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Abstract

Flow over a finite porous medium is investigated using different interfacial conditions. In such configuration, a macroscopic interface
is identified between the two media. In the first model, no diffusion-flux is considered when treating the statistical energy balance at the
interface. The second approach assumes that diffusion fluxes of turbulent kinetic energy on both sides of the interface are unequal. Com-
paring these two models, this paper presents numerical solutions for such hybrid medium, considering here a channel partially filled with
a porous layer through which fluid flows in turbulent regime. One unique set of transport equations is applied to both regions. Effects of
Reynolds number, porosity, permeability and jump coefficient on mean and turbulence fields are investigated. Results indicate that
depending on the value of the stress jump parameter, substantially dissimilar fields for the turbulence energy are obtained. Negative
values for the stress jump parameter give results closer to experimental data for the turbulent kinetic energy at the interface.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Investigation of flow over layers of permeable media has
many applications in several environmental and engineer-
ing analyses. Turbulent atmospheric boundary layer over
forests under fire [1], flow over vegetation and crop fields
[2], currents at bottom of rivers [3], as well as grain storage
and drying, can be characterized by some sort of porous
layer over which a fluid permeates. Also, practical analysis
of engineering flows can further benefit from more realistic
mathematical and numerical modeling, as in the case of
shell-and-tube heat exchangers [4] and nuclear reactor core
[5], for example, where the rod bundles can be seen, in a
macroscopic view, as a permeable medium.

When the domain of analysis presents a macroscopic
interfacial area between a porous substrate and a clear flow
region, the literature proposes the existence of a disconti-
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nuity in the momentum diffusion flux between the two
media [6,7]. Analytical solutions involving such models
have been published [8–10]. Also, in such works volume
average properties for a homogenous treatment of flow in
porous media are obtained by means of the volume-aver-
age theorem (VAT) [11,12].

Purely numerical solutions for two-dimensional hybrid
medium (porous region-clear flow) in an isothermal chan-
nel have been considered in [13] based on the turbulence
model proposed in [14–17]. That work has been developed
under the double-decomposition concept [18–27]. Non-iso-
thermal flows in channels past a porous obstacle [28] and
through a porous insert have also been presented [29,30].
In all previous work of [13,28–30], the interface boundary
condition considered a continuous function for the stress
field across the interface.

Recently, the interface jump condition has been inves-
tigated for laminar flows, either considering non-linear
effects in momentum equation as well as neglecting the
Forchheimer term in the macroscopic model [31]. Therein,
the authors simulated laminar flow over such interfaces
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Nomenclature

cF Forchheimer coefficient in Eq. (4)
c1, c2 constants in Eq. (9)
ck constant in Eq. (8)
cl constant in Eq. (7)
Da Darcy number, Da = K/H2

D deformation rate tensor, D = [$u + ($u)T]/2
d particle or pore diameter
Gi production rate of k due to the porous matrix,

Gi ¼ ckq/hkiij�uDj=
ffiffiffiffi
K

p

H distance between channel walls
I unit tensor
k turbulent kinetic energy per unit mass,

k ¼ u0 � u0=2
hkim volume (fluid + solid) average of k
hkii intrinsic (fluid) average of k
K permeability
L axial length of periodic section of channel
p thermodynamic pressure
hpii intrinsic (fluid) average of pressure p

Pi production rate of k due to mean gradients of
�uD; P i ¼ �qhu0u0ii : r�uD

R time average of total drag per unit volume
ReH Reynolds number based on the channel height,

ReH ¼ qj�uDjH
l

s clearance for unobstructed flow

Su source term
�u microscopic time-averaged velocity vector
h�uii intrinsic (fluid) average of �u
�uD Darcy velocity vector, �uD ¼ /h�uii
�uDi

Darcy velocity vector at the interface
�uDp

Darcy velocity vector parallel to the interface
uDn

; uDp
components of Darcy velocity at interface along
g (normal) and n (parallel) directions, respec-
tively

uDi
; vDi

components of Darcy velocity at interface along
x and y, respectively

x, y Cartesian coordinates

Greek symbols

b interface stress jump coefficient
l fluid dynamic viscosity
leff effective viscosity for a porous medium
lt/ macroscopic turbulent viscosity

e dissipation rate of k, e ¼ lru0 : ðru0ÞT=q
heii intrinsic (fluid) average of e
q density
/ porosity
u general dependent variable
g, n generalized coordinates
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and validated their results against analytical solutions by
[8–10]. Such work was based on the numerical methodol-
ogy proposed for hybrid media and applied by [13,28–
30]. The same numerical technique has been applied for
computing turbulent flow [32] in a channel partially filled
with a flat layer of porous material. Flows over wavy inter-
faces were also computed for both laminar [33] and turbu-
lent flows [34]. There, the authors made use of the shear
stress jump condition at the interface. Those works were
also based on a numerical methodology specifically pro-
posed for hybrid media [13,28–30].

A distinct line of investigation on turbulent flow over
permeable media is based on the assumption that within
the porous layer the flow remains laminar [35–38], which,
in turn, precludes application of such methodology to flows
through highly permeable media as atmospheric boundary
layer over forests or crop fields.

Further, fine flow computations and experiments of flow
over and inside a bed of rods in a two-dimensional channel
have been presented [39]. Three-dimensional computa-
tional studies simulating flow over a layer formed by cubic
blocks [40,41] also emphasize that depending on the per-
meable structure shape, turbulence may exists inside the
porous bed and, as such, a turbulence model must be
employed.

As seen, all models above considered either a flat or a
rough (wavy) macroscopic interface limiting the porous
substrate. The stress jump condition for the momentum
equations was applied, but in most publications so far,
no such flux discontinuity for the hkim-equation has
been considered. Motivated by that, Refs. [42,43] pro-
posed a model that assumes diffusion fluxes of turbulent
kinetic energy on both sides of the interface to be un-
equal, which differs from all studies presented up to
now. The purpose of this contribution is to explore
and further document such proposal, investigating now
its behavior as medium properties, such as permeability
and porosity, are varied.

2. Macroscopic mathematical model

2.1. Geometry and governing equations

The flow under consideration is schematically shown in
Fig. 1 where a channel is partially filled with a layer of a
porous material. A constant property fluid flows longitudi-
nally from left to right permeating through both the
clear region and the porous structure. The case in Fig. 1
uses symmetry boundary condition at the channel center
(y = 0). Also, H = 10 cm is the distance in between the
channel walls and s the clearance for the non-obstructed
flow passage. It should be emphasized that the class of flow
under consideration involves porous substrates having a
high porosity and permeability.
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Fig. 1. Model for turbulent channel flow with porous material.
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A macroscopic form of the governing equations is ob-
tained by taking the volumetric average of the entire equa-
tion set. In this development, the porous medium is
considered to be rigid and saturated by the incompressible
fluid.

The macroscopic continuity equation is given by,

r � �uD ¼ 0 ð1Þ
where the Dupuit–Forchheimer relationship, �uD ¼ /h�uii,
has been used and h�uii identifies the intrinsic (liquid) aver-
age of the local velocity vector �u [12]. Eq. (1) represents the
macroscopic continuity equation for an incompressible
fluid in a rigid porous medium.

The macroscopic time-mean Navier–Stokes (NS) equa-
tion for an incompressible fluid with constant properties
can be written as,

q
o

ot
ð/h�uiiÞ þ r � ð/h�u�uiiÞ

� �

¼ �rð/h�piiÞ þ lr2ð/h�uiiÞ þ r � ð�q/hu0u0iiÞ þ R ð2Þ

As usually done when treating turbulence with statistical
tools, the correlation �qu0u0 appears after application of
the time-average operator to the local instantaneous NS
equation. Applying further the volume-average procedure
to the entire momentum equation (see [14] for details), re-
sults in the term �q/hu0u0ii of (2). This term is here recalled
as the macroscopic Reynolds stress tensor (MRST). In
addition, R in (2) represents the time-mean total drag per
unit volume acting on the fluid by the action of the porous
structure. A common model for it is known as the Darcy–
Forchheimer extended model and is given by:

R ¼ � l/
K

�uD þ cF/qj�uDj�uDffiffiffiffi
K

p
� �

ð3Þ

where the constant cF is known in the literature as the non-
linear Forchheimer coefficient.

Then, making use again of the expression �uD ¼ /h�uii
and (3), Eq. (2) can be rewritten as,

q
o�uD
ot

þr � �uD�uD
/

� �� �

¼ �rð/h�piiÞ þ lr2�uD þr � ð�q/hu0u0iiÞ

� l/
K

�uD þ cF/qj�uDj�uDffiffiffiffi
K

p
� �

ð4Þ
Further, a model for the MRST in analogy with the
Boussinesq concept for clear fluid can be written as:

�q/hu0u0ii ¼ lt/
2hDiv � 2

3
/qhkiiI ð5Þ

where

hDim ¼ 1

2
rð/h�uiiÞ þ ½rð/h�uiiÞ�T
h i

ð6Þ

is the macroscopic deformation tensor, hkii is the intrinsic
average for k and lt/

is the macroscopic turbulent viscos-
ity. The macroscopic turbulent viscosity, lt/

, used in (5)
is modeled similarly to the case of clear fluid flow and a
proposal for it was presented in [14] as,

lt/
¼ qclhkii

2

=heii ð7Þ
2.2. Macroscopic equations for hkii and heii

Transport equations for hkii ¼ hu0 � u0ii=2 and heii ¼
lhru0 : ðru0ÞTiiq in their so-called high Reynolds number
form are proposed in [14] as:

q
o

ot
ð/hkiiÞ þ r � ð�uDhkiiÞ

� �

¼ r � lþ
lt/

rk

� �
rð/hkiiÞ

� �
þ P i þ Gi � q/heii ð8Þ

where P i ¼ �qhu0u0ii : r�uD;G
i ¼ ckq

/hkii j�uDjffiffiffi
K

p and

q
o

ot
ð/heiiÞ þ r � ð�uDheiiÞ

� �

¼ r � lþ
lt/

re

� �
rð/heiiÞ

� �

þ c1P i hei
i

hkii
þ c2

heii

hkii
ðGi � q/heiiÞ ð9Þ

where c1, c2 and ck are constants, Pi is the production rate
of hkii due to gradients of �uD and Gi the generation rate of
the intrinsic average of k due to the action of the porous
matrix. Eqs. (8) and (9) could also have been written in
terms of volume or Darcy values using the equalities
hkim = /hkii and heim = /heii, respectively. However, for
the sake of simplicity and coherence with the majority of
publications on this subject, transport equations for hkii
and heim are here employed.

2.3. Interface and ‘‘jump’’ conditions

The equation proposed by [6,7] for describing the stress
jump at the interface has been modified in [13,32] in order
to consider turbulent flow, in the form,

ðleff þ lt/
Þ
o�uDp

oy

����
Porousmedium

� ðlþ ltÞ
o�uDp

oy

����
Clear fluid

¼ ðlþ ltÞ
bffiffiffiffip �uDp

���� ð10Þ
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where uDp is the Darcy velocity component parallel to the
interface, leff is the effective viscosity for the porous region,
which is given by leff = l// according to [6,7], and b is an
adjustable coefficient that accounts for the stress jump at
the interface.

It is interesting to note that Eq. (10) comes from the sole
extension, to turbulent flows, of the proposal in [6,7], which
for laminar flow reads,

leff

ouDp

oy

����
Porousmedium

�l
ouDp

oy

����
Clear fluid

¼ l
bffiffiffiffi
K

p uDp

����
interface

ð11Þ
Local instantaneous velocities in (11) were replaced by
time-averaged values and a ‘‘total’’ diffusivity is used as a
substitute for the molecular diffusivity. Physically, Eq.
(10) is guided by the same arguments that standard well-
known ‘‘eddy-diffusivity’’ models rely on, which is the use
of a diffusion-like expression having, instead, gradients of
time-averaged values and a total (laminar plus turbulent)
viscosity. Although it is recognized that Eq. (10) needs fur-
ther validation against experimental values, its application
herein is assumed in lieu of better information.

Continuity of velocity, pressure, statistical variables and
their fluxes across the interface are given by (see [32] for
details),
Fig. 2. Notation for: (a) control volume d
�uDjPorousmedium ¼ �uDjClear fluid ð12Þ

h�pii
���
Porousmedium

¼ h�pii
���
Clear fluid

ð13Þ

hkimjPorousmedium ¼ hkimjClear fluid ð14Þ

lþ
lt/

rk

� �
ohkim

oy

����
Porousmedium

¼ lþ lt

rk

� �
ohkim

oy

����
Clear fluid

ð15Þ

heimjPorousmedium ¼ heimjClear fluid ð16Þ

lþ
lt/

re

� �
oheim

oy

����
Porousmedium

¼ lþ lt

re

� �
oheim

oy

����
Clear fluid

ð17Þ

Eqs. (12) and (13) were also proposed by [6] whereas
relationships (14)–(17) were used by [44].

In Silva and de Lemos [32], no ‘‘jump’’ condition was
considered when treating the diffusion flux of hkim across
the interface, as can be seen by Eq. (15). In [43], such
discontinuity in the diffusion transport of hkim between
the two media was first considered. Such ‘‘jump’’ might
be a model for accounting for interface roughness or be
a way to comply with irregular interfaces. In addition, it
can also be seen as an accommodation of the fact that
close to the interface the permeability K attains higher
values than those used within the porous substrate. For
that, the interface condition of de Lemos [43] is here
applied,
iscretization, (b) interface treatment.
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leff þ
lt/

rk

� �
ohkim

oy

����
Porousmedium

� lþ lt

rk

� �
ohkim

oy

����
Clear fluid

¼ ðlþ ltÞ
bffiffiffiffi
K

p hkim
����
interface

ð18Þ

instead of Eq. (15). Condition (18) is imposed along the
interface shown in Fig. 2b.

Eq. (18) results from the following reasoning. If inter-
face condition (10) is written in its instantaneous form, it
gives,

ðleff þ lt/
Þ
ouDp

oy

����
Porousmedium

� ðlþ ltÞ
ouDp

oy

����
Clear fluid

¼ ðlþ ltÞ
bffiffiffiffi
K

p uDp

����
interface

ð19Þ

Assuming that the component of the Darcy velocity along
the interface varies with time, a standard time decomposi-
tion for it can be written as uDp ¼ �uDp þ u0Dp

. Next, consid-
ering that only velocities fluctuate in time, subtracting (10)
from (19) results in the following relationship for the fluc-
tuating interface velocity u0Dp

,

ðleff þ lt/
Þ
ou0Dp

oy

����
Porousmedium

� ðlþ ltÞ
ou0Dp

oy

����
Clear fluid

¼ ðlþ ltÞ
bffiffiffiffi
K

p u0Dp

����
interface

ð20Þ

Taking now the scalar product of u0Dp
and Eq. (20), one

gets,

ðleff þ lt/
Þ
oððu0Dp

� u0Dp
Þ=2Þ

oy

�����
Porousmedium

� ðlþ ltÞ
oððu0Dp

� u0Dp
Þ=2Þ

oy

�����
Clear fluid

¼ ðlþ ltÞ
bffiffiffiffi
K

p ððu0Dp
� u0Dp

Þ=2Þ
����
interface

ð21Þ

If one now apply the time-averaging operation to Eq. (21)
and for flows mostly parallel to the interface approximate
the turbulence kinetic energy as hkiv � u0Dp

� u0Dp
=2, condi-

tion (18) is recovered after introducing the constant rk on
the left hand side of (21).

One should further mention that a different coefficient b
and constant rk, on the right hand side of (18), might be
both necessary to accommodate real engineering flows over
porous substrates. Proposition (18), as such, should be re-
garded as a first step towards realistic modeling subjected
to improvements as experimental data on macroscopic
interfaces become available.

3. Numerical details

Fig. 2a shows a general control volume in a two-
dimensional configuration. The faces of the volume are
formed by lines of constant coordinates g–n. The work
in [31] was set up for solving one-dimensional laminar
flows in the geometry of Fig. 1 and employed the spatially
periodic boundary condition along the x-coordinate. This
was done in order to simulate fully developed flow. The
spatially periodic condition was implemented by run-
ning the 2D solution repetitively, until outlet profiles in
x = L matched those at the inlet (x = 0). Details on the
methodology here employed for simulating fully devel-
oped flow using a two-dimensional numerical tool and
the periodic condition along the x-direction can be found
in [15–17].

Grid independence studies were conducted by Silva and
de Lemos [32] and for more than 40 nodal points in the
cross-stream direction, the solution was essentially grid
independent. Twenty points were allocated within each
channel medium (porous and clear). Such optimal grid
had points concentrated around the interface and close to
the impermeable wall at the top (see Fig. 1a) giving for
the control volumes a variable height Dx. Further, as also
explained in Silva and de Lemos [32], for all cases consid-
ered a total of 50 nodes in the axial direction was found
to suffice, leading to computational nodes of constant
width Dy = L/50.

In Silva and de Lemos [31], the discretization methodol-
ogy used for including the jump condition in the numerical
solutions was discussed. For that, only brief comments
about the numerical procedure are here made. Also, details
of the discretization of the terms on the left of (10) can be
found in Pedras and de Lemos [15]. Furthermore, informa-
tion on the discretization of the right of (10) appears in
Silva and de Lemos [31] where more particulars can be
found. Here, attention is focused on the numerical treat-
ment of (18), whose discretization followed the nomencla-
ture shown in Fig. 2a.

For steady-state, a general form of the discrete equa-
tions for a general variable u becomes,

Ie þ Iw þ In þ I s ¼ Su ð22Þ

where Ie, Iw, In and Is are the fluxes of u at faces east, west,
north and south of the control volume of Fig. 2a, respec-
tively, and Su is a source term. Here, all computations were
carried out until normalized residues of the algebraic equa-
tions were brought down to 10�7.

Fig. 2b shows details of the interface dividing two con-
trol volumes, one being located in the porous region and
the other lying in the clear fluid. The computational grid
based on generalized coordinate system g–n is such that
the interface coincides with a line of constant g, extending
itself along the n coordinate. In this arrangement, the inter-
face between the two neighbor volumes, each one located
on each side of the interface, belongs to both faces of the
two volumes. Thus, according to Fig. 2b, �uDi

is the Darcy
velocity at the interface and �uDp its component parallel to
the interface.

Further, in Fig. 2b one can identify all variables located
at the interface. The modulus of the macroscopic interfa-
cial area can be expressed as,
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j Ai j¼ Ai ¼ ‘i � 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxne � xnwÞ2 þ ðyne � ynwÞ

2
q

ð23Þ

Integrating the left hand side of (18) over the macro-
scopic interfacial area Ai, and considering further constant
hkii and constant properties prevailing over the integration
area, one has,

Ibki ¼
Z
Ai

ðlþ ltÞ
bffiffiffiffi
K

p hkiv
����i dAi � ðlþ ltÞi

bffiffiffiffi
K

p hkiv
����
i

Ai ð24Þ

or

Ibki � ðlþ ltÞi
bffiffiffiffi
K

p hkiv
����
i

Ai

¼ ðlþ ltÞi
bffiffiffiffi
K

p hkiv‘i

¼ ðlþ ltÞi
bffiffiffiffi
K

p hkiv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxne � xnwÞ2 þ ðyne � ynwÞ

2
q

ð25Þ
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The term on the right of (25) is added to the discretized
k-equation components when the nodal point in question
has a face coincident with the interface. For ease of imple-
mentation, these additional terms are treated in an explicit
form and are added to the right hand side of (22).

4. Results and discussion

The flow in Fig. 1 was computed with the set of equa-
tions (4), (8) and (9) with additional constitutive equation
(5) and the macroscopic Kolmogorov–Prandtl expression
(7). The wall function approach was used for treating the
flow close to the wall. Grid independence studies were con-
ducted in Silva and de Lemos [31] and, for more than 40
nodal points in the cross-stream direction, the solution
was essentially grid independent. One should emphasize
that the numerical methodology here considered was fo-
cused on two-dimensional flows, so that simulating the
0 0.02 0.04 0.06 0.08 0.1

y [m]

0

4

8

12

16

20

u D
 [m

/s
]

interface

Clear Fluid Porous Medium

Grid: 50×40
φ=0.6, K=4×10-6m2, ReH=1×105

β=-0.5, Silva & de Lemos (2003)

β=-0.5, k jump 

β=0.0, Silva & de Lemos (2003)  

β=+0.5, Silva & de Lemos (2003)

β=+0.5, k jump 

0 0.2 0.4 0.6 0.8 1
y
H

0

0.5

1

1.5

2

2.5

3

k
[ u

D
]2

interface

Clear Fluid
Porous Medium

Grid: 50×40
φ=0.6, K=4×10-6m2, ReH=1×105

β=-0.5, Silva & de Lemos (2003) 

β=-0.5, k jump 

β=0.0, Silva & de Lemos (2003)  

β=+0.5, Silva & de Lemos (2003)

β=+0.5, k jump

(a)

(b)

Fig. 4. Effect of jump conditions on mean and turbulent fields: (a) mean
velocity u, (b) non-dimensional turbulent kinetic energy.



552 M.J.S. de Lemos, R.A. Silva / International Journal of Heat and Mass Transfer 49 (2006) 546–556
fully developed situation shown in the figure required the
used of nodal points along the axial direction as well as
the employment of the spatially periodic condition men-
tioned earlier. For all runs here studied, a total of 50 nodes
in the axial direction was found to suffice. It is also impor-
tant to note that the sign of coefficient b is expression (10)
and (18) depend on the orientation of the y-axis in relation
to the porous layer location. Here, the same orientation
given by Kuznetzov [8–10] was used, which considers the
porous layer at the top of the channel with its normal
pointing towards the minus y-direction. As such, coherent
computations for laminar flow [31] were obtained. As
mentioned, grid independence studies were carried out by
Silva and de Lemos [31] indicating the proper number of
nodal points used around the interface. There, the authors
correctly reproduced, with their numerical tool, the bound-
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kinetic energy.
ary layers around the interface proposed by the analytical
study of Kuznetzov [8–10]. Also for the case of turbu-
lent flow the number of grid point used seems to be
appropriate.

In order to check for the correctness of computer code
developed, two results were compared. Calculations apply-
ing Eq. (15) used in Silva and de Lemos [32] were compared
with simulation with (18) setting b = 0. Fig. 3 correctly
shows superposition of results for the mean and turbulent
fields, indicating proper computer implementation of the
diffusion-jump model for the k-equation.

Fig. 4a presents numerical solutions for varying from
�0.5 to 0.5 for a fixed porosity / = 0.6, permeability
K = 4 · 10�4 m2 and ReH = 1 · 105. Results are compared
with those by Silva and de Lemos [32], who used interface
conditions (10) and (15) for the mean and turbulent fields,
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respectively. When condition (18) is used in place of (15),
profiles for �uD change substantially as the factor b is varied
from a smooth variation across the interface for a negative
b (small dashed line without symbols, Fig. 4a) to an abrupt
change in the velocity profiles when b > 0 (solid line with-
out symbols, Fig. 4a). For positive b values, the Darcy
velocity �uD is slightly higher inside the permeable structure
than at the interface, indicating that flow resistance at this
position would be higher than everywhere across the por-
ous layer [43]. This unrealistic result is not obtained when
condition (18) is applied for hkim (solid line with symbols,
Fig. 4a). In this case, velocities close to the wall region
are higher than for b = 0 (y > 0.064 m, large dashed line),
but around the interface no such minimum in the value
of �uD is observed. For b < 0 (small dashed lines) no sub-
stantial difference in the calculated profiles, with and with-
out a jump condition for hkim, is observed.

Distributions for turbulent kinetic energy as a function
of the interface boundary condition are shown in Fig. 4b.
The clear separation for the two distributions for positive
and negative values of b calculated by Silva and de Lemos
[32] (solid and small dashed lines, without symbols) is not
seen when interface condition (18) is applied (solid and
small dashed curves, with symbols). The region of maxi-
mum turbulent kinetic energy is within the clear flow
(y < 0.05 m) for b > 0 (solid line with symbols), whereas
the use of a negative value for the jump parameter causes
a peak for hkim at the interface (dashed curve with sym-
bols). If one compares with experimental values by [39]
(not shown here), one can conclude that models with
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negative b values are closer to representing reality for tur-
bulent flow around a porous medium.

The effect of ReH is shown in Fig. 5. Plots on the left
(a, c) are for mean velocity whereas curves on the right of
the figure (b,d) details the behavior of the turbulent filed.
Also, drawings on the top (a,b) were calculated for b < 0
whereas figures on the bottom (c,d) used positive values
of b. The mean velocity profiles in Fig. 5a and c confirms
the increasing mass flow rate within either the porous mate-
rial or the clear passage as ReH increases. In Fig. 5b and d
the collapse of curves for the turbulent kinetic energy di-
vided by the mean mechanical energy shows that, for the
range of ReH here analyzed, the percentage of energy trans-
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formed into turbulence remains the same, regardless of the
diffusion-jump model used. The most striking feature in
Fig. 5 is the different response, in the turbulence field
(b,d), when using values for b of different sign. Negative
values for b (Fig. 5b) indicate that the peaks in the curves
lie lower than when no jump condition is used, and that
this peak is at the interface. On the other hand, for a posi-
tive b, the levels of k are higher than if no jump condition is
applied. In addition, the peaks are moved towards the cen-
ter of the channel. The behavior of the curves is associated
with corresponding mean velocity profiles. Within the clear
fluid, the production of turbulent kinetic energy is known
to be dictated by gradients of the mean velocity (Pi on
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the right of (8)) whereas inside the permeable structure, the
model of [14] proposes a factor proportional to �uD as a gen-
erating mechanism for k (Gi in Eq. (8)).

Fig. 6 shows the effect of the permeability K on both the
mean and statistical fields. Plots a–d follow the same con-
vention described in Fig. 5. The figure indicates that the
greater the permeability, more flow crosses the porous sub-
stratum located in the region 0.5 < y/H < 1 (Fig. 6a–c). The
curves representing the statistical field in Fig. 6b–d show
that the levels of k increase with increasing K. As more
fluid flows in less resistant media, more mean mechanical
energy is transformed into turbulence increasing the overall
level of k.

Finally, Fig. 7 investigates the effect of the value of / on
the behavior of the mean and turbulent fields, here also fol-
lowing the same convention established when presenting
Fig. 5 (plots a–d). For the mean field (a, c), one can note
that close to y/H = 0.5 the greater the porosity, the higher
the velocity at the interface and the greater the mass flow
rate closer to this region. At the center of the channel,
the velocity decreases in order to keep the imposed mass
flow rate the same. It is interesting to observe that since
the overall mass flow rate is forced to be constant, instead
of the overall pressure loss along the channel, an enhance-
ment of the mass flow rate along the porous bed in the
interface region is compensated by a slight reduction on
local velocities close to the wall. Fig. 7b–d shows corre-
sponding curves for the behavior of the turbulent kinetic
energy. Values of k present a slight reduction as / is incre-
mented. Lower values for the turbulence level within the
porous layer are coherent with the model of Eq. (8) for
the extra generation rate due to the porous matrix. As said,
this extra Gi term (third on the right of (8)) was modeled as
proportional to �uD and, inside the porous layer, the mean
Darcy velocity is reduced as / increases.

Ultimately, results in Figs. 5–7 indicates that for flows
where models with b < 0 are suitable, a smaller portion
of the mean mechanical energy of the flow is converted into
turbulence. Results herein might be useful to environmen-
talists and engineers analyzing important natural and engi-
neering flows. Although in the porous substrate mean
velocity profiles are flatter, reducing the production rate
Pi, the generating mechanism Gi is proportional to �uD, in-
creases the overall value of k. In the clear fluid, steeper gra-
dients in the fluid layer also contributes for increasing the
value of the turbulent kinetic energy. Then, either by Pi

in the clear fluid or by Gi in the porous layer, turbulent ki-
netic energy is generated at a faster rate for positive values
of b.

5. Concluding remarks

Numerical solutions for turbulent flow in composite
channels were obtained for different values of ReH, /, K
and b parameters. Results were compared with previous
computations by Silva and de Lemos [32], which did not in-
clude a diffusion jump for k. Inclusion of such term resulted
in qualitatively different profiles for the turbulence kinetic
energy, ultimately indicating a different portion of the
available mechanical energy that is converted into turbu-
lence. Although simulations were presented for one-dimen-
sional flows, the implementation herein was done for
two-dimensional situations and carried out on a general-
ized coordinate system. Future applications of the model
herein may be useful on the determining of the overall
exchange rates of energy and mass transport across a inter-
face between a porous medium and a clear region.
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