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Abstract— A simplified Algebraic Stress Model was used to investigate the effect of buoyancy on the mean and

turbulent flow of mercury in a pipe. The Patankar and Spalding finite difference method was used for solving

the governing parabolic flow equations. Results were compared with previous measurements covering a

Ra/Re? range from near zero to 10™% for 30,000 < Re < 90,000 and qualitatively predicted observed

distortions. Temperature fluctuations were measured to supplement previous experiments in the near-wall

region. Heating effects on turbulent energy and momentum transfer were predicted. Modeling also confirmed
measured reversal of the turbulent axial flux.

INTRODUCTION

IN ANY flow system, a body force acts in a fluid element
in addition to surface forces. This action is primarily
dependent upon the flow orientation in relation to the
gravitational field.

When the flow is turbulent, gravitational forces are
present in the mean and turbulent fields. Depending on
certain flow parameters, this influence can be
predominant in one of them or equally important in
both fields. Experimental evidence gathered in the last
15 years has shown substantial distortion in the
fluctuating and time-averaged flows due to action of
buoyancy forces. These distortions cause significant
variations in the overall coefficients of momentum and
heat transfer [1].

It has been established [2, 3] that in buoyancy-
affected turbulent flow in vertical pipes, as a
consequence of increasing the wall heat load, the
modeling of the turbulent kinetic energy is required to
well represent the important features occurring in the
measured heat transfer coefficients.

The turbulent kinetic energy equation written for a
simple two-dimensional (2-D) shear layer in a system
oriented in the upward direction shows an extra term
representing the direct influence of buoyancy in the
turbulence, (Bg/ T)uf, where u0 is in the axial direction.
Also, the radial turbulent momentum and heat
transport terms appearing in the time-averaged
equations involve the correlations uv and 0.

In order to mathematically close the set of equations
which will be shown later, there is a need for a model for
uv, v0, and ub.

Among possible closures, the eddy diffusivity models

* Presently on leave at Components Technology Division,
Argonne National Laboratory, Argonne, IL 60439, U.S.A.

give the correlations,

—yp = V,— 1

u = v 2 n
— oT

—v0 = a,— 2
ay

and

— aT

—uf = o,— 3)
ax

where y is the radial direction and x is in the upward
axial direction.

By means of equations (1) and (2), calculated values
for the eddy diffusivities, v, and «,, using measured
distorted radial profiles for the mean velocity and mean
temperature, led to the observation that eddy
diffusivities were very sensitive to heat fluxes [4, 5, 6, 7].
Therefore, Jacoby et al. [ 7] concluded that this concept
appeared to be of limited usefulness for generalized heat
transfer modeling, at least in mercury at the conditions
studied.

A moreimportant aspect of the limitation of the eddy
diffusivity concept for the prediction of the turbulence
structure for the flow under consideration can be seen
by means of equation (3). For an upward heated flow
(temperature increasing with height), the use of (3) gives
adownward direction (negative value)for the axial heat
flux pc,uB. The experiments of Carr et al. [8],
Hochreiter [9] and Flaherty [10] show a substantial
change in the turbulence structure under the effect of
buoyancy implying the reversal of the direction of the
axial turbulent heat flux. This drastic change in the flow
transport properties cannot be calculated by the model
of equation (3).

The present contribution numerically investigates
the effect of buoyancy on the mean and turbulent fields
for a heated vertical upward flow of mercury. The
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NOMENCLATURE
A axial temperature gradient, 6T/0x vz g2
c model constants Re,  turbulent Reynolds number, T
Cp speciﬁf: heat at constant pressure T mean temperature
D pipe dlameter ' T*  friction temperature, q,/pc,U*
2:  diffusion term of ¢ in the ¢ transport T*  dimensionless temperature, T/T*
equation, ¢ = w;u;, u-O, k,eor gand U*  friction velocity, Ub\/f/_Z
& =ij,jO, k, ¢ and g, respectively. U*  dimensionless velocity, U/U*
) k312 . U, mean velocity in the x; direction
f wall effect function, cuix,’ Fanning u; fluctuating velocity component in x;
friction factor _ direction
G generation rate of turbulent energy due uu;  kinematic Reynolds stress
pujg;,  —pulbg, u; turbulent flux of heat divided by pc,
to buoyancy effects, —— = 7 X; Cartesian-space coordinate (tensor suffix
- notation)
G;  kinematic production rate of uu; by y distance from wall
pwg;  pug; yt dimensionless wall coordinate, yU*/v.
buoyancy forces, — + —L°% =
8 p p Greek symbols
T A
- -7:(“.-09 i+ ubg) o thermal diffusivity, —
. . . — PCo
Gj  kinematic production rate of “J‘H due to B dimensionless volumetric expansion
06 —p6%g,; . op| T
buoyancy effects, po9; _ —B0g; coefficient, — _fi z
p T otipp
G Grashof i . C e
T4 ashof number pased ;)n ax1a41 2 & kinematic dissipation rate of turbulent
temperature gradient, pgfgAD*/u ..
0% 2 kinetic energy
g L. .. g, kinematic dissipation rate of variance of
g; gravitation acceleration in the x; :
. . temperature fluctuations
direction o Lo —
k turbulent kinetic energy, u;u;/2 ¢jo  dissipation rate of u;0
! turbulence length scale, k¥?/e &;  dissipation rate of u;u;
. S 5U 0 fluctuating temperature
p mean static pressure, — ;i — =3 . .
dx, 0 variance of temperature fluctuations
generation rate of turbulence energy due A thermal conductivity
to mean velocity gradients U molecular dynamic viscosity
Pe Peclet number, RePr T pressure-strain correlation {general),
Pe,  turbulent Peclet number, Re,Pr = k?*/ex pfou, Ou
P, generation rate of g by mean o7 ; ox; + ox;
temperature gradients, —u, 6 . my,  first part of my;, associated with
K turbulence—velocity interactions,
P;;  kinematic production rate of uu; by .k (i — 36, K)
mean velocity gradients, LA
WaU +u u —0U; T 2 second part of ;; 5 associated with mean
, x, *ox, 0%, strain, —c,(P;;—39; jP)
_ my;, 3 third part of @), associated with
P;,  kinematic production rate of u;0 by buoyancy, — ¢3(G;;—36,6)
mean velocity gradients —Zé ou; T pressure—temperature gradient
’ 6xk 60
. p
Pr Prandtl number, uc,/4 correlation (general), l_) %
R ratio of time scales of turbulent gy p—
. &g Tj,1 turbulence part of mj, —cy97u0
temperature and velocity fields, —; k
ive radius ke, T, Mean strain part of 7y, —c26Pje
pip T3 buoyancy part of @y, —c34Gj
Ra  Rayleigh number, pZfgc, AD*/ul p density
= PrGr, ! fluctuations in density about mean
p
Re Reynolds number, DU, /v (included in buoyant terms only)
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‘ ¢ turbulent Prandtl number for 7, &, £ and
g when & = t, k, ¢ and g, respectively
T shear stress
1 v kinematic viscosity.
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Subscripts
t turbulent value
W wall value

b bulk value.

approach used here does not make use of the eddy
diffusivity concept which, according to the foregoing,
seems to be of limited usefulness at least for the class of
flow under consideration.

MATHEMATICAL MODEL

In this section, the transport equations for the mean
velocity and temperature and for the turbulent
stresses/fluxes are presented together with the closure
assumptions used. Also presented are equations for k, &
and g = 6%/2, as required for closing the system of
equations. The basic difference from the model
presented here and the second-order closures published
in the literature is the treatment of certain terms in the
uf and g equations which are assumed here as
dependent upon Pr. Predictive relations are proposed
for liquid metal flows and asymptotic behavior for
Pr ~ 1 cases is also accounted for.

The time-averaged momentum and energy equ-
ations for subsonic incompressible flow can be written

as,
DU op, ¢ 6U,-+6U)+uu]+
or T Tax o, M ox pai
@
DT ¢ ( aT
pc A —pcu@) (5)
"Dr ox,\ax x;

The correlations wu; and # G appearing in the RHS of
equations (4} and (5}, respectively, represent two
additional unknowns in the problem of solving the
velocity and thermal fields. These extra terms are a
consequence of the averaging process over the
convective term.

An exact equation for the Reynolds stresses, pﬁ,.u'-j,
can be derived by multiplying the x,-component of the
instantaneous case of equation (4) by u; and adding u;
multiplied by the x -component of the same equation.
Then time averaging.

The modeled form of the wu; equation used here
comes mainly from refs. [11] and [12]. Since in this
work no novelty was introduced in closing the
hydrodynamic field, the details of modeling the ua;
equation can be found in the above references. Hereit is
sufficient to say that the final form for the uu; equation
is,

D[L)ltu” P+ Gi+m 41y .+ m;8

+7‘ij,w"%5u'5+@ij (6)

where P;; and G;; are the production of u,i; by mean
flow and buoyancy, respectively, n;; , 7;;, 5, and 7;; 5

are the turbulent, mean flow and buoyant parts of n;;,
7. is a wall correction to m;;, and e is the dissipation of
turbulent kinetic energy. The diffusion term, 9, is the
same as in the exact wu; equation since models for
transport terms are not necessary, as will be seen later.
Modeled equations for k and ¢ are derived in the
literature {13, 14] and will be just presented here. The
transport of k along a streamline is governed by,

Dk
B?=P+G_8+‘@“ (7
where
o | v ok
P = dx; [o‘k ox; ]

is based upon the gradient transport assumption,and P
and G are production of turbulent kinetic energy by
mean flow and buoyancy, respectively. For ¢, the
transport equation reads,

De £ &2
B{»:cnzP+cs3kG ce2 + D, (8)
where
9, = _?_!: v, 0 ]
ox;| o, 0x;

In equations (7) and (8) the ¢s and os are constants to
be presented later.

For the turbulent heat fluxes, an exact transport
equation can be obtained using a procedure similar to
the one used to obtain the wu equation. The result
reads [15],

Duff — 0T
—B‘{-x‘ujuka+Pjg+ng+Tng+Ejg+.@j9 (9)
where, L
—oU; p'0y;
Pjo=—uk95x—:, Gpo=""4
. ‘60 Juyy +6uk + 400 Ou; _pab
P o \0x, | 0x;) | pey ox, dx, " pd ;

IZ) A 08
7 S 0+
#7pox, { TP “i %,

fu; 0w\ —
+ub (—“ + —“—’i) —p0 5,,].
5 k }

Equation (9) is valid for liquids and when
compressible effects and viscous production are
negligible. Inspecting (9) one sees that the last three
terms on the RHS need modeling. Here, attention is
focused to liquid metals and prognostic relations with
dependence on Pr are suggested.
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For high Reynolds number, £y can be written as [ 16],

o= — 10
€ = (a+V) ox, s (10)
where
A
o =—.
pCy

Lumley and his co-workers [ 17, 18], as well as Launder
[19], assume that equation (10) is negligible when local
isotropy also prevails in the thermal field, or,

ERCIRCIR

Gibson [16] points out that under this condition
it is the randomizing action of the pressure-tempera-
ture gradient correlation which limits the growth of
fluxes u;0.

However, for liquid metals, equation (11) is not
expected to hold, since even the smallest eddies are
themselves influenced by action of the high thermal
conductivity. This is consistent with the reasoning
involved in many previous works in liquid metals (see
for example [20]).

In approximating (10), one should get the correct
asymptotic behavior when Pr ~ 1 and Re, is large,
or let us say, ¢; should attain very small values under
these conditions. With this idea in mind, and using
an order of magnitude argument similar to the one
presented by Tennekes and Lumley [21], du;/0x, canbe
approximated as,

ou;  k'?

—_—~ —

12
0%, l (12)

where k is the turbulent kinetic energy and | a
turbulence length scale. Similarly 86/0x; is assumed as,
a0  g'?

—_— e~

13
ax, Iy (13

where g =82?/2 is one half of the variance of
temperature fluctuations and /, is a length scale
associated with the thermal field. The quantities k'/?
and g'/? are representatives of velocity and scalar
scales, respectively, for the energy containing eddies.
Thus using equations (12) and (13),

1 k1/2g1/2
g~ 14+ — .
£t ( + Pr>v I,

(14)

Furthermore, one can assume [21],
12,12 o
k''2g u

and noting that,

(14) becomes,

1 1 £—
i~ —}———ud. 15
o (” Pr)Re.(l.,/l) P (15)
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As mentioned before, the asymptotic behavior g,y — o0
for Pr ~ 1 is retained in equation (15).

In deriving (15), the ratio of length scales /! is
introduced. Since the model works with only one length
scale, the ratio of length scales has to be supplied. By
using available experimental data on energy containing
length scales for several Prandtl numbers, one has,

ly .. 0179
‘l—=0821 Pr 0'2+ —P—rﬁ

(16)
The above relation was obtained by curve fitting the
results of refs. [9, 22, 23, 24] for [, and I, which were
obtained through spectral analysis. Equation (15) is
now calculable, once k and ¢ are available. The
proportionality factor in (15) is taken as ¢, 4/c;y, where
the c¢s are constants to be determined later.

As with the pressure-strain correlation =; in
equation (6), 7 in equation (9) can be split as,

a7

Tjp == Mjp,1 T Tjg,2+ Tjg,3

where 7, , is the ‘turbulent interaction’ part of 7, and
Tje,» and 7 5 can be interpreted as the decreasing of
production rates by shear and buoyancy, respectively,
caused by pressure fluctuations. The last two terms are
modeled exactly as in ref. [11] where more details can
be found.

To model the first part, 74, the view of Monin [25]
is adopted here as

£——

Mg 1 = —Cyp— 0.

§ X (18)

The two terms, ¢; and 7, ;, can be combined as,

(19)

& —
Eip+ T = —cwEFlujB

1 1
()

The presence of the wall is accounted for by adding
an extra term. The wall correction is also as in Ljuboja
and Rodi [11], but includes the functional F;, as
suggested by ref. [15],

£, — )
Tjg,w = l:"F1 Ec’wukﬂ nk”j]f(;') (21

where fis a function which decreases this correction for
points x, far from the wall. In addition, in the argument
of f, lis a turbulence length scale and »n is a unit vector
perpendicular to the wall. Again, no proposal is made
for Z;, since the difference [(Du;0/Dt)— 2 ;5] will be
neglected by model assumption. So, the final modeled
form for the 4, equation is,

Duf — 0T & —=
D; :—uiuka; +Pj6+Gj9—CIBEuj9F1

where

(20)

+nj9,2+njo‘3+njg’w+@je. (22)

An equation which describes the history of the
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temperature fluctuations can be obtained as

2
E=P9—£g+—a—|:oca—g—i]. 23
Dt ox;|  Ox; 2
Equation (23) is much the same form as the exact
turbulent kinetic energy equation but the lack of perfect
analogy shows up in the absence of a term
corresponding to the pressure-velocity correlation.

On seeking a modeled form for (23), one should use
the same reasoning embodied in modeling 5, where
only a few terms in the equation are assumed to be
affected by molecular ‘smearing’ of the large-scale
motion. Or, say, in the particular case of (23), only the
dissipative and the turbulent diffusion terms are
assumed to be different when Pris of alow value. This is
certainly a simplification, but at first seems to be a
cautious path. Also, the modeled form shall approach
asymptotic values when Pr = 1.

With the above ideas in mind and using a similar
argument as [26], it is suggested that temperature
fluctuation disappears by two mechanisms: (a) the
decay of velocity field drives the decay of the
temperature field in a cascade process occurring at a
rate characteristic of the inertial subrange, and equal to
¢/k, and (b) at the same time, heat is lost due to the fluid
thermal conductivity and differences of the instan-
taneous temperature within the fluid. The latter
mechanismis therefore much like a conduction process,
and occurs at a rate proportional to «/lZ, which is a
characteristic rate of a diffusive transport.

Thus, assuming that the two processes are
independent, or that nonlinear effects are neglected, the
dissipative term can be written as,

rx+ls
g =|—+—=-19
N P o b

(24)

but noting that

x|,

1
Pe,

Bl R

and taking
¢ =R,

where R, is the limiting time scale ratio R, when
Pe, » 1, equation (24) is

& =R Y (25)
where
R =[———1———+—1—]_1. (26}
¢, Pefls/* R,
It is seen in equation (26) that for
Pe,»0; &, =g @7
kR,

or only that mechanism (a) is important. Equation (27)
is usually used in the literature to represent ¢,. The ratio
(lo/]) is calculated from (18) and ¢, shall be determined
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later. Equation (26)is calculable once k, ¢,and g become
available.

The last term on the RHS of (23) is approximated
using once again the gradient transport notion.
Therefore, the turbulent diffusion term is assumed as,

0 uf\ 0 Rv 9y

0x; 2 ) ox; 0, Ox;
In (28) the inclusion of R indicates the contribution of
the thermal field time scale in transporting temperature
fluctuations, see ref. [15]. The constant g, shall be

determined later.
The final modeled form for (23) is then,

Do gt 2 R

=P,———+4+—la
Dt * kR ox; o, |0x;

(28)

(29)

The task of solving the flow and thermal fields, using
(4), (5), (6) and (22) requires for the general 3-D case the
solution of a system of 13 transport equations. In order
to reduce the number of turbulence transport
equations, and still keep the same information as in (6)
and (22), Rodi [27] suggests that the transport terms in
the Reynolds stress equation can be considered as
proportional to the transport of k,

DR, )

30
Dt Yk \Dt (30)

To derive equations applicable to pipe flow, the
scheme presented by Ljuboja and Rodi[12]is used. For
the stress component uv and for the heat flux
correlations 18 and v0, a local equilibrium assumption

Conv.—Diff. =0 31

is applied. The coordinate system is based on Fig. 1 and
details on the derivation are presented in ref. [28].
The final set of equations is,

— v? k? oU (32)
-y =W — —
k ¢ dy

where,
(1—c3)B
(l—cy+che 3N+ ——

W= prm Fylcio+ciof) 33)

(¢1+3¢1f)

FLOW

FiG. 1.
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and
B kaT
B=—-g —-—/0U/0 34
7957 3 /0y (34)
v—z —_—
=
G G
2 =1+ . (ca—cyc3 )+ ;(Cs—cz*‘czc’zf)
3 P+G
¢+ — 1+2¢,f
(35)
For the thermal field, the equations read,
k2% 0T
— s k dy
-0 = (36)
Fi(cyp+chof)
and
— 1 k
—ufl = -
coFy &

—oT —oU
X | uv — + (1 — o0 — — Bg. (1 —c16)2g |
dy ay
(37
The turbulent Prandtl number, g,, is obtained from
(32) and (36) as,
o, = w(crg+Ciof)F1
where w is defined in (33), and F, given by (20).
By inspecting the system of equations for U (4), T (5),
k{(7), ¢ (8) and g (29), and algebraic relations for uv (32),

vZ(35), v8(36) and uf (37), one can see that the problem
is mathematically closed.

(38)

BOUNDARY CONDITIONS

Atthe pipe centerline, the derivatives of the mean and
turbulence quantities are taken as zero, or

% =0 39
ay y=R
where ¢ stands for U, T, k, ¢ and g.

In the region near the wall, the proposed modelis not
applied to the viscous sublayer. Therefore, for the
velocity U, one assumes that at the junction point,
defined as the point located sufficiently far from the wall
so that molecular exchange is now totally overwhelmed
by turbulent mixing, there is a region where the velocity
is related to the friction velocity, U* = (t,,/p)'/?, via the
logarithmic law of the wall, as in ref. [13],

Ut = %ln (y*E) (40)

where U' = U/U*, y* = yU*/v, k = 0.435 is the von
Karman constant, and E = 9.0 for smooth walls. These

values were taken from Patankar and Spalding [29].
In the above given y-region, production and
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dissipation of turbulent kinetic energy are in balance.
This assumption, together with the Kolmogorov—
Prandtl expression, g, = pc,k*/e, gives for k at the
junction point [13],

k= U*2cli2, (41)

Taking the length scale close to the wall as
proportional to y, using I = k'/?/¢ and equation (41),
one has,

e = U*3/iy. 42)

For the fully turbulent region in question, molecular
heat transport may be significant for the case of liquid
metals. It is assumed that the temperature profile
between wall and the junction point is linear, or,

T =y* Pr 43)

where
e BT
=
T = temperature at the junction point,
T, = temperature at the wall.

T* = qu/pc,U*;

For the g equation, the present experiments in the
near wall region (y* < 100) were correlated in terms of

the nondimensional temperature variance, \/271/ T*,
The results can be expressed as,

2
V2 _ y*Re®0281087x 1075 Re.  (44)

T*

Equation (44) indicates that the scalar scale is linear
with y* from the wall to the region of validity of (40),
and it is used as a ‘wall function’ for g in the near wall
region.

CONSTANTS AND SUMMARY
OF EQUATIONS

The three constants introduced, namely ¢4, ¢,,and o,
are here determined. All the other constants are taken
from ref. [12] and will just be given.

To bring the level of calculated 40, v0 and g to the
same level of measurements of Flaherty [10],
Hochreiter {9] and present measurements, the
constants ¢, and ¢, were taken as 0.004. It should be
mentioned that the uncertainty and scatter of turbulent
measurements in liquid metals do not allow a confident
assignment of values to those constants. As more data
are gathered, the degree of uncertainty can be reduced.
Nevertheless, the use of the above constants is here
assumed as a first approximation in the absence of
better information. A sensitivity analysis using different
values of ¢;, and ¢, is shown in [28].

The constant g, takes the value of 0.72 so that when
Pr=1 and R approaches R, = 0.8, the overall
turbulent coefficient for g takes the value p,/0.9, which is
the same used by Spalding [30] and Plumb and
Kennedy [31].

A summary of the equations written in their thin
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Table 1. Model equations and constants
Source/sink
Pressure-strain scrambling
Mean flow Buoyancy Viscous Non-buoyant Buoyant
Var. Conv. Diffusion production production destruction contribution contribution
U DU o du 1dP
== oy Sl .
Dz dy 'y p dx g
r BT oy w)or
Dt dy\Pr a,) 0y
Dk i ok —oU —
— (& — Uy = Eg,u@:G —g
Dt dy\a,/ dy a3y T
De a v\ e £ -——3U e B por &?
— —— 1= Gy UV ——  CezT Ty Cpz
Dt oy\o.) 3y 2 e CrTY %
Dg 8fv v\dg g oT ge
=2 AT hi A —of—— ~ 2
Dt 8\Pr o,/dy oy kR
— Dub = —dT —oU B £ — —aU B
ug Dr Difl. ué —uva—y— mvea; Z-fg,g ~cw—£u9F1(Pe‘)+cmvHa—y~ ~—c39?g,29
— Dof i —aT P =
vé -f)T Diff. o8 —v? ‘5)7 Al E F,(Pe,)[cw + Cmf}ve
- Dou o —aU [ e—{ 3¢ [ —
uv B Diff. uv _vzz?; :fg,ve —ct-l;uv(la-izz-f) —c3—?:ng8
3 — U
1—Zehf Jo?—
+c2< 2c2f)v 3
— D2 o 2 & ¢y \—= 2
2 B Diff. »? —3¢ ~c,;[<1+2;~:—f>vz—§k]
2 —gU
—502(1 —2¢% fyuw 5;
Constants in the turbulence model
Cey Ce2 Ce3 Ok G Cy C2 Cy Cw i o Cig Cae C3g e O,
144 192 144 10 13 18 06 06 372 06 03 30 05 05 05 072

shear layer form, as applicable to pipe flow analysis, is
shown in Table 1. Also shown are model constants.

COMPUTATIONAL DETAILS

A finite difference solution scheme was applied to the
set of equations for thin shear layers presented above.
The calculations were performed for hydrodynamic
developed pipe flow with uniform wall heat flux.

The computer program modified to include the
turbulence model is an early version of the Patankar
and Spalding [29] code called STANS. In the
original program, turbulence was calculated with only

HMT 28:6-B

‘zero’ and ‘one-equation’ models, in a fully explicit
manner. To overcome possible numerical instabilities
resulting from the more sophisticated representation
developed here, a new treatment for the sourcestermsin
the turbulence equations was devised with some basic
reprogramming required to adopt it.

The geometry simulated corresponds to the heat
transfer facility at the Nuclear Engineering
Laboratories at Purdue University. An adiabatic entry
length of 65 diameters was used before a heated length
of another 67 diameters. This total of 132 diameters
required an average of 280 integrations in the
streamwise direction.



1074
RESULTS AND DISCUSSION

Isothermal results

Although this work was primarily concerned with
nonisothermal flow, calculations were also performed
for isothermal flow, in the range of 30000 < Re <
90000, to provide a reference and check the model
performance by predicting unheated flow in the
Reynolds range of interest for the heated
measurements.

Figure 2 shows results for the mean velocity as
compared with experiments of Eyler [22]. Agreement
seems reasonable except near the centerline. In this
work, all mean velocity profiles are underpredicted at
the centerline. This is a result of the inability of the
model to represent the turbulent velocity length scale
decreasing in the near centerline region. This point will
be discussed later. Here it will suffice to say that a larger
length scale at the centerline causes a larger coefficient
of momentum exchange, u,, and therefore a flatter
profile at the center.

Figures 3 and 4 compare predictions for k and ¢ with
Laufer’s measurement in air [32]. It is seen that the
calculated values at y/R < 0.3 for k are slightly larger
than the experimental data. That is in agreement with
what was said previously about the turbulent
coefficient of exchange, y, = pc,k?/e, sincelarger values
for kimply larger values for u, and then a flatter velocity
profile.

The nondimensional turbulent shear stress is shown
in Fig. 5, compared with Hochreiter’s results for

1.200 é--ﬁ.-.~%..-~

U/Up

1.100
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mercury [9] and Laufer’s data for air [32]. Agreement
seems good over most of the flow cross section. The
reason for the sudden increase in the predictions in the
wall region is two-fold. First, the equation describing
uv, equation (32), is written with the local equilibrium
approximation, or {(Conv.—Diff) = 0. Close to the
wall, this is not expected to hold, since diffusion
transport in the cross stream direction may be of some
significance. Second, the evaluation of velocity
derivatives close to the wall is dependent on the grid
mesh used, and so production terms in the uv equations
are sensitive to grid point distribution. Because of
reason (a), the absence of a diffusive term on the uv
equations does not ‘smooth’ the differences out. This
can be seen by referring to results for kand ¢, Figs. 3 and
4, where no ‘kinks’ are present. In addition, extensive
testing using several grid spacings in the wall region has
shown the dependent variables U, k and ¢ to be much
less sensitive to the wall grid distribution than uv itself.
For that reason, nonisothermal results to be shown
later were calculated with a more inexpensive coarse
grid near the wall.

Figure 6 compares predicted values for the lateral

velocity fluctuations component \/ﬁ JU*  with
Hochreiter and Laufer results. The wall damping effect,
showed more clearly by Laufer’s results, is obtained for
distances very close to the wall. This may be an
indication for a need for a more elaborate wall
correction for the pressure strain correlation. In this
work, use was made of a simple wall correction
presented by Ljuboja and Rodi for wall-jets [12].
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Table 2. Comparison of predicted friction factor with Blasius
formula for isothermal flow
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work, the parameter Ra/Re’® is used as a buoyancy
factor as suggested by Bird et al. [34].

_ -0.25 o

Re S calculated f =0079Re % error The hydrodynamic field
18471 0.00662 0.00678 —23 Figures 7 and 8 show comparisons of predictions
29851 0.00598 0.00601 =05 with experiments of Jacoby [5] for 30000 < Re
46694 0.00542 0.00537 +09 < 60000. The results qualitatively describe the
56057 0.00520 0.00513 +13 distortion on the mean flow. However, in most of the
89359 0.00480 0.00457 +5.0 ' ’

Launder and Samaraweera [33] used a more
complicated version of the wall correction for

calculating confined flows, but no results on \/ﬁ JU*
for pipes were presented. Therefore, an assessment on
n,;wall correctionsisstill limited by lack of testingin the
literature.

Friction factors, f, were calculated and compared
with Blasius formula, f = 0.079 Re™ %25, Results are
shown in Table 2. The errors of the predictions are
within + 5% in relation to the Blasius smooth pipe
formula.

Nonisothermal results

This section presents results for mean and turbulent
quantities as functions of the buoyancy parameter
Ra/Re?, where

Ra = Gr, Re = Rayleigh number,

Gr, = p*BgAD*/u* = Grashof number based on A4,
and A = dT/dx is axial temperature gradient. In this

Ra/Re* covered, the amount of distortion is
underpredicted. The reason for these discrepancies can
be explained as partially due to modeling and partially
due to the numerics used. First, in Figs. 7 and 8 the
flatter calculated profiles for U near the centerline may
be due to the relatively large calculated length scale in
this region, in a manner similar to what was said for
isothermal flow. The second reason has its grounds in
the numerical aspect.

Although the treatment of the source terms was
changed from the original PS method to avoid possible
numerical instabilities, the explicit handling of the
effective diffusion coefficients was kept the same. This
was done to keep linear the set of algebraic equations
obtained from discretizing the balance equations. This
fact enables the use of a direct, noniterative numerical
algorithm for solution of the algebraic relations.
However, for high heat rate cases, fluid properties
variation along the axial direction of integration
implies a nonlinear set of equations, in the sense that the
finite difference coefficients have then to be updated by
successive iterations in each forward step. Although the
use of a nondirect, iterative numerical method seems to
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FiG. 7. Comparison of measured and predicted mean velocity, U, Re = 30,000.
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be suitable for solving cases with high wall heat loads, in
this work a direct solution technique, known in the
literature as the Tri-Diagonal Matrix Algorithm
(TDMA) was used. The justification for using the
TDMA scheme lies in the fact that the accuracy
obtained by using an iterative solution procedure
would not be consistent with accompanying un-
certainties of several proposed model relations as well
as discrepancies associated with experimental liquid
metal data. The absence of an iterative procedure to
correct for properties variation along the streamwise
flow direction caused an error of about 159/ when the
total heat input through the wall was compared to the
heat carried by the fluid. This cumulative error was
referent to the highest buoyancy parameter used
(Ra/Re* = 299 x 10™%) and to approx. 280 forward
steps.

For the reasons stated above, including uncertainty
in the quantitative aspect of the model predictions and
inherent difficulties associated with the numerics used,
in this work one tried to investigate only the qualitative
aspect of changes in the variables as a function of the
buoyancy parameter, Ra/Re>.

Figure 9 presents the effect of heating in the turbulent
kinetic energy. The initial damping and posterior
enhancement of turbulent exchange, as claimed by
Petukov’s papers [1, 35] is qualitatively predicted.

Figure 10 presents results for the turbulent shear
stress, uv. The kinks near the wall are the result of the use
of a less expensive grid spacing close to the wall. As
mentioned for the results for isothermal cases, this is

due to the absence of a diffusion term in the uv equation
that physically smooths out differences in calcuating
velocity derivatives in the near wall region. The use of a
coarse grid, however, did not cause detectable
differences for variables described by a transport
equation, namely U, T, k, ¢ and g¢.

Figure 11 shows the behavior for \/U:Z JU* similar to
the one for k. This figure suggests that gravity also has
aninfluence on the turbulent structure in the directions
perpendicular to the gravity field. This is in agreement
with the review of Launder [19], and shows the
connection among turbulent stresses in a gravity
affected field. Although no direct influence exists of
gravity on v, the dependence of v? on stresses aligned in
the axial direction causes an indirect affect on it. This is
seen by inspecting the existing interlinkage among the
stresses, represented in Table 1.

The ratio of lateral to total kinetic energy is shown in
Fig. 12. The figure shows a substantial difference of
heated v2/k predictions when compared with the un-
heated profile, which is monotonously decreasing to
the wall. A ‘peak’ appears in the core region and
approaches the wall as Ra/Re? increases. The figure
suggests that although k and 97 are damped by
buoyancy in the near wall region, the lateral
fluctuations are less sensitive to these changes than the
axial velocity fluctuations, uZ, which is aligned with the
gravity vector and so directly influenced by gravity.
Thus, in this region, lateral fluctuations will carry
relatively more energy when buoyancy is present than
in the isothermal case. In this work, no equation is used
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to describe the axial velocity fluctuation and an
assessment on the effects of buoyancy on it can only be
roughly pictured.

The thermal field

Temperature profiles are shown in Fig, 13. Results
are compared with experiments of Jacoby [51. The
predictions qualitatively follow the experimental
trends. An initial tendency towards a radial linear
dependence followed by a flattening of the temperature
profile is well calculated. The first stage represents a
decrease in turbulent exchange and the second one an
enhancement in the lateral turbulent transport. Those
trends are in agreement with Petukhov’s explanation
for the initial decrease and posterior increasein Nu,asa
function of wall heating, Calculated Nus are presented
later.

In order to bring the level of calculated radial heat
fluxes to a level on the order of existing experiments, the
constant c;, in equation (20) was set as 0.004. This
constant comes from the modeling of the dissipation
process, £, which physically can be seen as asink for the
heat flux, u;8. Thus, the introduced constant, cj,
primarily controls the level of u;8.

Figure 14 compares calculated and measured radial
turbulent heat fluxes for mercury at Re = 50,000. These
measurements constitute a pioneering effort at Purdue
University during the 1970s in picturing turbulence
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structure in nonisothermal liquid metal flow [9, 10,
36]. The figure reflects the degree of difficulty in
obtaining reliable experimental information on this
quantity, and the scatter and uncertainty in the data
limit the degree of confidence in assigning a numerical
valueto ¢ ;5. The value here used should be considered as
a first approximation subjected to refinement as more
data are gathered.

Figure 15 shows calculated radial turbulent heat
fluxes. The predictions show that an initial decrease in
the level of v@ precedes a posterior increase, as the
Ra/Re” increases. This idea is also in agreement with
the predictions shown so far. The figure shows some
irregularities in the calculated profiles near the wall for
relatively large wall heat fluxes. At the stage of this
research, the lack of explanation for those irregularities
has its grounds in the difficulty to identify whether a
numerical or a modeling inconsistency exists which
causes the aforementioned anomalies.

A compilation of axial turbulent heat flux
measurements for various Pr is shown in Fig. 16 [8, 9,
10, 23, 24, 37]. (The figure is plotted for —uB/U*T*,
showing the opposite direction for the fluxes for a
system oriented upward). The resuits for air of Carr et
al.[8] and for mercury by Hochreiter [9] and Flaherty
[10] obtained at high wall heat loads show a reversal in
direction of the axial heat flux. This trend is more easily
seen with the Carr et al. experiments for two increasing
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wall heat fluxes. The model used in the present work
predicts the axial turbulent heat flux behavior, as the
buoyancy parameters Ra/Re? increases.

Figure 17 presents results for uf. The predictions
show a reversal and continuous increasing of the
magnitude of u0. The onset of reversal, as well as
quantitative comparison with experiments, are of
difficult analysis due to already mentioned un-
certainties in the experiments and on the modeling
proposals. The calculated values for the same
experimental conditions are roughly one-fourth of
Flaherty’s data.

Temperature fluctuations were measured for Re
= 30,000, Re = 60,000 and four wall heat fluxes. Figure
18 shows a comparison of measured temperature
fluctuations for mercury with the present measure-
ments [9, 22, 38]. The present results agree with
Hochreiter’s [9], and Loos’s [38] data, but are slightly
larger than Eyler’s [22] measurements. Eyler used a
different hot film calibration procedure than
Hochreiter and Loos. Although the probe calibration
used in this work is different from Hochreiter’s and
Eyler’s, it is more similar to the Hochreiter work.

Another source for the differences among data is the
counting time for obtaining the r.m.s. of the signal and

system noise. Caruso [39], whose data is in agreement
with Eyler’s, reported a waiting time on the order of 3.6
time constants (360s). Since in liquid metals most of the
information on the turbulent temperature fluctuations
are at relatively low frequencies, in this work a period of
five time constants was used to assure that fluctuations
on the low cycle part of the spectrum were counted. In
doing this, however, a relatively high value for the r.m.s.
was obtained, possibly due to counting of 60 cycle noise
from the electrical heaters. A study on the low cycle
noise in liquid metals is reported by Hochreiter [40].
Preliminary data analysis found the present results to
be on the average of 159 higher than the Hochreiter
and Loos data, and since differences in the calibration
use by them and the present work did not amount to
more than a few percent, the present data were
corrected in 15% to a level compatible with Hochreiter
and Loos data. This procedure was found to be a good
approximation, since a quantitative analysis of existing
electrical noise in the system is difficult to access. In
addition, this correction was done for all data, and
relative trends among measurements were kept the
same.

Fig. 19 shows measured and calculated results for
g = 0%/2. The introduced constant, c,, was taken as
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0.004 to give best agreement near the wall. In Fig. 19,
the centerline region is substantially overpredicted. Yet,
the calculations showed an increase in ./0%/T*
as Ra/Re? increases, while the experiments
showed a decrease within the same range. In this work,
an attempt was made to model the g equation to
correctly follow the dependence on Ra/Re?, but it is
recognized that further work is needed to approximate

1.6 L, - _%

all the terms in the equation. Extensive numerical work
was performed showing that even by totally eliminating
the turbulent diffusion in the diffusive term of g, the
centerline region was still overpredicted. This may be
an indication that the productive term, P,, and the
dissipative term, g, need further refinement, especially
near the centerline. In order to accomplish reliable
modeling for the particular case of the g equation in a
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more systematic way, this research identifies the
necessity of experimental programs for measuring
individual terms in the g equation for the flow under
consideration. After more understanding of the process
which individually accounts for the total level of g,
uncertainties occurring in modeling it can be reduced.

Friction factor and Nusselt number

Figure 20 shows the calculated skin friction factor, f,
for increasing Ra/Re?. The results are normalized by
the isothermal friction factor, fi,, obtained for very
small heat loads. The increase in f is due to the
increasing of the velocity derivative at the wall, which is
presented in Figs. 7, 8. The results are in qualitative
agreement with the measurements in water presented in
Petukhov’s review paper [35]. The calculated Nusselt
number is compared in Fig. 21 with measurements of
Jacoby [5], Kowalski [6], and Buhr {41] for mercury.
The figure compares absolute values and shows the
initial decrease in Nu due to damping in turbulent
transfer, as claimed by Petukhov [35]. In addition, the
calculations suggest that the higher the Reynolds
number, the higher the amount of damping. This fact is
also shown by Polyakov [41], who presented a
theoretical analysis for the boundaries of influence of
free convection in pipe flow of mercury.

CONCLUSIONS AND RECOMMENDATIONS

This research was primarily concerned with the
development of a predictive technique able to calculate
the influence of buoyancy in a vertical flow of mercury
in a pipe. Test calculations for isothermal flow showed
good performance in predicting turbulent and mean
flows.

Further results showed that distortion occurring in
the nonisothermal time-averaged flow is qualitatively
predicted. Calculation for the skin friction factor and
Nu are also in qualitative agreement with the literature.

The turbulent field is shown to be affected by
buoyancy, although a more accurate assessment on the
performance of the model here used is limited by the
lack of experimentation under this situation. The initial
damping and posterior enhancement of turbulent
transfer as Ra/Re’ increases is well predicted and
shown in results for k, vZ and v0. The reversal of ud
under the influence of buoyancy, also presented in
several experiments, is shown to be calculable by the
present model.

Results for temperature fluctuations are regarded as
a first approximation, requiring further work.

As recommendations, this research identifies the
need for more data on the turbulence structure for the
particular case of buoyancy affected flow, althoughiitis
recognized that existing data in nonbuoyancy flows
are scarce and subjected to experimental uncertainties.
This is particularly true for heated mercury flow
measurements where available experimental tech-
niques require extreme care for obtaining reliable data.

Major experimental programs for measuring the
turbulent correlation v8 and uf are found to be needed
for improving modeling assumptions. In the particular
case of the g equation, measurements of the individual
terms in the equation can provide insight for a more
reliable modeled form to represent the different
processes of diffusion, production and dissipation. In
the recent review of Launder [19], this state of affairs
was also suggested, particularly on referring to the
dissipation term, &, Launder mentions that a two-
prong thermocouple probe is able to measure ¢,
whereas a direct measure of the dissipation of turbulent
kinetic energy, ¢, is known to be of more difficulty.
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MODELISATION DE LA TURBULENCE DANS LA CONVECTION MIXTE PAR
L’ECOULEMENT DE MERCURE DANS UN TUBE

Résumé— Un modéle simplifié algébrique des contraintes est utilisé pour étudier 'effet de la pesanteur sur
P’écoulement moyen et turbulent du mercure dans un tube. La méthode aux différences finies de Patankar et
Spalding est utilisée pour résoudre les équations paraboliques. Des résultats sont comparés aux mesures
antérieures dans un domaine de Ra/Re? allant depuis presque zéro jusqu’a 10~ 4, pour 30000 < Re < 90000,
etils prédisent qualitativement les distorsions observées. Des fluctuations de tempeérature sont mesurées dans
la région de paroi en supplément des expériences précédentes. Les effets du chauffage sur le transfert turbulent
d’énergie et de quantité de mouvement sont calculés. Le modéle confirme aussi le renversement mesuré du flux
axial turbulent.

TURBULENZMODELLE FUR MISCHKONVEKTION BEI DER
QUECKSILBER-ROHRSTROMUNG

Zusammenfassung—Zur Untersuchung des Auftriebseinflusses auf die turbulente Quecksilberstromung in
einem Rohr wurde ein einfaches algebraisches Schubspannungsmodell entwickelt. Die Finite-Differenzen-
Methode nach Patankar und Spalding wurde zur Losung der parabolischen Stromungsgleichungen
herangezogen. Die Ergebnisse wurden mit fritheren Messungen fiir einen Bereich von Ra/Re? zwischen
nahezu 0 und 10™# fiir 30000 < Re < 90000 und mit qualitativ beschriebenen, beobachteten Stérungen
verglichen. In Wandnihe wurden Temperaturschwankungen gemessen, um frithere Messungen zu bestétigen.
Einfliisse der Beheizung auf den turbulenten Energie- und Impulstransport wurden vorhergesagt. Das Modell
bestitigt ebenso den gemessenen Umschlag der turbulenten axialen Strémung,

MOJEJUPOBAHUE TYPBYJEHTHOCTHU B CMEWAHHOW KOHBEKLIMU TIPU
TEYEHWN PTYTHU B TPVBE

AHHOTaUKA— /19 M3yHEHUS BIIMAHUA APXRME10BOM CHIIbI HA OCPEIAHEHHOE NOIE U TYpOYIeHTHbIE Xapak-
TCPUCTHKH TCYEHWS DTYTH B TPYOe HCMO.Ib3YETCH YNPOIUEHHAS arebpandeckas MOoJeb [Uis TeH30pa
PEAHOILACOBBIX HATpskeHUH. MeTton koHeuHbIx paszHocTed [MaTankapa 1 CnosavHra NPUMEHANCH LI
pelLeRs MO/Ie.1bHBIX Napaboiuueckux ypaBHeHUH. Pe3yIbTaTsl CPABHHBANNCH C PaHEE BBIIOIHEHHBIMK
8 nuanazone RajRe? o1 0 mo 107* n1s 30000 < Re < 90000. C ue/ibko JONOJIHEHNS PAHEE BLIMOTHEH-
HBIX 3KCIIEPUMEHTOB ObLIM HW3MEPEeHb! MY/IbCAUMM TEMIEPATYpbl B HPUCTEHHON o6nacTH. Paccunrano
BAIMSHKE HArpeBa Ha TYpOYJeHTHBIH MepeHoc MHEPruu U KOJMMYecTBa ABWXEHMS. Molenuposanue noa-
TBEPAUJIO TAKXKE MIMEPEHHOE M3MEHEHHE HaMpaBileHus TypGYIeHTHOrO NOTOKA Tella B OCEBOM Harl-
paBACHHUH.



