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Heat transfer between phases in a moving porous bed is analyzed. This work proposes a set of transport
equations for solving problems involving turbulent flow and heat transfer in a moving bed equipment. The
device is modeled as a saturated porous matrix in which the solid phase moves with a steady imposed
velocity. Additional drag terms appearing the momentum equation, as well as interfacial heat transfer
between phases, are assumed to be a function of the relative velocity between the fluid and solid phases.
Turbulence transport equations are here also dependent on the speed of the solid material. Results indicate
that, as the phases attain velocities of equal order, turbulence in damped and heat transfer between solid and
fluid occurs mainly by conduction mechanism.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The use of biomass in modern combustion system has called the
attention worldwide for its potential substitution of non-renewable
fossil fuels. Biomass pelletization and preparation for energy produc-
tion may consider systems having a moving porous bed [1–6]. The
ability to realistic model such systems is of great advantage to a
number of materials, food and energy production processes.

Accordingly, a turbulencemodel for flow in a fixed and rigid porous
media has been proposed [7–9], which has been extended to non-
buoyant heat transfer under local thermal equilibrium [10,11], buoyant
flows [12–18], mass transfer [19] and double diffusion [20], including
applications to channels with porous inserts [21] and baffles [22].

In addition, in an accompanying paper [23], movement of the solid
phase in a porous bedwas considered. However, in [23] only isothermal
flow was treated. The purpose of this contribution is to extend the
previous work on moving porous media [23], accounting now for the
energy transfer between the fluid and the moving solid matrix.

2. Macroscopic model for fixed bed

Amacroscopic formof the governing equations is obtained by taking
the volumetric average of the entire equation set. In the development
next, theporousmediumis considered to be rigid,fixedand saturatedby
the incompressible fluid. Asmentioned, derivation of this equation set is
already available in the literature [7–9] so that details need not to be

repeated here. Nevertheless, for the sake of completeness, the final form
of the modeled equations is here presented:
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where the c's are constants, Pi ¼ −ρhuVuVii : juD is the production
rate of 〈k〉i due to gradients of ū̄D and Gi ¼ ckρ/hkiijuDj=

ffiffiffiffi
K

p
is the

generation rate of the intrinsic average of k due to the action of the
porous matrix.

For a fixed bed, temperatures for the fluid and solid phase are
governed by,
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where 〈T̄̄ f〉, 〈T̄̄ s〉
i, K's, hi and ai are the fluid and solid temperatures, the

conductivity tensors, the interfacial heat transfer coefficient and the
interfacial area per unit volume, respectively. The effective conductive
tensors for the fluid and solid phases, Keff,f and Keff,s, respectively,
account for all mechanisms contributing to the energy budget. A
complete review of Eqs. (5) and (6) is beyond the scope of the present
text and details of their derivation can be found in references [24–26].

3. Interfacial heat transfer coefficient

In Eqs. (5) and (6) the heat transferred between the two phases
was modeled by means of a film coefficient, hi, such that:

hiai hTs ii−hTf ii
� �

¼ 1
ΔV

Z
Ai

ni � kfjTf dA ¼ 1
ΔV

Z
Ai

ni � ksjTsdA: ð7Þ

where Ai is the interfacial area between the two phases and ai, as
mentioned above, is the interfacial area per unit volume or ai=Ai/ΔV.
In foam-like or cellular media, the high values of ai make them
attractive for transferring thermal energy via conduction through the
solid followed by convection to a fluid stream.

For numerically determining hi, Kuwahara et al. (2001) [27]
modeled a porous medium by considering it as an infinite number
of solid square rods of size D, arranged in a regular triangular pattern.
They numerically solved the governing equations in the void region,
exploiting to advantage the fact that for an infinite and geometrically
ordered medium a repetitive cell can be identified. Periodic boundary
conditions were then applied for obtaining the temperature distribu-
tion under fully developed flow conditions. A numerical correlation
for the interfacial convective heat transfer coefficient was then
proposed by Kuwahara et al. (2001) [27] for laminar flow as:

hiD
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¼ 1þ 4 1−/ð Þ
/

� �
þ 1
2

1−/ð Þ1=2ReDPr1=3; valid for 0:2b/b0:9; ð8Þ

Results in Eq. (8) depend on porosity and are valid for packed beds of
particle diameter D. Saito and de Lemos (2005) [24] also obtained the
interfacial heat transfer coefficient for laminar flows though an infinite
square rod array using the samemethodology as Kuwahara et al. (2001)
[27]. For turbulent flow, Saito and de Lemos (2006) [25] extended the
work in [24] for ReD up to 107. Both Low Reynolds and High Reynolds
turbulence models were applied in [25]. The following expression was
reviewed in de Lemos and Saito (2008) [26]:
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Other correlations for determining interfacial heat transfer in fixed
beds have been published (see for example Zhukauskas [28]).

4. Macroscopic model for moving bed

Here, only cases where the solid phase velocity is kept constant
will be considered. A moving bed crosses a fixed control volume in
addition to a flowing fluid, which is not necessarily moving with a
velocity aligned with the solid phase velocity. The steps below show
first some basic definitions prior to presenting a proposal for a set of
transport equations for analyzing such systems.

A general form for a volume-average of any property φ, distributed
within a phase γ that occupy volume ΔVγ, can be written as [29,30],

huiγ ¼ 1
ΔVγ

Z
ΔVγ

udVγ ð10Þ

In the general case, the volume ratio occupied by phase γ will be
ϕγ=ΔVγ/ΔV.

If there are two phases, a solid (γ=s) and a fluid phase (γ= f),
volume average can be established on both regions. Also,

/s ¼ ΔVs=ΔV ¼ 1−ΔVf =ΔV ¼ 1−/f ð11Þ

and for simplicity of notation one can drop the superscript “f “ to get
ϕs=1−ϕ.

As such, calling the instantaneous local velocities for the solid and
fluid phases, us and u, respectively, one can obtain the average for the
solid velocity, within the solid phase, as follows,

huis ¼ 1
ΔVs

Z
ΔVs

usdVs ð12Þ

which, in turn, can be related to an average velocity referent to the
entire REV as,
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Nomenclature

cF Forchheimer coefficient
c's Constants in Eqs. (3) and (4)
cp Specific heat
D Particle diameter, size of square rod.
D Deformation rate tensor, D=[∇u+(∇u)T]/2
Gi Production rate of 〈k〉i due to the porous matrix
H Distance between channel walls
k Turbulent kinetic energy per unit mass,

thermal conductivity
〈k〉v Volume (fluid+solid) average of k
〈k〉i Intrinsic (fluid) average of k
K Permeability
L Channel length
p Thermodynamic pressure
〈p〉i Intrinsic (fluid) average of pressure p
Pi Production rate of k due to mean gradients of ū̄D,
Re Reynolds number
〈T̄̄ f〉 Averaged fluid temperature.
〈T̄̄ s〉 Averaged fluid temperature.
hi Interfacial heat transfer coefficient
ū̄ Microscopic time-averaged velocity vector
〈ū̄〉i Intrinsic (fluid) average of ū̄
ū̄D Darcy velocity vector, ū̄D=ϕ〈ū̄〉i

ū̄rel Relative velocity based on total volume.

Greek
μ Fluid dynamic viscosity
μt Turbulent viscosity
μtϕ Macroscopic turbulent viscosity
ε Dissipation rate of k, e ¼ μjuV: juVð ÞT =ρ
〈ε〉i Intrinsic (fluid) average of ε
ρ Density
ϕ Porosity
γ Phase identifier

Subscript
s,f s=solid, f=fluid
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A further approximation herein is that the porous bed is rigid and
moves with a steady average velocity uS. Note that the condition of
steadiness for the solid phase gives uS= ū̄S=const where the overbar
denotes, as usual in the literature, time-averaging.

For the fluid phase, the intrinsic (fluid) volume average gives, after
using the subscript “i” also for consistency with the literature,

huii ¼ 1
ΔVf

Z
ΔVf

udVf : ð14Þ

Both velocities can then be written as,

uD ¼ /huii; uS ¼ 1−/ð Þhuis ¼ const: ð15Þ
A total-volume based relative velocity is defined as,

urel ¼ uD−uS: ð16Þ

Incorporating now in Eq. (2) a model for the Macroscopic Reynolds
Stresses −ρ/huVuVii (see Ref. [7–26] for details), and assuming that a
relative movement between the two phases is described by Eq. (16),
the momentum equation reads,
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A corresponding transport equation for 〈k〉i can be written as,
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where the generation rate due to the porous substrate, Gi, which was
included in Eq. (3), now depends on |ū̄rel| and reads,

Gi ¼ ckρ/hkiijurelj=
ffiffiffiffiffi
K:

p
ð19Þ

For analyzing moving beds, the energy equation for the fluid (Eq. (5)
remains the same,whereas convective transport is added to the solid-phase
energy balance Eq. (6). A modeled form for then for a moving bed reads,

ρcp
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n o
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ρcp
	 


sj � uShTs ii
� �

¼ j � Keff ;s �jhTs ii
n o

−hiai hTs ii−hTf ii
� �

: ð21Þ

The interstitial heat transfer coefficient hi is also calculated by
correlations (8) and (9) for laminar and turbulent flow, respectively.
However, since the relative movement between phases is seen as the
promoter of convective heat transport from the fluid to the solid, or
vice-versa, a relative Reynolds number defined as,

ReD ¼ ρjureljD
μ

ð22Þ

is used in the correlations (8) and (9) instead of a Reynolds number
based on the absolute velocity of the fluid phase. Accordingly, when
the solid phase velocity approaches the fluid velocity, the only
mechanism for transferring heat between phases is conduction.

5. Results and discussion

In order to apply the mathematical model proposed above, a
numerical example is shown next. The flow under consideration is
schematically presented in Fig. 1, where a channel is completely filled
with a moving layer of a porous material. The channel shown in the
figure has length and height given by L and H, respectively. The porous

matrix moves with constant velocity uS and its temperature at the
entrance in kept constant and equal to Ti,in. A fluid flows longitudinally
from left to right permeating through such moving porous structure
with an inlet temperature Tf,in. The channel is kept insulated at north
and bottom plates. Further, results at the channel center (y=H/2) are a
representative of uniform one-dimensional fully developed flow after
a certain developing length. The numerical method applied was the
Control Volume technique [31].

Temperature are plotted in terms of their non-dimensional value,
defined as,

Θs;f ¼
Ts;f −Tmin

Tmax−Tmin
ð23Þ

where the subscripts s,f refers to the solid and fluid temperature,
respectively. In addition, the maximum and minimum temperature
are set as Ts,in and Tf,in, respectively.

5.1. Effect of Reynolds number, ReD

Fig. 2 shows temperature along the centerline of the channel of Fig.1
for different ReynoldsnumberReD based on ū̄D and for a slip ratio (us/ū̄D)
=0.5. As the inlet fluid velocity decreases, the fluid gets hotter and the
temperature Θf rises faster along the axial direction. Consequently, a
lower drop in the solid temperature is obtained. On the other hand, the
cooling effect of the hot porousmaterial iswell seen for a higher value of
ReD, when a greater reductionon the solid temperature occurs,mostly in
thebeginningof the channel. Final equilibrium temperaturewill then be
reduced with increase of the mass flow rate through the bed.

5.2. Effect of porosity, ϕ

The effect of porosity on longitudinal temperature distribution is
shown in Fig. 3. The slip ratio uS/ū̄D and the Reynolds number are kept
constant for all curves. Thefigure indicates that for a high porosity case,
a smaller heat transfer area per unit volume, given by ai=4×(1−ϕ)/D
for a porousmedium formed by square rods of sizeD (see Ref. [24–26]),
decreases the total heat transfer rate from the solid material to the
fluid. In suchhigh porositymedia, a longer developing length is needed
for both materials to reach thermal equilibrium. Also, for a fixed
Reynolds number based on ū̄D=ϕ〈ū̄〉i, an increase inϕ corresponds to a
reduction on the fluid velocity 〈ū̄〉i, which further reduces the cooling
effect by reducing the heat transfer coefficient hi between phases.
Consequently, the product hiai in Eqs. (20) and (21)will be decreased as
ϕ increases, which, ultimately, indicates damping of convective
transfer through the interfacial area.

5.3. Effect of slip ratio, uS/ū̄D

Fig. 4 shows values for the non-dimensional turbulent kinetic
energy, 〈k〉v/|ū̄D|2, and for the non-dimensional temperatures, Θf and
Θs, along the channel mid-height. As the relative phase velocity

Fig. 1. Porous bed reactor with a moving solid matrix.
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decreases, the amount of fluid disturbance past the solid obstacles is
reduced, implying then in a reduction of the final level of 〈k〉i, ac-
cording to Gi in Eq. (19) (Fig. 4a) [32]. Also, with an increase in uS/ū̄D,
the solid carries more thermal energy by convection towards the
inside of the reactor, raising the solid temperature for higher inlet
solid velocity (Fig. 4b). The figure indicates that when the solid
velocity approaches the fluid velocity, transfer of heat between phases
tends to occur by a pure conduction mechanism, which requires a
longer entry length for the two temperatures to achieve an equilib-
rium value. Finally, in Fig. 4c the raise of Θf along the channel is
presented. The figure seems to indicates that there is an optimum
velocity ratio, above which the fluid temperature at the channel
exit decreases. For the example here plotted, this optimal value is
about uS/ū̄D≈0.75. This behavior could be explained by noting that the
heat transfer between phases is proportional to hiaiΔT, as seen in
Eqs. (20) and (21). Increasing uS/ū̄D raises Θs, Fig. 4b, while reduces the
product hiai due to the use of a relative velocity to calculate ReD, as
shown in Eq. (22). Then, these two opposing trends will compete with
each other as uS/ū̄D is varied, indicating the two-fold behavior of the
curves in Fig. 4c.

Fig. 2. Non-dimensional temperatures as a function of ReD for uS/ū̄D=0.5, ρs/ρf=10,
(ρcp)s/(ρcp)f=25 and ks/kf=25.

Fig. 3. Non-dimensional temperatures as a function of porosityϕ for uS/ ū̄D=0.5, ρs/ρf=10,
(ρcp)s/(ρcp)f=25 and ks/kf=25.

Fig. 4. Effect of uS/ū̄D for ϕ=0.6: a), 〈k〉v/|ū̄D|2, ReD=5×104; b) Solid temperature, Θs,
ReD=104; c) Fluid temperature, Θf, ReD=104.
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6. Conclusions

Numerical solutions for turbulent flow in a moving porous bed
were obtained for different ratios uS/ū̄D. Governing equations were
discretized and numerically solved. Increasing the solid speed reduces
the interfacial drag forces as well as the transfer of energy between
phases, ultimately indicating that energy transport between phases
mainly occurs due to conduction. Results herein may contribute to the
design and analysis of engineering equipment where a moving porous
body can be identified.
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