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This work deals with the numerical determination of the

interfacial heat-transfer coefficient in cellular materials, in

which the solid structure is modelled as an ordered array of

elliptic rods. The cases herein studied concern those in which

the average temperatures for the fluid and the solid matrix

differ substantially, in away that the local-thermal-equilibrium

hypothesis (LTE) is no longer valid.[1–4] The local-thermal-

non-equilibrium hypothesis (LTNE) is employed in order to

obtain the average temperatures for the fluid and solid

phases.[5–6]

Accordingly, a numerical procedure to determine the

macroscopic transport coefficients from a theoretical basis was

first proposed by Kuwahara et al.[7] They used a single unit

cell and determined the interfacial heat-transfer coefficient for

the asymptotic case of infinite conductivity of the solid phase.

Nakayama et al.[8] extended the conduction model of Hsu[9]

for also treating convection in porous media. Further, forced

convection in porous media is fully documented in

ref. [3,10,11] Having established the macroscopic energy

equations for both phases, useful exact solutions were

obtained for two fundamental heat-transfer processes asso-

ciated with porous media, namely, steady conduction in a

porous slab with internal heat generationwithin the solid, and

also for a thermally developing flow through a semi-infinite

porous medium. Saito and de Lemos[12] considered local

thermal non-equilibrium and obtained the interfacial heat-

transfer coefficient for laminar flow using a single unit cell

with local instantaneous transport equations. Although only

laminar flow was considered in all of the studies mentioned

above, turbulent flow needs also to be investigated due to the

number of practical applications in which the fluid undergoes

a transition towards the turbulent regime.

When treating turbulent flow in porous media, however,

difficulties arise due to the fact that the flow fluctuates with

time, a volumetric average being applied.[13] For handling such

situations, a new concept called double decomposition has been

proposed for developing macroscopic models for turbulent
transport in porous media.[14,15] This methodology has been

extended to nonbuoyant heat transfer under local thermal

equilibrium,[16,17] buoyant flows,[18–22] mass transfer[23] and

double diffusion,[24] including applications in channels with

porous baffles[25,26] and impinging jets.[27] In addition, a general

classification of models has been published.[28] Recently, the

problem of treating interfaces between a finite porous medium

and free flow, considering a diffusion-jump condition for

laminar[29] and turbulent regime,[30,31] has also been investi-

gated under the concept first presented by Pedras and de

Lemos.[14,15] Following this same concept, Saito and de

Lemos[32] proposed a new correlation for obtaining the

interfacial heat-transfer coefficient for turbulent flow in a

packed bed in which the porous material was modelled as an

infinite staggered array of square rods. Recently, an extension of

the analysis therein to moving porous beds has been

published.[33,34]

This work focuses on turbulent flow through a foam-like

material, which represents an important configuration for

efficient heat transfer and suggests the use of equations

governing the energy balances for both the solid and fluid

phases. Accordingly, the use of such a two-energy-equation

model requires the heat-transfer coefficient between the phases.

Therefore, the problem here comprises calculating such a

convective heat-transfer coefficient for laminar and turbulent

flow in cellular materials, which are modelled considering an

infinite array of elliptic rods. The range of the Reynolds

number (ReD), based on the hydraulic diameter of the rod, is

varied from the laminar regime up to 107.

Macroscopic Governing Equations

Macroscopic transport equations for turbulent flow in a

porous medium are obtained through the simultaneous

application of time- and volume-average operators, resulting

in Equation (1), wherein uD ¼ fhuii and huii identifies the

intrinsic(liquid)averageofthetime-averagedvelocityvector,u.

Continuity :r � uD ¼ 0 (1)

The momentum transport equation is described by

Equation (2), where the last two terms represent the Darcy

and Forchheimer contributions:[35]

r
@uD

@t
þr � uDuD

f

� �� �
¼ �rðfhpiiÞ þ mr2uD �r � ðrfhu0u0iiÞ

� mf

K
uD þ cFfrjuDjuDffiffiffiffi

K
p

� �

(2)
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In Equation (2), the symbol K is the porous medium

permeability; cF is the form-drag or Forchheimer coefficient;

hpii is the intrinsic average pressure of the fluid and f is the

porosity of the porous medium. The macroscopic Reynolds

stress, �rfhu0u0ii, appearing in Equation (2) is given by

Equation (3):

� rfhu0u0ii ¼ mtf2hDi
v � 2

3
frhkiiI (3)

In Equation (3):

hDiv ¼ 1

2
rðfhuiiÞ þ ½rðfhuiiÞ�T
h i

(4)

hDiv is the macroscopic deformation tensor, hkii ¼
hu0 � u0ii

�
2 is the intrinsic turbulent kinetic energy, and mtf ,

is the turbulent viscosity, which is modelled in ref. [28]

similarly to the case of clear flow, in the form described in

Equation (5):

mtf ¼ rcm
hkii2

h"ii
(5)

The intrinsic turbulent kinetic energy per unit mass and its

dissipation rate are governed by Equation (6) and (7), in which

c1 and c2 are constants:

r
@

@t
fhkii

� �
þr � uDhkii

� �� �
¼ r � mþ

mtf

sk

� �
r fhkii
� �� �

� rhu0u0ii : ruD

þ ckr
fhkiijuDjffiffiffiffi

K
p � rfh"ii

(6)
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(7)

Similarly, macroscopic energy equations are obtained for

both the fluid and solid phases by applying time- and

volume-average operators to the instantaneous local equa-

tions. As in the flow case, volume integration is performed

over a representative elementary volume (REV), resulting in

Equation (8) and (9):

rcp
	 


f
f

� � @hTii
@t

þ rcp
	 


f
r � uDhTfii

� �

¼ r � Keff;f � rhTfii
n o

þ hiai hTsii � hTfii
� �

(8)
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(9)

In Equation (8) and (9), Keff,f and Keff,s are the effective

conductivity tensors for the fluid and solid, respectively, and

ai¼Ai/DV is the interfacial area per unit volume. The tensors

are given by Equation (10) and Equation (11), respectively,

wherein I is the unit tensor (see ref. [32] for details):

Keff;f ¼ fkf½ �IþKf;s þKt þKdisp þKdisp;t (10)

Keff;s ¼ 1� fð Þks½ �IþKs;f (11)

Interfacial Heat-Transfer Coefficient, hi

In Equation (8) and (9), the heat transferred between the

two phases wasmodelled bymeans of a film coefficient, hi. For

a staggered configuration of tube banks, Žukauskas[36]

proposed the following correlation (Equation (12)) for it,

where the values 0.022 and 0.84 are for tubes in cross flow:

hiD

kf
¼ 0:022ReD

0:84Pr0:36; for 2� 105 < ReD < 2� 106 (12)

Wakao et al.[37] obtained a heuristic correlation for a closely

packed bed with particle diameter D and compared their

results with experimental data. This correlation for the

interfacial heat-transfer coefficient is given by Equation (13):

hiD

kf
¼ 2þ 1:1ReD

0:6Pr1=3 (13)

For determining hi numerically, Kuwahara et al.[7] and

Nakayama et al.[8] modelled porous media by considering the

medium as being an infinite number of solid, square rods of

size D, arranged in a regular triangular pattern. They

numerically solved the governing equations in the void

region, exploiting the fact that, for an infinite and geome-

trically ordered medium, a repetitive cell can be identified.

Periodic boundary conditions were then applied for obtaining

the temperature distribution under fully developed flow

conditions. A numerical correlation for the interfacial con-

vective heat-transfer coefficient was proposed by Kuwahara

et al.[7] for laminar flow as shown in Equation (14):

hiD

kf
¼ 1þ 4ð1� fÞ

f

� �
þ 1

2
ð1� fÞ1=2ReD Pr 1=3;

valid for 0:2 < f < 0:9

(14)

Inthisway,themacroscopicbehaviorofpermeablemediacan

beobtainedbyintegratingthedistributedparametersobtainedat

the pore scale. If we consider the medium to be infinite and

orderly arranged, a single structural unit may be identified and

taken as the calculation domain (Fig. 1a). Computations within

this cellwere carried out using a non-uniformgrid (Fig. 1b). The

Reynolds number, ReD ¼ ruDD=m, was varied from 104 to 107
. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2009, 11, No. 10
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Fig. 1. a) Physical model and coordinate system. b) Non-uniform computational grid.
where D ¼ 2abða2 þ b2Þ�0:5. The cell porosity is given by

f ¼ 1� ðD=HÞ2.
The boundary and periodic conditions are as follows:

On solid walls (laminar or low Re number model):

u ¼ 0; k ¼ 0; " ¼ n
@2k

@y2
; T ¼ Tw (15)

On solid walls (high Re model):

u

ut

¼ 1

k
ln yþEð Þ; k ¼ u2

t

cm1=2
; " ¼ cm

3=4k3=2w

kyw
;

qw ¼
rcp
	 


f
cm1=4k1=2w T � Tw

	 

st
k
ln yþw
	 


þ cQ Prð Þ
	 


(16)

In Equation (16), ut ¼ tw
r

� �1=2
, yþw ¼ ywut

n
, and cQ ¼

12:5Pr2=3 þ 2:12 ln Prð Þ � 5:3 for Pr> 0.5

In Equation (16), Pr and st are the Prandtl and turbulent

Prandtl numbers, respectively, qw is thewall heat flux, ut is the

wall-friction velocity, yw is the coordinate normal to the wall

and k is the von Kármán constant. Furthermore, in Equation
ADVANCED ENGINEERING MATERIALS 2009, 11, No. 10 � 2009 WILEY-VCH Ver
(16), E is equal to 9.0 for smooth walls. The other boundary

conditions are:

On the symmetry planes:

@u

@y
¼ @k

@y
¼ @"

@y
¼ 0 (17)

On the periodic boundaries:

ujinlet¼ ujoutlet; vjinlet¼ vjoutlet; kjinlet¼ kjoutlet; "jinlet¼ "joutlet (18)

u inletj ¼ u outletj , T � Tw

TB xð Þ � Tw






inlet

¼ T � Tw

TB xð Þ � Tw






outlet

(19)

The bulk mean temperature of the fluid is given by

Equation (20):

TB xð Þ ¼
R

uTdyR
udy

(20)

Computations are based on the Darcy velocity, the length

of structural unit, H, and the temperature difference

TB xð Þ � Tw

	 

, as reference scales.

Determination of hi is here obtained by calculating, for the

unit cell of Figure 1a, an expression given by Equation (21)

where Ai ¼ 2p 0:5 a2 þ b2
	 
	 
0:5

:

hi ¼
Qtotal

AiDTml

(21)

The overall heat transferred in the cell, Qtotal, is given by

Equation (22):

Qtotal ¼ ðH � 2bÞruBcp TB




outlet

�TB




inlet

� �
; (22)

The bulk mean velocity of the fluid is given by Equation

(23):

uB xð Þ ¼
R

udyR
dy

(23)

The logarithm mean temperature difference, DTml is given

by Equation (24):

DTml ¼
Tw � TB




outlet

� �
� Tw � TB




inlet

� �
ln ½ðTw � TB




outlet

ÞðTw � TB




inlet

Þ�
(24)

Equation (22) represents the overall heat balance over the

entire cell and considers the heat transferred to the fluid to be

associated to a suitable temperature difference, DTml. The

local instantaneous equations were numerically solved in the

unit cell until conditions given by Equation (18) and Equation

(19) were satisfied.

Results and Discussion

Figure 2 compares integrated hi values for square and

elliptic rods, for porosities f¼ 0.75 and f¼ 0.90, covering the

laminar-flow range 3.5�ReD � 350. Also shown are results by

Kuwahara et al.[7] It is interesting to note that the more
lag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 839
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Fig. 2. a) Comparison between square rods, elliptic rods and correlation of Kuwahara
et al.[7] for f¼ 0.75. b) Comparison between square rods, elliptic rods and correlation of
Kuwahara et al.[7] f¼ 0.90.

Fig. 3. Effect of porosity on hi for Pr¼ 1 and laminar flow.
streamlined the flow is, over the elliptic rods displaced in an

aligned manner, the less its effectiveness in promoting heat

transfer between the phases. Furthermore, the higher the ReD

number, the higher the heat-transfer coefficient. Figure 3

compiles hi values as a function of the porosity f for ReD up to

1000. In this case, the lower the porosity, the higher the

heat-transfer rate for the same mass-flow rate across the bed

(same ReD). In addition, as ReD increases, the effect of f on hi
becomes less pronounced. Also, the Figure seems to indicate

two distinct regimes, the first one for ReD< 100 and the second

for ReD> 100. However, the limited amount of data presented

here does not allow more-definite conclusions to be drawn.

Results for high Re numbers are shown next. Figure 4

shows the distributions of the pressure, turbulence kinetic

energy and temperature fields in the periodic cell considered

in Figure 1, which were obtained for ReD¼ 105 and for f¼ 0.60

and f¼ 0.90. One can observe that the pressure increases at the

left face of the rod and decreases behind it (Figure 4a–b), with

the surface peak pressure moving towards the stagnation

point on the left, along the ellipses’ horizontal axes, as f

increases. The turbulence-kinetic-energy distribution is

shown in Figure 4c–d. Levels of k are higher close to the

walls and along the converging section of the channel, where a

strong shear layer prevails. The temperature-distribution

pattern is shown in Figure 4e–f, showing that a thermal

boundary layer covers most of the surface, possibly indicating
840 http://www.aem-journal.com � 2009 WILEY-VCH Verlag GmbH & Co
that convective heat transfer surpasses thermal diffusion for

the case of high mass-flow rates.

Results for hi D/kf are plotted in Figure 5 for ReD up to 107.

Also plotted are computations using Correlation (14) by

Kuwahara et al.[7] for the case of f¼ 0.65. The figure seems to

indicate that the present computations show a reasonable

agreement for laminar flow. For comparison, numerical

results for turbulent flow using low and high Re models are

also presented in this Figure (103<ReD < 104). Differences in

the flow pattern caused by distinct obstacle arrangements,

namely, the aligned elliptic rods and staggered square

obstacles, are reflected in the lower heat-transfer coefficients

for the former case. The sharp edges of the square obstacles,

disposed in a triangular arrangement, agitate the fluid in a

much stronger way that in the case of a streamlined flow

across elliptic tubes.

Figure 6 shows the numerical results for the interfacial

convective heat-transfer coefficient for porosities f¼ 0.65 and

f¼ 0.90. Results for hi D/kf are plotted for ReD up to 107,

comparing the two geometries analyzed here. The lower the

porosity, the higher the hi D/kf ratio: this is an effect that is

much less pronounced when computing the more-clear flow

past the inline-arranged elliptic rods.

For square-rod arrays in the staggered arrangement, the

numerical correlation for the interfacial heat-transfer coeffi-

cient proposed by Kuwahara et al.[7] was set for laminar flow

only, whereas for turbulent flow another correlation by Saito

and de Lemos[32] has been proposed. The results herein, which

consider elliptic rods instead, can be used in developing

more-complex correlations that will eventually take into

account the rod shape and the array layout. As such, the

results herein can be seen as a step contributing towards such

a goal.

Conclusions

Turbulent flow through a cellular (foam-like) material

modelled as an array of elliptic rods is analyzed. Details are

presented for determining the convective heat-exchange

coefficient between the porous substrate and the working

fluid. Results for turbulent flow through a periodic cell of

isothermal elliptic rods were computed, considering periodic

boundary conditions for the velocity and temperature fields.
. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2009, 11, No. 10



C
O
M

M
U
N
IC

A
T
IO

N

M. J. S. de Lemos and M. B. Saito/Heat-Transfer Coefficient for Cellular Materials Modelled . . .

Fig. 4. Elliptic rods for ReD¼ 1� 105: a) non-dimensional pressure for f¼ 0.65; b) non-dimensional pressure for f¼ 0.90; c) turbulence kinetic energy for f¼ 0.65; d) turbulence
kinetic energy for f¼ 0.90; e) temperature field for f¼ 0.65; f) temperature field for f¼ 0.90.

Fig. 5. Effect of ReD on hi for Pr¼ 1 and f¼ 0.65 and turbulent flow.

Fig. 6. Effect of ReD on hi for various porosities and different shapes.

ADVANCED ENGINEERING MATERIALS 2009, 11, No. 10 � 2009 WILEY-VCH Ver
For turbulent flows, low and high Reynolds turbulence

models were employed in order to obtain the interfacial

heat-transfer coefficient. The results indicate that, for the same

mass-flow rate, materials that resemble or that can be

modelled as arrays of elliptic rods present a lower interfacial

heat-transfer coefficient when compared to other media

modelled as staggered arrays of square rods. Additional

work will be carried out in order to simulate fully turbulent

flow and heat transfer in a porous medium formed by arrays

of elliptical rods displaced in both ‘‘in-line’’ and ‘‘staggered’’

arrangements. Finally, it is expected that a more-general

correlation for hi can be obtained, to be used in conjunction

with macroscopic two-energy-equation models.

Nomenclature
Ai
lag Gmb
Interface total area between the fluid and solid
cF
 Forchheimer coefficient
cp
 Fluid specific heat
D
 Hydraulic diameter
hi
 Interfacial convective heat-transfer coefficient
H
 Periodic cell height
I
 Unit tensor
K
 Permeability
k
 Turbulence kinetic energy per unit mass
kf
 Fluid thermal conductivity
ks
 Solid thermal conductivity
Kdisp
 Dispersion conductivity tensor
Kf,s
 Two-equation model effective thermal conductivity

tensor in fluid phase.
H & Co. KGaA, Weinheim http://www.aem-journal.com 841
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Ks,f
842
Two-equation model effective thermal conductivity

tensor in solid phase.
Kt
 Turbulence conductivity tensor
Kdisp,t
 Turbulent dispersion tensor
P
 Pressure
P�
 P� ¼ P�Pmin

Pmax�Pmin
: Non-dimensional Pressure
Pr
 Pr¼ n/a, Prandtl number
ReD
 Reynolds number based on D and the macroscopi-

cally uniform velocity
T
 Temperature
T
 Time-averaged temperature
u
 Microscopic velocity
uD
 Darcy or superficial velocity (volume average of u)
a
 Fluid thermal diffusivity
DV
 Representative elementary volume
DVf
 Fluid volume inside DV
m
 Fluid dynamic viscosity
mt
 Eddy viscosity
mtf
 Macroscopic eddy viscosity
n
 Fluid kinematic viscosity
r
 Fluid density
f
 f¼DVf/DV, Porosity
u
 u ¼ T�Tw

TB�Tw
, Dimensionless temperature.
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