ′ ′− 〈 〉 = 〈 〉 − 〈 〉u u D I  (72) 

Further, 

 
( ) ( )1

2

T
v i iφ φ⎡ ⎤⎡ ⎤〈 〉 = ∇ 〈 〉 + ∇ 〈 〉⎢ ⎥⎣ ⎦⎣ ⎦

D u u  (73) 

is the macroscopic deformation tensor, 〈k〉i is the intrinsic average for k, as 
above, and tφ

µ  is the macroscopic turbulent viscosity, which is modelled 

here similarly to the case of clear fluid flow. As such, a proposal for tφ
µ  was 

presented in Pedras and de Lemos (2001) as 

 
2

.i i
t c k
φ µµ ρ ε= 〈 〉 〈 〉  (74) 

For a fixed bed, the final form of eq. (71) reads, after incorporating the 
models given by eqs. (72)-(74), 

       { }( ) ( )TD D
t D Dφ

ρ µ µ
φ

⎡ ⎤⎛ ⎞ ⎡ ⎤∇ ⋅ −∇ ⋅ + ∇ + ∇⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎣ ⎦

u u
u u   

 ( ) .F D Di
D

c
p

K K

φρµφφ
⎡ ⎤

= −∇ 〈 〉 − +⎢ ⎥
⎢ ⎥⎣ ⎦

u u
u  (75) 

For the configuration shown in Fig. 1 and assuming that the relative 
movement between the two phases is described by eq. (70), the momentum 
equation reads 

      { }( ) ( )TD D
t D Dφ

ρ µ µ
φ

⎡ ⎤⎛ ⎞ ⎡ ⎤∇ ⋅ −∇ ⋅ + ∇ + ∇⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎣ ⎦

u u
u u  

 ( ) .F rel reli
rel

c
p

K K

φρµφφ
⎡ ⎤

= −∇ 〈 〉 − +⎢ ⎥
⎢ ⎥⎣ ⎦

u u
u  (76) 
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Strictly speaking, eq. (76) should be valid for uS / Du  > 0. A correspond-
ing transport equation for 〈k〉i can be written as 

    ( ) ( )
ti i

D
k

k kφ
µ

ρ µ φ
σ

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎢ ⎥∇ ⋅ 〈 〉 = ∇ ⋅ + ∇ 〈 〉⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

u  

 : ,
i

reli i
D k

k
c

K

φ
ρ ρ ρφ ε

〈 〉
′ ′− 〈 〉 ∇ + − 〈 〉

u
u u u  (77) 

where the generation rate due to the porous substrate, Gi, which was in-
cluded in eq. (56), now depends on .relu  

7. CONCLUSIONS 

In this paper, a new methodology for the analysis of turbulent flow in per-
meable media was detailed. A novel concept, called the double-decompo-
sition idea, was reviewed to show how a variable can be decomposed in both 
time and volume in order to simultaneously account for deviations in space 
and fluctuations in time around mean values. Exact transport equations for 
the mean and turbulent flow fields were presented. An extension to the case 
of a moving porous bed is also presented. 
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