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Abstract-A simplified Algebraic Stress Model was used to investigate the effect of buoyancy on the mean and 
turbulent flow of mercury in a pipe. The Patankar and Spalding finite difference method was used for solving 
the governing parabolic flow equations. Results were compared with previous measurements covering a 
Ra/Re’ range from near zero to 10m4 for 30,000 < Re < 90,000 and qualitatively predicted observed 
distortions. Temperature fluctuations were measured to supplement previous experiments in the near-wall 
region. Heating effects on turbulent energy and momentum transfer were predicted. Modeling also confirmed 

measured reversal of the turbulent axial flux. 

INTRODUCTION 

IN ANY flow system, a body force acts in a fluid element 
in addition to surface forces. This action is primarily 
dependent upon the flow orientation in relation to the 
gravitational field. 

When the flow is turbulent, gravitational forces are 
present in the mean and turbulent fields. Depending on 
certain flow parameters, this influence can be 
predominant in one of them or equally important in 
both fields. Experimental evidence gathered in the last 
15 years has shown substantial distortion in the 
fluctuating and time-averaged flows due to action of 
buoyancy forces. These distortions cause significant 
variations in the overall coefficients of momentum and 
heat transfer [ 11. 

It has been established [2, 31 that in buoyancy- 
affected turbulent flow in vertical pipes, as a 
consequence of increasing the wall heat load, the 
modeling of the turbulent kinetic energy is required to 
well represent the important features occurring in the 
measured heat transfer coefficients. 

The turbulent kinetic energy equation written for a 
simple two-dimensional (2-D) shear layer in a system 
oriented in the upward direction shows an extra term 
representing the direct influence of buoyancy in the 
turbulence, @g/7$& where I;-6 is in the axial direction, 
Also, the radial turbulent momentum and heat 
transport terms appearing in the time-averaged 
equations involve the correlations z and 3. 

In order to mathematically close the set of equations 
which will be shown later, there is a need for a model for 

&, VT, and a. 

Among possible closures, the eddy diffusivity models 

* Presently on leave at Components Technology Division, 
Argonne National Laboratory, Argonne, IL 60439, U.S.A. 

give the correlations, 

au 
-loJ = v'ay 

(1) 

- ar -ve = u,-- 
aY 

and 
- aT -ue = LY,--- 

(3X 
(3) 

where y is the radial direction and x is in the upward 
axial direction. 

By means of equations (1) and (2), calculated values 
for the eddy diffusivities, v, and LY,, using measured 
distorted radial profiles for the mean velocity and mean 
temperature, led to the observation that eddy 
diffusivities were very sensitive to heat fluxes [4,5,6,7]. 
Therefore, Jacoby et al. [7] concluded that this concept 
appeared to be oflimited usefulness for generalized heat 
transfer modeling, at least in mercury at the conditions 
studied. 

A more important aspect ofthe limitation of the eddy 
diffusivity concept for the prediction of the turbulence 
structure for the flow under consideration can be seen 
by means of equation (3). For an upward heated flow 
(temperature increasing with height), the use of(3) gives 
a downward direction (negative value) for the axial heat 
flux pc,;;8. The experiments of Carr et al. [S], 
Hochreiter [9] and Flaherty [lo] show a substantial 
change in the turbulence structure under the effect of 
buoyancy implying the reversal of the direction of the 
axial turbulent heat flux. This drastic change in the flow 
transport properties cannot be calculated by the model 
of equation (3). 

The present contribution numerically investigates 
the effect of buoyancy on the mean and turbulent fields 
for a heated vertical upward flow of mercury. The 
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axial temperature gradient, dT/ax 
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specific heat at constant pressure 
pipe diameter 
diffusion term of 4 in the 4 transport 

_- 
equation, 4 = uiuj, uj@, k, E or g and 
4 = ij, j0, k, E and g, respectively. 

,$2 

f wall effect function, ---; Fanning 
C&X” 

friction factor 
G generation rate of turbulent energy due 

- 
Pl”i Yi -P”ieSi to buoyancy effects, __ = ~ 

P T 

Gij kinematic production rate of uiwj by 

P’Wj 

G, 

buoyancy forces, ~ 
+Fj, 

~ = 
P P 

- ;(&j+ujeqi) 

kinematic production rate of q due to 

Pfe9j -&. 
buoyancy effects, __ = 2 

P T 

GrA 

9 
9i 

k 
1 

P 

Grashof number based on axial 
temperature gradient, pj&AD4/pz 
ii92 
gravitation acceleration in the xi 
direction 
turbulent kinetic energy, uiui/2 
turbulence length scale, k3’2/& 

-CxJ, 

Pe 

Pet 
P, 

pij 

mean static pressure, - aiuk z = 

generation rate of turbulence ekergy due 
to mean velocity gradients 
Peclet number, RePr 
turbulent Peclet number, Re,Pr = k2/Ea 
generation rate of g by mean 

temperature gradients, -G & 
k 

kinematic production rate of uiuj by 
mean velocity gradients, 

p je 

Pr 
R 

( 

-au, -au, 
- ui”kY& +“jUkax, 

> 

kinematic production rate of ujO by 

mean velocity gradients, --Qz 
k 

Prandtl number, pc,/i 

ratio of time scales of turbulent 

temperature and velocity fields, 2 

pipe radius 
g 

Ra 

Re 

Rayleigh number, p$gc,AD4/pI 
= PrGr, 
Reynolds number, DU,/v 

NOMENCLATURE 

Ret 

T 
T* 
T+ 
U* 
U+ 

ui 

ui 

UiUj 
- 

Uj8 

Xi 

Y 

Y+ 

lk”’ k2 
turbulent Revnolds number. -- = - 

V YE 

mean temperature 
friction temperature, qJpc,U* 
dimensionless temperature, T/T* 
friction velocity, U,&Ei 
dimensionless velocity, U/U* 
mean velocity in the xi direction 

fluctuating velocity component in xi 
direction 

kinematic Reynolds stress 

turbulent flux of heat divided by pep 
Cartesian-space coordinate (tensor suffix 
notation) 
distance from wall 
dimensionless wall coordinate, yU*/v. 

Greek symbols 

a 

B 

E 

Ejo 

&ij 

e 

82 
I 

@ 
71ij 

nij, 1 

"ij, 2 

ntj, 3 

nj13. 1 

nj9, 2 

nj63, 3 

P 
P’ 

E” 
thermal diffusivity, -- 

PC, 
dimensionless volumetric expansion 

ap T 
coefficient, - - - 

2t pp 

kinematic dissipation rate of turbulent 
kinetic energy 
kinematic dissipation rate of variance of 
temperature fluctuations 

dissipation rate of ujtl 

dissipation rate of uiuj 
fluctuating temperature 

variance of temperature fluctuations 
thermal conductivity 
molecular dynamic viscosity 
pressure-strain correlation (general), 

$($+ig 
first part of rcij, associated with 
turbulence-velocity interactions, 

-c, ;(i&Sijk) 
second part of nij, associated with mean 
strain, -c,(P,~-$&~P) 
third part of nijr associated with 
buoyancy, -c,(Gij-@,G) 
pressure-temperature gradient 

correlation (general), p E 
p axj 

E- 
turbulence part of rrjB, -clskujfI 

mean strain part of rcjs. -c2BPjB 
buoyancy part of nje, - c3@GjB 
density 
fluctuations in density about mean 
(included in buoyant terms only) 
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ge turbulent Prandtl number for 7: k, E and Subscripts 
g when r = t, k, E and g, respectively t turbulent value 

5 shear stress W wall value 
V kinematic viscosity. b bulk value. 

approach used here does not make use of the eddy 
diffusivity concept which, according to the foregoing, 
seems to be of limited usefulness at least for the class of 
flow under consideration. 

MATHEMATICAL MODEL 

In this section, the transport equations for the mean 
velocity and temperature and for the turbulent 
stresses/fluxes are presented together with the closure 
assumptions used. Also presented are equations for k, E 
and g = p/2, as required for closing the system of 
equations. The basic difference from the model 
presented here and the second-order closures published 
in the literature is the treatment of certain terms in the 
q and g equations which are assumed here as 
dependent upon Pr. Predictive relations are proposed 
for liquid metal Rows and asymptotic behavior for 
Pr - 1 cases is also accounted for. 

The time-averaged momentum and energy equ- 
ations for subsonic incompressible flow can be written 
as, 

DU, aP a 

(4) 

(5) 

The correlations u,ujand q appearing in the RHS of 
equations (4) and (5), respectively, represent two 
additional unknowns in the problem of solving the 
velocity and thermal fields. These extra terms are a 
consequence of the averaging process over the 
convective term. 

An exact equation for the Reynolds stresses, p*, 
can be derived by multiplying the x,-component of the 
instantaneous case of equation (4) by uj and adding ui 
muhiplied by the xj-component of the same equation. 
Then time averaging. 

The modeled form of the uitlj equation used here 
comes mainly from refs. [l l] and [12]. Since in this 
work no novelty was introduced in closing the 
hydrodynamic field, the details of modeling the G 
equation can be found in the above references. Here it is 
sufficient to say that the final form for the u,ujequation 
is, 

DIA.24. 

+ %j,w -sSij a + g;j (6) 

where P, and G, are the production of uiuj by mean 
flow and buoyancy, respectivcIy, nij. ,, xij,zt and rcii,3 

are the turbulent, mean flow and buoyant parts of rriJ, 
nij, w is a wail correction to xij, and E is the dissipation of 
turbulent kinetic energy. The diffusion term, 9, is the 
same as in the exact uiuj equation since models for 
transport terms are not necessary, as will be seen later. 

Modeled equations for k and E are derived in the 
literature [l3,14] and will be just presented here. The 
transport of k along a streamline is governed by, 

Dk 
- = P+G-E+~~ 
Dt 

where 

is based upon the gradient transport assumption, and P 
and G are production of turbulent kinetic energy by 
mean tlow and buoyancy, respectively. For E, the 
transport equation reads, 

where 

In equations (7) and (8) the cs and es are constants to 
be presented later. 

For the turbulent heat fluxes, an exact transport 
equation can be obtained using a procedure similar to 
the one used to obtain the ~equation. The result 
reads [15], 

where, 

Equation (9) is valid for liquids and when 
compressible effects and viscous production are 
negligible. Inspecting (9) one sees that the last three 
terms on the RHS need modeling. Here, attention is 
focused to liquid metals and prognostic relations with 
dependence on Pr are suggested. 
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For high Reynolds number, sjscan be written as [ 161, 

&j@ = (a+v)Z g 
(10) 

k ll 

where 

c(=L. 
PC, 

Lumley and his co-workers [17,18], as well as Launder 
[ 191, assume that equation (10) is negligible when local 
isotropy also prevails in the thermal field, or, 

[(F!Jy p!Jy* = [I”. (11) 

Gibson [16] points out that under this condition 
it is the randomizing action of the pressure-tempera- 
ture gradient correlation which limits the growth of 
fluxes UC+?. 

However, for liquid metals, equation (11) is not 
expected to hold, since even the smallest eddies are 
themselves influenced by action of the high thermal 
conductivity. This is consistent with the reasoning 
involved in many previous works in liquid metals (see 
for example [20]). 

In approximating (lo), one should get the correct 
asymptotic behavior when Pr - 1 and Re, is large, 
or let us say, sjO should attain very small values under 
these conditions. With this idea in mind, and using 
an order of magnitude argument similar to the one 
presented by Tennekes and Lumley [21], auj/ax,can be 
approximated as, 

au. k’/2 
J_- 
ax, 1 

(12) 

where k is the turbulent kinetic energy and I a 
turbulence length scale. Similarly a@/&, is assumed as, 

ae p -_- 
ax, lo 

(13) 

where g = 8212 is one half of the variance of 
temperature fluctuations and le is a length scale 
associated with the thermal field. The quantities k’/* 
and g”* are representatives of velocity and scalar 
scales, respectively, for the energy containing eddies. 
Thus using equations (12) and (13), 

&jS N (14) 

Furthermore, one can assume [21], 
- 

/$*g’/* N uje 

and noting that, 

V 1 & -=-- 
I2 Re, k 

(14) becomes, 

&jl3 - (15) 

As mentioned before, the asymptotic behavior cjO -+ cc 
for Pr - 1 is retained in equation (15). 

In deriving (15), the ratio of length scales 1,/i is 
introduced. Since the model works with only one length 
scale, the ratio of length scales has to be supplied. By 
using available experimental data on energy containing 
length scales for several Prandtl numbers, one has, 

1, 0.179 
- = 0.821 Pr-O.* + pyo.5. 
1 (16) 

The above relation was obtained by curve fitting the 
results of refs. [9, 22, 23, 241 for Is and 1, which were 
obtained through spectral analysis. Equation (15) is 
now calculable, once k and E are available. The 
proportionality factor in (15) is taken as ciB/cjB, where 
the cs are constants to be determined later. 

As with the pressure-strain correlation nij in 
equation (6) rcje in equation (9) can be split as, 

=je = zjt?. 1 + 71jt3. 2 + nj@, 3 (17) 

where rrjO, i is the ‘turbulent interaction’ part of njS, and 

Se. 2 and nje.3 can be interpreted as the decreasing of 
production rates by shear and buoyancy, respectively, 
caused by pressure fluctuations. The last two terms are 
modeled exactly as in ref. [1 11 where more details can 
be found. 

To model the first part, zjs, i, the view of Monin [25] 
is adopted here as 

E- 
71je.l = -c1B g4’0. (18) 

The two terms, &jB and rrjs, i, can be combined as, 

where 

&j9 + "j8, 1 = -c10- ,UjO EF 
k 

(19) 

The presence of the wall is accounted for by adding 
an extra term. The wall correction is also as in Ljuboja 
and Rodi [ll], but includes the functional F,, as 
suggested by ref. [15], 

"j0.w = -F, ~c;,u,Q nknj f " 
- IO 

(21) 
X" 

wherefis a function which decreases this correction for 
points x, far from the wall. In addition, in the argument 
off, 1 is a turbulence length scale and n is a unit vector 
perpendicular to the wall. Again, no proposal is made 
for gjjs since the difference [(DuT/D~)-_~,] will be 
neglected by model assumption. So, the final modeled 
form for the UT equation is, 

9 _ aT F __ 

Dt 
=-uiukax +Pjs+Gjs-cIOkujHF, 

k 

+nj8,2+njs,3+nje,w+~jB. (22) 

An equation which describes the history of the 
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temperature Auctuations can be obtained as 

Dg 
-=P+#+$&-p]. (23) 
Dt 

Equation (23) is much the same form as the exact 
turbulent kinetic energy equation but the lack of perfect 
analogy shows up in the absence of a term 
corresponding to the pressure-velocity correlation. 

On seeking a modeled form for (23), one should use 
the same reasoning embodied in modeling aje, where 
only a few terms in the equation are assumed to be 
affected by molecular ‘smearing’ of the large-scale 
motion. Or, say, in the particular case of (23), only the 
dissipative and the turbulent diffusion terms are 
assumed to be different when Pr is of a low value. This is 
certainly a simplification, but at first seems to be a 
cautious path. Also, the modeled form shall approach 
asymptotic values when Pr = 1. 

With the above ideas in mind and using a similar 
argument as [26], it is suggested that temperature 
fluctuation disappears by two mechanisms: (a) the 
decay of velocity field drives the decay of the 
temperature field in a cascade process occurring at a 
rate characteristic of the inertial subrange, and equal to 
c/k, and(b) at the same time, heat is lost due to the fluid 
thermal conductivity and differences of the instan- 
taneous temperature within the fluid. The latter 
mechanism is therefore much like a conduction process, 
and occurs at a rate proportional to c&, which is a 
characteristic rate of a diffusive transport. 

Thus, assuming that the two processes are 
independent, or that nonlinear effects are neglected, the 
dissipative term can be written as, 

but noting that 

ci 1 E _=__ 
1’ Pe, k 

and taking 

cf=Rm 

where R, is the limiting time scale ratio R, 
Pe, >> 1, equation (24) is 

later. Equation (26)is calculable once k, E, and g become 
available. 

The last term on the RHS of (23) is approximated 

using once again the gradient transport notion. 
Therefore, the turbulent diffusion term is assumed as, 

(28) 

In (28) the inclusion of R indicates the contribution of 
the thermal field time scale in transporting temperature 
fluctuations, see ref. [lS]. The constant oB shall be 
determined later. 

The final modeled form for (23) is then, 

(29) 

The task of solving the flow and thermal fields, using 

(4), (5), (6) and (22) requires for the general 3-D case the 
solution of a system of 13 transport equations. In order 
to reduce the number of turbulence transport 
equations, and still keep the same information as in (6) 
and (22), Rodi 1271 suggests that the transport terms in 
the Reynolds stress equation can be considered as 
proportional to the transport of k, 

Du,ui 

Dt 
(30) 

To derive equations applicable to pipe flow, the 
scheme presented by Ljuboja and Rodi [ 121 is used. For 
the stress component z and for the heat flux 
correlations i;B and 2, a local equilibrium assumption 

Conv. - Diff. = 0 (31) 

is applied. The coordinate system is based on Fig. 1 and 
details on the derivation are presented in ref. [28]. 

The final set of equations is, 

(24) 

- z;ik= au 
-_ulJ=w--- 

k E ay 

where, 

(1 - c2 + c;c,3n + 
(I-c,)B 

F,(c,,+GJ-) 
w= 

(c1 +&f) 

(32) 

(33) 

where 

1 1 
-1 

R= 
c, Pe,(W02 

++ . (26) 
m 

It is seen in equation (26) that for 

E 

Pet ‘co; %=kR,g (27) 

or only that mechanism (a) is important. Equation (27) 
is usually used in the literature to represent eg. The ratio 
(/,//) is calculated from (18) and cg shall be determined 

c 7- 

FLOW ttt 1 u.u.x 

V.Y d 
FIG. 1. 
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and 

B=Pg kE 
T X~ay i 

aulay (34) 

2 -= 
k 

2 c C,-I+ 

P+G 
Cl + - -1+24f 

E 1. 
(35) 

For the thermal field, the equations read, 

k’i?aT 
-- - 

- 
-ve = E k ay 

~lho+c;sf) 
(36) 

and 

- 1 k 
-uQ=----- 

cwF, 6 

x [ ,c +(l -c,,)LiC --b&(1 -c,&2g ay ay 1 . 
(37) 

The turbulent Prandtl number, ol, is obtained from 
(32) and (36) as, 

bt= w(cis+c;ef)Fi (38) 

where w is defined in (33), and F, given by (20). 
By inspecting the system of equations for U (4), T (5), 

k (7), E (8) and g (29), and algebraic relations for E(32), 
$(35), $(36) and a(37), one can see that the problem 

is mathematically closed. 

BOUNDARY CONDITIONS 

At the pipe centerline, the derivatives of the mean and 
turbulence quantities are taken as zero, or 

a4 0 ay,=, = (39) 

where d, stands for U, T, k, E and g. 
In the region near the wall, the proposed model is not 

applied to the viscous sublayer. Therefore, for the 
velocity U, one assumes that at the junction point, 
defined as the point located sufficiently far from the wall 
so that molecular exchange is now totally overwhelmed 
by turbulent mixing, there is a region where the velocity 
is related to the friction velocity, U* = (t,/p)‘/‘, via the 
logarithmic law of the wall, as in ref. [13], 

U+ = kin (y+E) (40) 

where U+ = U/U*, y’ = yU*Jv, K = 0.435 is the von 
Karman constant, and E = 9.0for smooth walls. These 
values were taken from Patankar and Spalding [29]. 

In the above given y-region, production and 

dissipation of turbulent kinetic energy are in balance. 
This assumption, together with the Kolmogorov- 
Prandtl expression, p, = pc,k’/E, gives for k at the 
junction point [ 131, 

k = U*2c’/2. P (41) 

Taking the length scale close to the wall as 
proportional to y, using 1 = k”‘/E and equation (41) 
one has, 

E = u*3/KJL (42) 

For the fully turbulent region in question, molecular 
heat transport may be significant for the case of liquid 
metals. It is assumed that the temperature profile 
between wall and the junction point is linear, or, 

T’ = y+ Pr (43) 

where 

T,-T 
T+ =- 

T* ’ 
T* = qw/pc,U* : 

T = temperature at the junction point, 
T, = temperature at the wall. 

For the g equation, the present experiments in the 

near wall region (y’ < 100) were correlated in terms of 

the nondimensional temperature variance, A/T*. 

The results can be expressed as, 

5 - y+Re0.0258 +0.87 x 10e5 Re. p- (44) 

Equation (44) indicates that the scalar scale is linear 
with y+ from the wall to the region of validity of (40), 
and it is used as a ‘wall function’ for g in the near wall 
region. 

CONSTANTS AND SUMMARY 
OF EQUATIONS 

The three constants introduced, namely cjO, cg, and ug 
are here determined. All the other constants are taken 
from ref. [12] and will just be given. 

To bring the level of calculated i;B, ‘;-B and g to the 
same level of measurements of Flaherty [lo], 
Hochreiter [9] and present measurements, the 
constants cjs and cs were taken as 0.004. It should be 
mentioned that the uncertainty and scatter of turbulent 
measurements in liquid metals do not allow a confident 
assignment of values to those constants. As more data 
are gathered, the degree of uncertainty can be reduced. 
Nevertheless, the use of the above constants is here 
assumed as a first approximation in the absence of 
better information. A sensitivity analysis using different 
values of c,@ and cg is shown in [28]. 

The constant gg takes the value of 0.72 so that when 
Pr = 1 and R approaches R, = 0.8, the overall 
turbulent coefficient for g takes the value pLJO.9, which is 
the same used by Spalding [30] and Plumb and 
Kennedy [3 11. 

A summary of the equations written in their thin 
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Table 1. Model equations and constants 

1073 

Mean flow 
Var. Conv. Diffusion production 

u 

T 

k 

& 

9 

- 
u6 

- 
ve 

- 
UV 

,2 

DU a au 

Dt ay”‘?j 

DT r: Y Y, c?T 

4) Dt - -+a, dy dy Pr 

Dk a Y, ak 

is 0 
- -- - 
dY @k aY 

1 dP 

P dx 

DE a Y, ds 

Dt 
_-- 

0 8Y cr 8Y 

--aT 
-v%-- 

aY 

DUO 
Diff. 2 

Dt 

--aT -au 
uv- -vG-- 

ay 3~ 

DG 
Diff. uo 

Dt 

Dh 
Diff. L 

--dU 
-“2-- 

Dt c?v 

D7 

Dt 

Source/sink 
- 

Pressure-strain scrambling 

Buoyancy 
production 

Viscous 
destruction 

Non-buoyant 
cont~bution 

Buoyant 
contribution 

+3& 

E2 
--ca- 

k 

c?s -- 
kR 

-au P 
-cCls;zF,(Pe,)+e,,oB- -c,,+2g 

8Y 

2 
---E 

3 
-c,;[(l+2:f)lr’-;k] 

2 -dU 
-jCZ(1-2c;f)uv- 

dy 

Constants in the turbulence model 

shear layer form, as applicable to pipe flow analysis, is 
shown in Table 1. Also shown are model constants. 

COMPUTATIONAL DETAILS 

A finite difference solution scheme was applied to the 
set of equations for thin shear layers presented above. 
The calculations were performed for hydrod~~ic 
developed pipe flow with uniform wall heat flux. 

The computer program modified to include the 
turbulence model is an early version of the Patankar 
and Spalding [29] code called STAN5 In the 
original program, turbulence was calculated with only 

‘zero’ and ‘one-equation’ models, in a fully explicit 
manner. To overcome possible numerical instabilities 
resulting from the more sophisticated representation 
developed here, a new treatment for the sources terms in 
the turbulence equations was devised with some basic 
reprogr~ming required to adopt it. 

The geometry simulated corresponds to the heat 
transfer facility at the Nuclear Engineering 
Laboratories at Purdue University. An adiabatic entry 
length of 6.5 diameters was used before a heated length 
of another 67 diameters. This total of 132 diameters 
required an average of 280 integrations in the 
streamwise direction. 

HKP 28:6-B 
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RESULTS AND DISCUSSION 

Isothermal results 
Although this work was primarily concerned with 

nonisothermal flow, calculations were also performed 
for isothermal flow, in the range of 30000 < Re < 
90000, to provide a reference and check the model 
performance by predicting unheated flow in the 
Reynolds range of interest for the heated 
measurements. 

Figure 2 shows results for the mean velocity as 
compared with experiments of Eyler [22]. Agreement 
seems reasonable except near the centerline. In this 
work, all mean velocity profiles are underpredicted at 
the centerline. This is a result of the inability of the 
model to represent the turbulent velocity length scale 
decreasing in the near centerline region. This point will 
be discussed later. Here it will suffice to say that a larger 
length scale at the centerline causes a larger coefficient 
of momentum exchange, p,, and therefore a flatter 
profile at the center. 

Figures 3 and 4 compare predictions for k and E with 
Laufer’s measurement in air [32]. It is seen that the 
calculated values at y/R < 0.3 for k are slightly larger 
than the experimental data. That is in agreement with 
what was said previously about the turbulent 
coefficient ofexchange, p, = pc,,k’/E, since larger values 
for k imply larger values for p, and then a flatter velocity 
profile. 

The nondimensional turbulent shear stress is shown 
in Fig. 5, compared with Hochreiter’s results for 

I 203 

i,/ub 

mercury [9] and Laufer’s data for air [32]. Agreement 
seems good over most of the flow cross section. The 
reason for the sudden increase in the predictions in the 
wall region is two-fold. First, the equation describing 
;;i, equation (32), is written with the local equilibrium 
approximation, or (Conv. -Diff.) = 0. Close to the 
wall, this is not expected to hold, since diffusion 
transport in the cross stream direction may be of some 
significance. Second, the evaluation of velocity 
derivatives close to the wall is dependent on the grid 
mesh used, and so production terms in the&equations 
are sensitive to grid point distribution. Because of 
reason (a), the absence of a diffusive term on the % 
equations does not ‘smooth’ the differences out. This 
can be seen by referring to results for k and E, Figs. 3 and 
4, where no ‘kinks’ are present. In addition, extensive 
testing using several grid spacings in the wall region has 
shown the dependent variables U, k and E to be much 
less sensitive to the wall grid distribution than G itself. 
For that reason, nonisothermal results to be shown 
later were calculated with a more inexpensive coarse 
grid near the wall. 

Figure 6 compares predicted values for the lateral 

velocity fluctuations component fl/U* with 
Hochreiter and Laufer results. The wall damping effect, 
showed more clearly by Laufer’s results, is obtained for 
distances very close to the wall. This may be an 
indication for a need for a more elaborate wall 
correction for the pressure strain corre!ation. In this 
work, use was made of a simple wall correction 
presented by Ljuboja and Rodi for wall-jets [12]. 
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FIG. 2. Comparison of measured and predicted isothermal mean velocity, U, Re = 50,000 



Turbulence modeling in combined convection 1075 

35 00 

30 co 

25CD 

2ocO 

16 00 

1000 

2ooo 
t 

d- 

SF+ 

i b 

I 500 o-.-- 
4 I 

t 
I 

I 

1000 d --:/ -- -1. 
0 I 
I ! LAUFER [32] 0 ~ 

/ PREDICTIONS - 
0500 _I-- +- 

e-__c_-__ 

T-- r 7- 4cca 

3.503 

k/U** 

3030 

2500 

0003 

OOOO 0200 04co 0.600 0800 loco 
r/R 

FIG. 3. Comparison of measured and predicted isothermal kinetic energy, k, Re = 50,000. 

OCYX 0xX; 0400 0600 OK0 ICC0 
r/R 

FIG. 4. Comparison of measured and predicted isothermal dissipation rate of turbulent kinetic energy, E, 
Re = 50.000. 



loco 

OK0 

iii/u r2 

06cn 

0403 

0200 

Ocm 

/ HWHREITER 191 /) 

m. , LAUFER [3P] 0 

, PREDICTIONS - J 

O.ooO Cl.200 0.433 0600 0.800 ICC0 
r/R 

Frc. 6. CJoomparison of measured and predicted isothermal lateral velocity fluctuation, 7, RP = 5OJBt3. 



Turbulence modeling in combined convection 1077 

Table 2. Comparison of predicted friction factor with Blasius work, the parameter Ra/Re2 is used as a buoyancy 
formula for isothermal flow factor as suggested by Bird et al. [34]. 

Re 
-~ 

18471 
29851 
46694 
56057 
89359 

f calculated f = 0.079Re-0.ZS % error 

0.00662 0.00678 -2.3 
0.00598 0.00601 -0.5 
0.00542 0.00537 + 0.9 
0.00520 0.00513 + 1.3 
0.00480 0.00457 + 5.0 

i%e hydrodynamicjeld 

Launder and Samaraweera [33] used a more 
complicated version of the wall correction for 

calculating confined flows, but no results on p/U* 
for pipes were presented. Therefore, an assessment on 
nijwallcorrectionsisstilllimited bylackoftestingin the 

literature. 

Figures 7 and 8 show comparisons of predictions 
with experiments of Jacoby [S] for 30000 < Re 
< 60000. The results qualitatively describe the 
distortion on the mean flow. However, in most of the 
RalRe2 covered, the amount of distortion is 
underpredicted. The reason for these discrepancies can 
be explained as partially due to modeling and partially 
due to the numerics used. First, in Figs. 7 and 8 the 
flatter calculated profiles for U near the centerline may 
be due to the relatively large calculated length scale in 
this region, in a manner similar to what wassaid for 
isothermal flow. The second reason has its grounds in 

the numerical aspect. 
Friction factors, x were calculated and compared 

with Blasius formula, f = 0.079 ReCO.“. Results are 
shown in Table 2. The errors of the predictions are 
within +5% in relation to the Blasius smooth pipe 

formula. 

Nonisothermal results 
This section presents results for mean and turbulent 

quantities as functions of the buoyancy parameter 

RajRe’, where 

Ra = Gr, Re = Rayleigh number, 

Gr, = p2/.?gAD4/p2 = Grashof number based on A, 
and A = dT/dx is axial temperature gradient. In this 

Although the treatment of the source terms was 
changed from the original PS method to avoid possible 
numerical instabilities, the explicit handling of the 
effective diffusion coefficients was kept the same. This 
was done to keep linear the set of algebraic equations 
obtained from discretizing the balance equations. This 
fact enables the use of a direct, noniterative numerical 
algorithm for solution of the algebraic relations. 
However, for high heat rate cases, fluid properties 
variation along the axial direction of integration 
implies a nonlinear set ofequations, in the sense that the 
finite difference coefficients have then to be updated by 
successive iterations in each forward step. Although the 
use of a nondirect. iterative numerical method seems to 
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FIG. 7. Comparison of measured and predicted mean velocity, U, Re = 30,000 
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FIG. 8. Effect of heating on mean velocity, U, Re = 60,000 

be suitable for solving cases with high wall heat loads, in 
this work a direct solution technique, known in the 
literature as the Tri-Diagonal Matrix Algorithm 
(TDMA) was used. The justification for using the 
TDMA scheme lies in the fact that the accuracy 
obtained by using an iterative solution procedure 
would not be consistent with accompanying un- 
certainties of several proposed model relations as well 
as discrepancies associated with experimental liquid 
metal data. The absence of an iterative procedure to 
correct for properties variation along the streamwise 
flow direction caused an error of about 15% when the 
total heat input through the wall was compared to the 
heat carried by the fluid. This cumulative error was 
referent to the highest buoyancy parameter used 
(Ra/ReZ = 2.99 x 10m4) and to approx. 280 forward 

steps. 
For the reasons stated above, including uncertainty 

in the quantitative aspect of the model predictions and 
inherent difficulties associated with the numerics used, 
in this work one tried to investigate only the qualitative 
aspect of changes in the variables as a function of the 
buoyancy parameter, Ra/Re’. 

Figure 9 presents the effect of heating in the turbulent 
kinetic energy. The initial damping and posterior 
enhancement of turbulent exchange, as claimed by 
Petukov’s papers [ 1, 353 is qualitatively predicted. 

Figure 10 presents results for the turbulent shear 
stress, z. The kinks near the wall are the result ofthe use 
of a less expensive grid spacing close to the wall. As 
mentioned for the results for isothermal cases, this is 

due to the absence of a diffusion term in the Uv equation 
that physically smooths out differences in calcuating 
velocity derivatives in the near wall region. The use of a 
coarse grid, however, did not cause detectable 
differences for variables described by a transport 
equation, namely u, 7; k, E and g. 

Figure 11 shows the behavior for p/U* similar to 
the one for k. This figure suggests that gravity also has 
an influence on the turbulent structure in the directions 
perpendicular to the gravity field. This is in agreement 
with the review of Launder [19], and shows the 
connection among turbulent stresses in a gravity 
affected field. Although no direct influence exists of 
gravity on u2, the dependence of u2 on stresses aligned in 

the axial direction causes an indirect affect on it. This is 
seen by inspecting the existing interlinkage among the 
stresses, represented in Table 1. 

The ratio oflateral to total kinetic energy is shown in 
Fig. 12. The figure shows a substantial difference of 
heated G/k predictions when compared with the un- 
heated profile, which is monotonously decreasing to 
the wall. A ‘peak’ appears in the core region and 
approaches the wall as Ra/Re’ increases. The figure 
suggests that although k and 9 are damped by 
buoyancy in the near wall region, the lateral 
fluctuations are less sensitive to these changes than the 
axial velocity fluctuations, 3, which is aligned with the 
gravity vector and so directly influenced by gravity. 
Thus, in this region, lateral fluctuations will carry 
relatively more energy when buoyancy is present than 
in the isothermal case. In this work, no equation is used 
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to describe the axial velocity fluctuation and an 
assessment on the effects of buoyancy on it can only be 
roughly pictured. 

l’he thermaljield 
Temperature profiles are shown in Fig. 13. Results 

are compared with experiments of Jacoby [S]. The 
predictions qualitatively follow the experimental 
trends. An initial tendency towards a radial linear 
dependence followed by a flattening of the temperature 
profile is well calculated. The first stage represents a 
decrease in turbulent exchange and the second one an 
enhancement in the lateral turbulent transport. Those 
trends are in agreement with Petukhov’s explanation 
for the initial decrease and posterior increase in Nu, as a 
function of wall heating. Calculated Nus are presented 
later. 

In order to bring the ievel of calculated radial heat 
tluxes to a level on theorder ofexistingexperiments, the 
constant cje in equation (20) was set as 0.004. This 
constant comes from the modeling of the dissipation 
process,rii,, whichphysicallycan be seenasasinkfor the 
heat flux, $l. Thus, the introduced constant, cje, 
primarily controls the level of ~2. 

Figure 14 compares calculated and measured radial 
turbulent heat fluxes for mercury at Re = 50,000. These 
measurements constitute a pioneering effort at Purdue 
University during the 1970s in picturing turbulence 

I.033 

WCC 

T,- T/ T,-Tc 

0.8X 

structure in nonisothermal liquid metal flow [9, 10, 
363. The figure reflects the degree of difficulty in 
obtaining reliable experimental info~ation on this 
quantity, and the scatter and uncertainty in the data 
limit the degree of confidence in assigning a numerical 
value to cjp The value here used should be considered as 
a first approximation subjected to refinement as more 
data are gathered. 

Figure 15 shows caIculated radial turbulent heat 
fluxes. The predictions show that an initial decrease in 
the level of 2 precedes a posterior increase, as the 
Ra/Re’ increases. This idea is also in agreement with 
the predictions shown so far. The figure shows some 
irregularities in the calculated profiles near the wall for 
relatively large wall heat fluxes. At the stage of this 
research, the lack ofexplanation for those irregularities 
has its grounds in the difficulty to identify whether a 
numerical or a modeling inconsistency exists which 
causes the aforementioned anomalies. 

A compilation of axial turbulent heat flux 
measurements for various Pr is shown in Fig. 16 [8,9, 
10, 23, 24, 373. (The figure is plotted for -i&W*T*, 
showing the opposite direction for the fluxes for a 
system oriented upward). The results for air of Carr et 
al. [8] and for mercury by Hochreiter [9] and Flaherty 
[lo] obtained at high wall heat loads show a reversal in 
direction of the axial heat flux. This trend is more easily 
seen with the Carr et al. experiments for two increasing 
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Fro. 13. Comparison of measured and predicted mean temperature, K Re = 60,000 



FIG. 14. Comparison of measured and predicted radial turbulent heat flux, ;8, Re = 50,000. 
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FIG. 16. Measured axial heat flux in air, water, mercury and ethylene glycol. 

wall heat fluxes. The model used in the present work 
predicts the axial turbulent heat flux behavior, as the 
buoyancy parameters Ra/Re’ increases. 

Figure 17 presents results for a. The predictions 
show a reversal and continuous increasing of the 
magnitude of 2. The onset of reversal, as well as 
quantitative comparison with experiments, are of 
difficult analysis due to already mentioned un- 
certainties in the experiments and on the modeling 
proposals. The calculated values for the same 
experimental conditions are roughly one-fourth of 
Flaherty’s data. 

Temperature fluctuations were measured for Re 
= 30,000, Re = 60,000 and four wall heat fluxes. Figure 
18 shows a comparison of measured temperature 
fluctuations for mercury with the present measure- 
ments [9, 22, 38-j. The present results agree with 
Hochreiter’s [9], and Loos’s [38] data, but are slightly 
larger than Eyler’s [22] measurements. Eyler used a 
different hot film calibration procedure than 
Hochreiter and Loos. Although the probe calibration 
used in this work is different from Hochreiter’s and 
Eyler’s, it is more similar to the Hochreiter work. 

system noise. Caruso [39], whose data is in agreement 
with Eyler’s, reported a waiting time on the order of 3.6 
time constants (360s). Since in liquid metals most of the 
information on the turbulent temperature fluctuations 
are at relatively low frequencies, in this work a period of 
five time constants was used to assure that fluctuations 
on the low cycle part of the spectrum were counted. In 
doing this, however, a relatively high value for the r.m.s. 
was obtained, possibly due to counting of 60 cycle noise 
from the electrical heaters. A study on the low cycle 
noise in liquid metals is reported by Hochreiter [40]. 
Preliminary data analysis found the present results to 
be on the average of 15% higher than the Hochreiter 
and Loos data, and since differences in the calibration 
use by them and the present work did not amount to 
more than a few percent, the present data were 
corrected in 15% to a level compatible with Hochreiter 
and Loos data. This procedure was found to be a good 
approximation, since a quantitative analysis ofexisting 
electrical noise in the system is difficult to access. In 
addition, this correction was done for all data, and 
relative trends among measurements were kept the 
same. 

Another source for the differences among data is the Fig. 19 shows measured and calculated results for 
counting time for obtaining the r.m.s. of the signal and g = isT/2. The introduced constant, cg, was taken as 
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0.004 to give best agreement near the wall. In Fig. 19, all the terms in the equation. Extensive numerical work 
the centerline region is substantially over-predicted. Yet. was performed showing that even by totally eliminating 
the calculations showed an increase in V@V the turbulent diffusion in the diffusive term of g, the 
as Ra/Re* increases, while the experiments centerline region was still overpredicted. This may be 
showed a decrease within the same range. In this work, an indication that the productive term, P,, and the 

an attempt was made to model the g equation to dissipative term, sg, need further refinement, especially 
correctly follow the dependence on Ra/Re2, but it is near the centerline. In order to accomplish reliable 

recognized that further work is needed to approximate modeling for the particular case of the g equation in a 

FIG. 20. Calculated relative Fanning friction factor, f&, 
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more systematic way, this research identifies the 
necessity of experimental programs for measuring 
individual terms in the g equation for the flow under 
consideration. After more understanding of the process 
which indivjduaily accounts for the total level of g. 
uncertainties occurring in modeling it can be reduced. 

Friction factor and Nusselt number 
Figure 20 shows the calculated skin friction factor,f, 

for increasing Ra/Re’. The results are normalized by 
the isothermal friction factor,hSO,,,, obtained for very 
small heat loads. The increase in f is due to the 
increasing of the velocity derivative at the wall, which is 
presented in Figs. 7, 8. The results are in qualitative 
agreement with the measurements in water presented in 
Petukhov’s review paper [35]. The calculated Nusselt 
number is compared in Fig. 21 with measurements of 
Jacoby [S], Kowalski [S], and Buhr [4i] for mercury. 
The figure compares absolute values and shows the 
initial decrease in Nu due to damping in turbulent 
transfer, as claimed by Petukhov [35]. In addition, the 
calculations suggest that the higher the Reynolds 
number, the higher the amount of damping. This fact is 
also shown by Polyakov [41], who presented a 
theoretical analysis for the boundaries of influence of 
free convection in pipe flow of mercury. 

CONCLUSIONS AND RECOMMENDATIONS 

This research was primarily concerned with the 
development of a predictive technique able to calculate 
the influence of buoyancy in a vertical flow of mercury 
in a pipe. Test calculations for isothermal flow showed 
good performance in predicting turbulent and mean 
flows. 

Further results showed that distortion occurring in 
the nonisothermal time-averaged flow is qualitatively 
predicted. Calculation for the skin friction factor and 
Nu are also in qualitative agreement with the literature. 

The turbulent field is shown to be affected by 
buoyancy, although a more accurate assessment on the 
~rformance of the model here used is limited by the 
lack ofex~rimentation under this situation. The initial 
damping and posterior enhancement of turbulent 
transfer as Ra/Re’ increases is well predicted and 
shown in results for k, 7 and Va. The reversal of ri0 
under the intluence of buoyancy, also presented in 
several experiments, is shown to be calculable by the 
present model. 

Results for temperature fluctuations are regarded as 
a first approximation, requiring further work. 

As recommendations, this research identifies the 
need for more data on the turbulence structure for the 
particular case of buoyancy affected flow, although it is 
recognized that existing data in nonbuoyancy flows 
are scarce and subjected to experimental uncertainties. 
This is particularly true for heated mercury flow 
measurements where available experimental tech- 
niques require extreme care for obtaining reliable data. 

Major experimental programs for measuring the 
turbulent correlation Zl and G0 are found to be needed 
for improving modeling assumptions. In the particular 
case of the $1 equation, measurements of the individual 
terms in the equation can provide insight for a more 
reliable modeled form to represent the different 
processes of diffusion, production and dissipation. In 
the recent review of Launder [19], this state of alfairs 
was also suggested, particularly on referring to the 
dissipation term, 8g- Launder mentions that a two- 
prong thermocouple probe is able to measure c,, 
whereas a direct measure of the dissipation of turbulent 
kinetic energy, E, is known to be of more difficulty. 
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MODELISATION DE LA TURBULENCE DANS LA CONVECTION MIXTE PAR 
L’ECOULEMENT DE MERCURE DANS UN TUBE 

R&nnnC-Un modele simplifie algebrique des contraintes est utilise pour ttudier l’effet de la pesanteur sur 
l’bcoulement moyen et turbulent du mercure dans un tube. La methode aux differences finies de Patankar et 
Spalding est utilisee pour rdsoudre les equations paraboliques. Des resultats sont compares aux mesures 
anterieures dans un domaine de Ra/Re* allant depuis presque zero jusqu’a 10m4, pour 30 000 < Re < 90 000, 
et ils predisent qualitativement les distorsions observees. Des fluctuations de temperature sont mesurees dans 
la region de paroi en supplement des experiences prtc&dentes. Les effets du chauffage sur le transfert turbulent 
d’inergie et de quantiti de mouvement sont calculis. Le modele confirme aussi le renversement mesure du flux 

axial turbulent. 

TURBULENZMODELLE FUR MISCHKONVEKTION BE1 DER 
QUECKSILBER-ROHRSTRCMUNG 

Zusnmmenfassung-Zur Untersuchung des Auftriebseinflusses auf die turbulente Quecksilberstriimung in 
einem Rohr wurde ein einfaches algebraisches Schubspannungsmodell entwickelt. Die Finite-Differenzen- 
Methode nach Patankar und Spalding wurde zur Lasung der parabolischen Stramungsgleichungen 
herangezogen. Die Ergebnisse wurden mit friiheren Messungen fur einen Bereich von Ra/Re* zwischen 
nahezu 0 und 10e4 fiir 30000 i Re < 90000 und mit qualitativ beschriebenen, beobachteten Storungen 
verglichen. In Wandnlhe wurden Temperaturschwankungen gemessen, urn friihere Messungen zu bestiitigen. 
Einfhisse der Beheizung auf den turbulenten Energie- und Impulstransport wurden vorhergesagt. Das Model1 

bestatigt ebenso den gemessenen Umschlag der turbulenten axialen Stromung. 

MO~EJMPOBAHME TYP6YJlEHTHOCTM B CMEUIAHHOH KOHBEKHMM IlPM 
TEtlEHMM PTYTM B TPY6E 

Aworauw-_A:IR M~yW”MH BJWiRH#II dpxW,e:loBoii cM,Ib, Hii ocpe,!lHeHHoe "oJle H l'yp6yneHTHble xapar- 

IepRcrMKM Te'leHHII PTYTH B Tpy6e HCno:lb3yeTcSl ynpoLUeHHi4R a;lre6paWecKan MOLleJlb iI"K 'IeH30pa 

peiHOnbLICOBblX HNlpmXeHHk MeTon KOHeYHblX pa3HOCTeti &TaHKapa M CnO:lIWHra nplrMeHmcR Ujll 

PeUIeHHR MOUeslbHblX napa6onttrecKMx YpaBHeHMk Pe3y,7bTaTblCpaBHAWdnHCb C PaHee BbInOnHeHHblMW 

B nmna30k~e R~I/R~ OT 0 no 10mJ ms1 30000 < Ru < 90000. C uenbto iIOnOJ1HeHUI paHee BblnOjlHeH- 

HblX 3KCflepMMeHTOB 6bmi WMepeHbl ll)'JlbCaUHM TeMllepaTypbl B npMCTeHHOii o6nacTki. PaCCWraHO 

B.--HIlHHe HarpeBa Ha Typ6y21eHTHblti IlepeHOC '3HepTkiH I4 KOnHWCTBa flBM~eHH5I. MouensposaHwe "On- 

TBepAwno TBKXE MsMepeHHoe H3MeHeHHe nanpaknetmfl Typ6yneHTHOrO "OTOKa Tenna B OCeBoM Ha"- 


