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Abstract

This paper presents an analysis of the macroscopic heat and mass transport equations for turbulent flow in per-

meable structures. Two driving mechanisms are considered to contribute to the overall momentum transport, namely

temperature driven and concentration driven mass fluxes. Double-diffusive natural convection mechanism is investi-

gated for the fluid phase in turbulent regime. Equations are presented based on the double-decomposition concept,

which considers both time fluctuations and spatial deviations about mean values. This work intends to demonstrate that

additional transport mechanisms are mathematically derived if temperature, concentration and velocity present

simultaneously time fluctuations and spatial deviations within the domain of analysis. A modeled form for the final

mass transport equation is presented where turbulent transfer is based on a macroscopic version of the k–e model.

Stability analysis of mixtures, composed of lighter or heavier components under gradients of temperature and con-

centration, is discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of double-diffusive natural convection in

porous media has many environmental and industrial

applications, including grain storage and drying, petro-

chemical processes, oil and gas extraction, contaminant

dispersion in underground water reservoirs, electro-

chemical processes, etc. [1–7]. In some specific applica-

tions, the fluid mixture may become turbulent and

difficulties arise in the proper mathematical modeling of

the transport processes under both temperature and

concentration gradients.

Modeling of macroscopic transport for incompress-

ible flows in rigid porous media has been based on the
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volume-average methodology for either heat [8] or mass

transfer [9–12]. If time fluctuations of the flow properties

are considered, in addition to spatial deviations, there

are two possible methodologies to follow in order to

obtain macroscopic equations: (a) application of time-

average operator followed by volume-averaging [13–16],

or (b) use of volume-averaging before time-averaging is

applied [17–20]. This work intends to present a set of

macroscopic mass transport equations derived under the

recently established double decomposition concept [21–

25], through which the connection between the two

paths (a) and (b) above is unveiled. That methodology,

initially developed for the flow variables, has been ex-

tended to heat transfer in porous media where both time

fluctuations and spatial deviations were considered for

velocity and temperature [26]. Flow about an interface

[27,28], buoyant flows [29] and mass transfer [30] have

also been investigated. Recently, a general classification

of all proposed models for turbulent flow and heat
ed.
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Nomenclature

cF Forchheimer coefficient

C‘ volumetric molar concentration

cp specific heat

D‘ diffusion coefficient

Ddisp mass dispersion

Ddisp;t turbulent mass dispersion

Dt turbulent mass flux

g gravity acceleration vector

I unity tensor

J‘ mass diffusion coefficient

k turbulent kinetic energy per unit mass,

k ¼ u0 � u0=2
hkii intrinsic (fluid) average of k
K permeability

‘ chemical species

m‘ mass fraction of component ‘
M‘ molar weight of component ‘
p pressure

Prt turbulent Prandtl number

Sct turbulent Schmidt number

T temperature

u mass-averaged velocity of the mixture
�uD Darcy velocity vector

u‘ velocity of species ‘

Greek symbols

b thermal expansion coefficient

bC salute expansion coefficient

b/ macroscopic thermal expansion coefficient

bC/
macroscopic salute expansion coefficient

k fluid thermal conductivity

l fluid mixture viscosity

lt turbulent viscosity

lt/
macroscopic turbulent viscosity

e dissipation rate of k
heii intrinsic (fluid) average of e
q bulk density of the mixture

q‘ mass density of species ‘
/ porosity

Subscripts

b buoyancy

‘ chemical species

t turbulent

/ macroscopic

C concentration

T temperature

Superscripts

i intrinsic (fluid) average

v volume (fluid+ solid) average

k turbulent kinetic energy
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transfer in porous media has been published [31]. Here,

double-diffusive turbulent natural convection flow in

porous media is considered.
2. Local instantaneous transport equation

The steady-state microscopic instantaneous transport

equations for an incompressible binary fluid mixture

with constant properties are given by

r � u ¼ 0 ð1Þ

qr � ðuuÞ ¼ �rp þ lr2uþ qg ð2Þ

ðqcpÞr � ðuT Þ ¼ r � ðkrT Þ ð3Þ

qr � ðum‘ þ J‘Þ ¼ qR‘ ð4Þ

where u is the mass-averaged velocity of the mixture,

u ¼
P

‘ m‘u‘, u‘ is the velocity of species, ‘, m‘ is the

mass fraction of component ‘, defined as m‘ ¼ q‘=q, q‘ is

the mass density of species ‘ (mass of ‘ over total mix-

ture volume), q is the bulk density of the mixture

(q ¼
P

‘ q‘), p is the pressure, l is the fluid mixture
viscosity, g is the gravity acceleration vector, cp is the

specific heat, T is the temperature and k is the fluid

thermal conductivity. The generation rate of species ‘
per unit of mixture mass is given in (4) by R‘.

An alternative way of writing the mass transport

equation is using the volumetric molar concentration C‘

(mol of ‘ over total mixture volume), the molar weight

M‘ (g/mol of ‘) and the molar generation/destruction

rate R�
‘ (mol of ‘/total mixture volume), giving

M‘r � ðuC‘ þ J‘Þ ¼ M‘R�
‘ ð5Þ

Further, the mass diffusion flux J‘ (mass of ‘ per unit

area per unit time) in (4) or (5) is due to the velocity slip

of species ‘,

J ¼ q‘ðu‘ � uÞ ¼ �q‘D‘rm‘ ¼ �M‘D‘rC‘ ð6Þ

where D‘ is the diffusion coefficient of species ‘ into the

mixture. The second equality in Eq. (6) is known as

Fick’s law, which is a constitutive equation strictly valid

for binary mixtures under the absence of any additional

driving mechanisms for mass transfer [8]. Therefore, no

Soret or Dufour effects are here considered.



M.J.S. de Lemos, L.A. Tofaneli / International Journal of Heat and Mass Transfer 47 (2004) 4233–4241 4235
Rearranging (5) for an inert species, dividing it by M‘

and dropping the index ‘ for a simple binary mixture,

one has

r � ðuCÞ ¼ r � ðDrCÞ ð7Þ
If one considers that the density in the last term of (2)

varies with temperature and concentration, for natural

convection flow, the Boussinesq hypothesis reads, after

renaming this density qT,

qT ffi q½1� bðT � Tref Þ � bCðC � CrefÞ� ð8Þ

where the subscript ref indicates a reference value and b
and bC are the thermal and salute expansion coefficients,

respectively, defined by,

b ¼ � 1

q
oq
oT

����
p;C

; bC ¼ � 1

q
oq
oC

����
p;T

ð9Þ

Eq. (8) is an approximation of (9) and shows how den-

sity varies with temperature and concentration in the

body force term of the momentum equation.

Further, substituting (8) into (2), one has

qr � ðuuÞ ¼ �rp þ lr2uþ qg½1� bðT � TrefÞ
� bCðC � CrefÞ� ð10Þ

Thus, the momentum equation becomes,

qr � ðuuÞ ¼ �ðrpÞ� þ lr2u� qg½bðT � TrefÞ
þ bCðC � CrefÞ� ð11Þ

where ðrpÞ� ¼ rp � qg is a modified pressure gradient.

As mentioned, there are, in principle, two ways that

one can follow in order to treat turbulent flow in porous

media. The first method applies a time average operator

to the governing equations before the volume average

procedure is conducted. In the second approach, the

order of application of the two average operators is re-

versed. Both techniques aim at derivation of a suitable

macroscopic turbulent mass transport equation.

Volume averaging in a porous medium, described in

detail in Refs. [32–34], makes use of the concept of a

representative elementary volume (REV), over which

local equations are integrated. After integration, de-

tailed information within the volume is lost and, instead,

overall properties referring to a REV are considered. In

a similar manner, statistical analysis of turbulent flow

leads to time mean properties. Transport equations for

statistical values are considered in lieu of instantaneous

information on the flow.

Before undertaking the task of developing macro-

scopic equations, it is convenient to recall the definition

of time average and volume average.

3. Volume and time average operators––the double

decomposition concept

The volume average of u taken over a representative

elementary volume in a porous medium can be written as
huiv ¼ 1

DV

Z
DV

udV ð12Þ

The value huiv is defined for any point x surrounded

by a representative elementary volume, of size DV . This
average is related to the intrinsic average for the fluid

phase as

huiv ¼ /huii ð13Þ

where / ¼ DVf=DV is the medium porosity and DVf is

the volume occupied by the fluid in a REV. Further-

more, one can write

u ¼ huii þ iu ð14Þ

with hiuii ¼ 0. In Eq. (14), iu is the spatial deviation of u
with respect to the intrinsic average huii.

Further, the local volume average theorem can be

expressed as [32–34]

hruiv ¼ rð/huiiÞ þ 1

DV

Z
Ai

nudS

hr � uiv ¼ r � ð/huiiÞ þ 1

DV

Z
Ai

n � udS

hou
ot
iv ¼ o

ot
ð/huiiÞ � 1

DV

Z
Ai

n � ðuiuÞdS

ð15Þ

where n is the unit vector normal to the fluid–solid

interface and Ai is the fluid-solid interface area within

the REV. It is important to emphasize that Ai should not

be confused with the surface area surrounding volume

DV .
Further, the time average of a general quantity u is

defined as

�u ¼ 1

Dt

Z tþDt

t
udt ð16Þ

where the time interval Dt is small compared to the

fluctuations of the average value, �u, but large enough to

capture turbulent fluctuations of u. Time decomposition

can then be written as

u ¼ �uþ u0 ð17Þ

with u0 ¼ 0. Here, u0 is the time fluctuation of u around

its average �u.
Pedras and de Lemos [21,22] showed that for a rigid,

homogeneous porous medium saturated with an

incompressible fluid, the following relationships apply:

huii ¼ h�uii
i�u ¼ iu

hu0ii ¼ huii
0

ð18Þ

Therefore, a general quantity u can be expressed by ei-

ther,

u ¼ huii þ huii
0
þ iuþ iu0 ð19Þ

u ¼ h�uii þ i�uþ hu0ii þ iu0 ð20Þ
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Expressions (19) and (20) comprise the double

decomposition concept where iu0 can be understood as

either the time fluctuation of the spatial deviation or the

spatial deviation of the time fluctuation. Also,

hiu0ii ¼ iu0 ¼ 0.
4. Time averaged transport equations

In order to apply the time average operator to Eqs.

(1), (3), (7) and (11), one considers

u ¼ �uþ u0; T ¼ T þ T 0; C ¼ C þ C0; p ¼ �p þ p0

ð21Þ

Substituting (21) into the governing equations and

considering constant property flow,

r � �u ¼ 0 ð22Þ

qr � ð�u�uÞ ¼ �ðr�pÞ� þ lr2�uþr � ð�qu0u0Þ
� qg½bðT � TrefÞ þ bCðC � CrefÞ� ð23Þ

ðqcpÞr � ð�uT Þ ¼ r � ðkrT Þ þ r � ð�qcpu0T 0Þ ð24Þ

r � ðuCÞ ¼ �r � ðDrCÞ þ r � ð�u0C0Þ ð25Þ

For clear fluid, the use of the eddy-diffusivity concept

for expressing the stress–strain rate relationship for the

Reynolds stress appearing in (23) gives

�qu0u0 ¼ lt2D� 2

3
qkI ð26Þ

where D ¼ ½r�uþ ðr�uÞT�=2 is the mean deformation

tensor, k ¼ u0 � u0=2 is the turbulent kinetic energy per

unit mass, lt is the turbulent viscosity and I is the unity

tensor. Similarly, for the turbulent heat flux on the

R.H.S. of (24) and (25) the eddy diffusivity concept reads

�qcpu0T 0 ¼ cp
lt

Prt
rT ;�qu0C0 ¼ lt

Sct
rC ð27Þ

where Prt and Sct are known as the turbulent Prandtl

and Schmidt numbers, respectively.

Further, a transport equation for the turbulent kinetic

energy is obtained by multiplying first, by u0, the differ-

ence between the instantaneous and the time-averaged

momentum equations. Thus, applying further the time

average operator to the resulting product, one has

qr � ð�ukÞ ¼ �qr � u0
p0

q
þ q

� �� �
þ lr2k þ P

þ GT þ GC � qe ð28Þ

where P ¼ �qu0u0:r�u is the generation rate of k due to

gradients of the mean velocity and

GT ¼ �qbg � u0T 0 ð29Þ

GC ¼ �qbCg � u0C0 ð30Þ
are the thermal and concentration generation rates of k
due to temperature and concentration fluctuations,

respectively. Also, q ¼ u0 � u0=2.
5. Macroscopic equations for buoyancy free flows

For non-buoyant flows, macroscopic equations con-

sidering turbulence have been already derived in detail

for momentum [22], heat [29,35] and mass transfer [30]

and for this reason their derivation need not to be re-

peated here. They read:

Momentum transport

qr � �uD�uD
/

 !

¼ �rð/h�piiÞ þ lr2�uD þr � ð�q/hu0u0iiÞ

� l/
K

�uD

"
þ cF/qj�uDj�uDffiffiffiffi

K
p

#
ð31Þ

�q/hu0u0ii ¼ lt/
2hDiv � 2

3
/qhkiiI ð32Þ

hDiv ¼ 1

2
frð/h�uiiÞ þ ½rð/h�uiiÞ�Tg ð33Þ

hkii ¼ hu0 � u0ii=2

lt/
¼ qcl

hkii
2

heii
ð34Þ

Heat transport

ðqcpÞfr � ðuDhT iiÞ ¼ r � fKeff � rhT iig ð35Þ

Keff ¼ ½/kf þ ð1� /Þks�Iþ Ktor þ Kt þ Kdisp þ Kdisp;t

ð36Þ

The subscripts f and s refer to fluid and solid phases,

respectively, and coefficients K’s come from the model-

ing of the following mechanisms:

Tortuosity:
1

DV

Z
Ai

nðkfTf
�

� ksTsÞdS
�
¼ Ktor � rhT ii

ð37Þ

Thermal dispersion: �ðqcpÞf/hi�uiTfi
i ¼ Kdisp � rhT ii

ð38Þ

Turbulent heat flux: �ðqcpÞf/hu0i
ihT 0

f i
i ¼ Kt � rhT ii

ð39Þ

Turbulent thermal dispersion:

� ðqcpÞf/hiu0 iT 0
f i

i ¼ Kdisp;t � rhT ii ð40Þ

Mechanisms (39) and (40) were modeled together in

[29,35] by assuming,
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�ðqcpÞfhu0T 0
f i

i ¼ cpf
lt/

Prt/
rhT fii ð41Þ

or

Kt þ Kdisp;t ¼ /cpf
lt/

Prt/
I ð42Þ

Mass transport

r � ð�uDhCiiÞ ¼ r �Deff � rð/hCiiÞ ð43Þ

Deff ¼ Ddisp þDdiff þDt þDdisp;t ð44Þ

Ddiff ¼ hDiiI ¼ 1

q

l/

Sc
I ð45Þ

Dt þDdisp;t ¼
1

q

lt/

Sct
I ð46Þ

Coefficients Ddisp, Dt and Ddisp;t in (43) appear due to

the nonlinearity of the convection term. They come from

the modeling of the following mechanisms:

Mass dispersion : �hi�uiCii ¼ Ddisp � rhCii ð47Þ

Turbulent mass flux : �hu0iihC0ii ¼ �huii
0
hCii

0

¼ Dt � rhCii ð48Þ

Turbulent mass dispersion:

� hiu0iC0ii ¼ Ddisp;t � rhCii ð49Þ

Here also mechanisms (48) and (49) are added up as [30]

�hu0C0ii ¼ 1

q

lt/

Sct/
rhCii ¼ hDtiirhCii

¼ ðDt þDdisp;tÞ � rhCii ð50Þ

6. Macroscopic double-diffusion effects

6.1. Mean flow

Focusing now attention to buoyancy effects only,

application of the volume average procedure to the last

term of (23) leads to
(a) (b)

Fig. 1. Behaviour of mixture density: (a) lighter mixture with increa

mixture with increasing hCii.
hqg½bðT � TrefÞ þ bCðC � CrefÞ�iv

¼ DVf
DV

1

DVf

Z
DVf

qg½bðT � TrefÞ þ bCðC � CrefÞ�dV

ð51Þ

Expanding the left hand side of (51) in light of (14), the

buoyancy term becomes

hqg½bðT � TrefÞ þ bCðC � CrefÞ�iv

¼ qg/½b/ðhT i
i � TrefÞ þ bC/

ðhCii � CrefÞ�

þ qgb/hiT ii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

þ qgbC/hiCi
i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼0

ð52Þ

where the third and forth terms on the R.H.S. are null

since hiuii ¼ 0. Here, coefficients b/ and bC/
are the

macroscopic thermal and salute expansion coefficients,

respectively. Assuming that gravity is constant over the

REV, expressions for them based on (52) are given as

b/ ¼ hqbðT � TrefÞiv

q/ðhT ii � TrefÞ
; bC/

¼ hqbCðC � CrefÞiv

q/ðhCii � CrefÞ
ð53Þ

Including (52) into (31), the macroscopic time-mean

Navier–Stokes (NS) equation for an incompressible fluid

with constant properties is given as

qr � �uD�uD
/

 !

¼ �rð/h�piiÞ þ lr2�uD þr � ð�q/hu0u0iiÞ

� qg/½b/ðhT i
i � TrefÞ þ bC/

ðhCii � CrefÞ�

� l/
K

�uD

"
þ cF/qj�uDj�uDffiffiffiffi

K
p

#
ð54Þ

Before proceeding, it is interesting to comment on

role of coefficients b/ and bC/
on the overall mixture

density value. Fig. 1 presents the variation of q as a

function of temperature or concentration gradients.

Here, only fluids that became less dense with increasing

temperature are considered (Fig. 1a). However, two

situation might occurs when increasing hCii, namely the
(c)

sing hT ii, (b) lighter mixture with increasing hCii, (c) heavier
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mixture might became less dense with the addition of a

lighter solute (Fig. 1b), or else, a denser fluid may result

by mixing a heavier component to it (Fig. 1c). Implica-

tions of that on the stability of the entire fluid system

will be discussed below.

6.2. Turbulent field

As mentioned, this work extends and combines ear-

lier developments for momentum [22], heat [35] and

mass [30] transfer in order to include the buoyancy

production terms in the turbulence model equations.

For clear fluid, the buoyancy contribution to the k
equation is given by Eqs. (29) and (30).

For thermally-driven flows, volume averaging of (30)

in Ref. [29] has resulted in the term

Gi
b ¼ bk

//
lt/

Prt/
g � rhT ii ð55Þ

as an additional macroscopic generation/destruction

rate of hkii due to temperature variation in porous

media, where bk
/ is a macroscopic coefficient. In Ref.

[29], coefficients b (Eq. (9)), b/ (Eq. (53)) and bk
/ (Eq.

(55)) were all assumed to be equal, for simplicity.

In order to add the effect of concentration variation

within the fluid, one applies the volume average opera-

tor to (30) such that

hGCiv ¼ Gi
bC

¼ h�qbCg � u0C0iv ¼ �qbk
C/
/g � hu0C0ii

ð56Þ

where the coefficient bk
C/
, for a constant value of g within

the REV, is given by bk
C/

¼ hbCu0C0iv

/hu0C0 ii
, which, in turn, is not

necessarily equal to bC/
given by (53). However, for the

sake of simplicity and in the absence of better infor-

mation, one can use a similar argument as in Ref. [29]

and make use of the assumption bk
C/

¼ bC/
¼ bC. Fur-

ther, expanding the R.H.S. of (56) in light of (14) and

(18), one has

� qbk
C/
/g � hu0C0ii

¼ �qbk
C/
/g � hðhu0ii þ iu0ÞðhC0ii þ iC0Þii

¼ �qbk
C/
/g � hhu0iihC0iiii

�
þ hiu0 iC0ii

þ hhu0iiiC0ii þ hiu0hC0iiii
	

¼ �qbk
C/
/g � huii0 hCii0|fflfflfflfflffl{zfflfflfflfflffl}

I

0
@ þ hiu0 iC0ii|fflfflfflffl{zfflfflfflffl}

II

þ hu0iihiC0ii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

þ hiu0iihC0ii|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

1
A ð57Þ

The last two terms on the right of (57) are null since

hiC0ii ¼ 0 and hiu0ii ¼ 0. In addition, the following

physical significance can be inferred to the two remain-

ing terms:
I. Generation/destruction rate of turbulence energy due

to macroscopic concentration fluctuations: Buoyancy

generation/destructions rate of hkii due to time fluctua-

tions of macroscopic velocity and concentration. This

term is also present in turbulent flow in clear (non-

obstructed) domains and represents an exchange be-

tween the energy associated with the macroscopic

turbulent motion and potential energy. In stable strati-

fication, within regions of high concentration of heavier

solutes (bk
C/

< 0), this term damps turbulence by being

of negative value whereas the potential energy of the

system is increased. On the other hand, in unstable

stratification, for high concentration regions of lighter

mixtures (bk
C/

> 0), it enhances hkii at the expense of

potential energy. A more detailed analysis on the sta-

bility of mixture systems is presented below.

II. Generation/destruction rate due to turbulent con-

centration dispersion: Buoyancy generation/destruction

rate of hkii in a porous medium due to time fluctuations

and spatial deviations of both microscopic velocity and

concentration. This term might be interpreted as an

additional source/sink of turbulence kinetic energy due

the fact that time fluctuations of local velocities and

concentration present a spatial deviation in relation to

their macroscopic value. Then, additional exchange be-

tween turbulent kinetic energy and potential energy in

systemsmay occur due to the presence of a porousmatrix.

A model for (57) is still needed in order to solve an

equation for hkii, which is a necessary information when

computing lt/
using (34). Consequently, terms I and II

above have to be modeled as a function of average

concentration, hCi
i

. To accomplish this, a gradient type

diffusion model is used, in the form,

• Buoyancy generation of hkii due to turbulent salute

fluctuations:

�qbk
C/
/g � huii

0
hCii

0
¼ qbk

C/
/g � ðDt � rhCi

i

Þ ð58Þ

• Buoyancy generation of hkii due to turbulent salute

dispersion:

�qbk
C/
/g � hiu0iC0ii ¼ qbk

C/
/g � ðDdisp;t � rhCi

i

Þ ð59Þ

The buoyancy concentration coefficients seem above,

namely Dt and Ddisp;t, were used before in (48) and (49),

respectively. It should be noticed that these terms arise

only if the flow is turbulent and if buoyancy is of

importance.

Using then (50) the macroscopic buoyancy genera-

tion of k due to concentration fluctuations can be

modeled as

Gi
bC

¼ �qbk
C/
/g � hu0C0ii

¼ qbk
C/
/g � ½ðDt þDdisp;tÞ � rhCii�

¼ bk
C/
/

lt/

Sct/
g � rhCii ð60Þ
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where lt/
, Sct/ and the two coefficients Dt and Ddisp;t

have been defined before.

Final transport equations for hkii ¼ hu0 � u0ii=2 and

heii ¼ lhru0 : ru0ð ÞTii=q, in their so-called high Rey-

nolds number form can now include the buoyancy

generation terms due to temperature and concentration

fluctuations as

qr � ð�uDhkiiÞ ¼ r � l

��
þ
lt/

rk

�
rð/hkiiÞ

�
þ P i þ Gi þ Gi

b þ Gi
bC

� q/heii ð61Þ

qr � �uDheii
� 	

¼ r � l

��
þ
lt/

re

�
rð/heiiÞ

�

þ heii

hkii
c1P i
h

þ c2Gi þ c1c3ðGi
b þ Gi

bC
Þ

� c2q/heii
i

ð62Þ

where c1; c2; c3 and ck are constants and the production

terms have the following physical significance:

1. P i ¼ �qhu0u0ii:r�uD is the production rate of hkii due
to gradients of �uD;

2. Gi ¼ ckq
/hkii j�uD jffiffiffi

K
p is the generation rate of the intrinsic

average of k due to the action of the porous matrix;

3. Gi
b ¼ bk

//
lt/
Prt/

g � rhT ii is the generation of hkii due to
mean temperature variation within the fluid, and

4. Gi
bC

¼ bk
C/
/

lt/
Sct/

g � rhCii is the generation of hkii due
to concentration gradients.
(a) (b)

(d) (e)

Fig. 2. Stability analysis of a layer of fluid subjected to gradients of

hotter fluid (a) with less dense mixture at the bottom (b)–(c). Uncond

bottom (e)–(f).
7. Hydrodynamic stability

For a system oriented in the upward direction with

gravity acting downward, the hydrodynamic stability of

a thermal system will depend on both the thermal and

concentration drives acting on a REV, according to (54).

Depending on the direction of the property gradients,

both such drives may induce instability leading eventu-

ally to turbulent flow. As such, unconditionally unstable

situations are presented in Fig. 2 where hotter fluid (Fig.

2a) composed by a less dense mixture is positioned at the

bottom of the fluid layer (Fig. 2b). For positive b/ and

bC/
values, with negative gradients of hT ii and hCii, both

drives expressed by (55) and (60) will give Gi
b > 0 and

Gi
bC

> 0, respectively, causing positive sources term in

the hkii-Eq. (61). If a heavier component is positioned at

the top of this heated-from-below layer (Fig. 2c),

hydrodynamic instability will also occur and a source

term will appear in (61). An initially laminar flow may

then undergo transition and become turbulent.

On the other hand, for a layer heated from above

(Fig. 2d) with lighter components flowing at the top

(Fig. 2e), both values of source terms Gi
b and Gi

bC
, in Eq.

(61), will be less than zero, leading to an unconditionally

stable situation. Turbulence, if existing, might decay and

the flow may relaminarize. Also in this category is the

case of top heated systems with heavier components

flowing at the bottom (Fig. 2f). Any other combination

regarding a heavier or a lighter component flowing in a

non-isothermal fluid may be conditionally unstable,
(c)

(f)

temperature and concentration. Unconditionally unstable cases:

itionally stable cases: colder fluid (d) with denser mixture at the
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depending upon the balance between source and sink

terms that might appear as a result of temperature and

concentration distributions within the flow.
8. Conclusions

In this work, equations were derived for turbulent

double-diffusive natural convection in porous media.

Derivations were carried out under the light of the

double decomposition concept [21,22]. Extra terms

appearing in the equations needed to be modeled in

terms of �uD, hT i and hCi. Hydrodynamically stable flows

occur under certain temperature and concentration dis-

tributions, which dampen turbulence and eventually

lead to a relaminarization process. Unconditionally

unstable situations were also reviewed, which will cause

disturbances to grow leading to transition and turbu-

lence. Ultimately, it is expected that additional research

on this new subject be stimulated by the derivations here

presented.
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