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This paper presents a mathematical model for treating turbulent combusting flows in a moving porous bed,
which might be useful to design and analysis of modern and advanced biomass gasification systems. Here,
one explicitly considers the intra-pore levels of turbulent kinetic energy and the movement of the rigid
solid matrix is considered to occur at a steady speed. Transport equations are written in their time-and-
volume-averaged form and a volume-based statistical turbulence model is applied to simulate turbulence
generation due to the porous matrix. The rate of fuel consumption is described by an Arrhenius expression
involving the product of the fuel and oxidant mass fractions. Results indicate that fixing the gas speed and
increasing the speed of the solid matrix pushes the flame front towards the end of the reactor. Also, since
the rate of production of turbulence is dependent on the relative velocity between phases, as the solid velocity
approaches that of the gas stream, the level of turbulence in the flow is reduced.
rights reserved.
© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Energy production based on biomass combustion has called the
attention of the world for its potential substitution of non-renewable
fossil fuels. Biomass pelletization and preparation for energy production
systems may involve a moving porous bed [1–3] in which an exother-
mic reaction occurs. Examples of studies on such systems are given by
Ryu et al. [4], Boman et al. [5] and Shimizu et al. [6] who presented
mathematical models for gasification and combustion of renewable
fuels. Kayal and Chakravarty [7], Rogel et al. [8] and Nussbaumer et al.
[9] investigated technologies to cope with the problem of pollutant
emission during combustion and co-combustion of biomass. Related in-
vestigations concerning studies on reactive flows in permeable media
[10–15], including recent reviews on combustion of gases [16] and
liquids [17] in the so-called porous burners, have also contributed to
the modeling of flows with combustion through a permeable medium.
Recent developments on free flame modeling [18, 19] will further
benefit the analyses of the heterogeneous systems just reviewed.
Accordingly, the ability to more realistic model such devices is of great
advantage to the analysis and optimization of a number of energy, food
and materials production processes.

Motivated by the foregoing, in a series of papers a general mathe-
matical model for turbulent flow in porous media, including flows
with macroscopic interfaces [20], buoyant flows [21] and impinging
jets, with [22, 23] and without [24] thermal non-equilibrium, was de-
veloped and documented in a book [25]. Such model was further
extended to include movement of the solid phase for non-reacting
flows [26] with heat transfer [27]. Subsequently, combustion of gases
within a fixed porous medium was also considered [28, 29].

The objective of this contribution is then to combine the previous
separated analyses of movement of a porous bed along with an inert
flow [26, 27] with that of combustion of a gaseous fuel through a fixed
medium [28, 29]. By that, a more complete and more general model is
investigated as solutions of a broader range of problems are sought,
which aim at simulate, in a more realistic fashion, modern equipment
for energy production using renewable fuels.
2. Macroscopic flow model

As mentioned, the thermo-mechanical model here employed is
based on concepts already fully described in the literature [25]. In
that work, transport equations are volume averaged over a Represen-
tative Elementary Volume (REV) according to the Volume Averaging
Theorem [30–32]. In addition, the use of time decomposition of flow
variables, followed by standard time-averaging procedure, was ap-
plied to model turbulence. As the entire equation set is already fully
available in the open literature, these equations will be reproduced
here and details about their derivations can be obtained in the afore-
mentioned references. Essentially, in all the above-mentioned work,
the flow variables are decomposed in a volume mean and a deviation
(classical porous media analysis) in addition to being also decom-
posed in a time-mean and fluctuating values (classical turbulent
flow treatment). As said, because mathematical details and proofs of
such “double-decomposition” concept are available in a number of
papers in the literature, they are not repeated here. Only final equa-
tions in their steady-state form are presented below.
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mailto:delemos@ita.br
http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.09.001
http://www.sciencedirect.com/science/journal/07351933


Nomenclature

Latin characters
A Pre-exponential factor
cF Forchheimer coefficient
cp Specific heat
D=[∇u+(∇u)T]/2 Deformation rate tensor
D‘ Diffusion coefficient of species ‘
Ddiff Macroscopic diffusion coefficient
Ddisp Dispersion tensor due to dispersion
Ddisp, t Dispersion tensor due to turbulene
Deff Effective dispersion
K Permeability
kf Fluid thermal conductivity
ks Solid thermal conductivity
Keff Effective Conductivity tensor
m‘ Mass fraction of species ‘
Pr Prandtl number
Sfu Rate of fuel consumption
T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
α Thermal diffusivity
βr Extinction coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
ΔH Heat of combustion
μ Dynamic viscosity
ν Kinematic viscosity
ρ Density
ϕ ϕ ¼ ΔVf �ΔV, Porosity
ψ Excess air-to-fuel ratio

Special characters
φ General variable
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
ϕ— Time average
ϕ′ Time fluctuation
|φ| Absolute value (Abs)
φ Vectorial general variable
( )s, f solid/fluid
( )eff Effective value, ϕφf+(1−ϕ)φs

( )ϕ Macroscopic value
( )fu Fuel
( )ox Oxygen
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2.1. Macroscopic slip velocity

In order to analyze the effect of the motion of the permeable struc-
ture, one needs first to define velocities and their averages relative to
a fixed representative elementary control-volume. One should point
out, however, that here only cases where the solid phase velocity is
kept constant will be considered.

A moving bed crosses a fixed reactor in addition to a flowing fluid,
which is not necessarily moving with a velocity aligned with the solid
phase velocity (Fig. 1). The steps below show first some basic defini-
tions prior to presenting a proposal for a set of transport equations for
analyzing such systems.

A general form for a volume-average of any property φ, distribut-
ed within a phase γ that occupy volume ΔVγ , can be written as [32],

〈φ〉γ ¼ 1
ΔVγ

∫
ΔVγ

φdVγ : ð1Þ

In the general case, the volume ratio occupied by phase γ will be
ϕγ ¼ ΔVγ=ΔV .

If there are two phases, a solid (γ=s) and a fluid phase (γ= f),
volume average can be established on both regions. Also,

ϕs ¼ ΔVs=ΔV ¼ 1−ΔVf =ΔV ¼ 1−ϕf ð2Þ

and, for simplicity of notation, one can drop the superscript “f ” to get
ϕs=1−ϕ. For permeable media, phi is known as porosity.

As such, calling the instantaneous local velocities for the solid and
fluid phases, us and u, respectively, one can obtain the average for the
solid velocity, within the solid phase, as follows,

〈u〉s ¼ 1
ΔVs

∫
ΔVs

us dVs ð3Þ

which, in turn, can be related to the average velocity referent to the
entire REV as,

uS ¼
ΔVs

ΔV

z}|{ð1−ϕÞ

1
ΔVs

∫
ΔVs

us dVs

|{z}
〈u〉s

: ð4Þ

A further approximation herein is that the porous bed is rigid and
moves with a steady average velocity uS. Note that the condition of
steadiness for the solid phase gives uS ¼ ūS ¼ const where the over-
bar denotes, as usual in the literature, time-averaging.

For the fluid phase, the intrinsic (fluid) volume average gives, after
using the subscript “i” also for consistency with the literature,

〈ū〉i ¼ 1
ΔVf

∫
ΔVf

ūdVf : ð5Þ

On a total-volume basis, both velocities can then be written as,

ūD ¼ ϕ〈ū〉i;uS ¼ 1−ϕð Þ〈u〉s ¼ const: ð6Þ

where, ūD is the average surface velocity (also known as seepage, su-
perficial, filter or Darcy velocity).

In the general case, ūD and uS need not to be aligned with each
other as in the drawing of Fig. 1. For a general three-dimensional
flow they are written in Cartesian coordinates as,

ūD ¼ ūD îþ v̄D ĵþ w̄D k̂ ; uS ¼ uS îþ vS ĵþwS k̂ ð7Þ

where u, v, and w are the Cartesian components.
A total-volume based relative velocity is defined as,

ūrel ¼ ūD− uS: ð8Þ

Further,

ūrel ¼ ϕ〈ū〉i− 1−ϕð Þ〈u〉s; ūrel ¼ ϕ 〈ū〉i þ 〈u〉s
� �

−〈u〉s: ð9Þ
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Fig. 1. Porous bed reactor with a moving solid matrix.
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The modulus of ūrel can be calculated as,

ūrelj j ¼ ūD−uSj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ūD−uSð Þ2 þ v̄D−vSð Þ2 þ w̄D−wSð Þ2

q
: ð10Þ

One could also define a phase-volume based relative velocity as,

ūγ
rel ¼ 〈ū〉i−〈u〉s ð11Þ

and the relationship between these two relative velocities becomes,

ūrel

ūγ
rel

¼
ϕ− 1−ϕð Þ 〈u〉s

〈ū〉i

1− 〈u〉s
〈ū〉i

 !
: ð12Þ

Although it is recognized that the drag between phases can be re-
lated to ūγ

rel, in the equations to follow, for simplicity, ūrel will be used
for characterizing the relative movement between phases. Further,
for 〈u〉s ¼ 0 the result ūrel ¼ ϕ ūγ

rel is equivalent to ūD ¼ ϕ 〈ū〉i and
for 〈u〉s=〈ū〉i ¼ 1 one gets ūγ

rel=ūrel ¼ 0 [26].

2.2. Macroscopic continuity equation

As previously commented, most of the equations to be shown
below are already fully detailed in the literature so that only their
final modeled form will be repeated.

The continuity of fluid mass reads:

∇:ρf ūD ¼ 0: ð13Þ

Eq. (13) represents the macroscopic continuity equation for the
gas. Regardless if the solid phase is moving, Eq. (13) holds for the
fluid phase.

2.3. Macroscopic momentum equation

For a fixed bed, the momentum equation for macroscopic turbu-
lent flow reads [25]:

∇· ρf
ūD ūD

ϕ

� �
¼ −∇ ϕ〈p̄〉i

� �
þ μ∇2ūD þ∇· −ρfϕ〈

P
u′ u′〉i

� �
− μϕ

K
ūD þ cFϕ ρf ūDj jūDffiffiffiffi

K
p

� 	 ð14Þ

where the last two terms in Eq. (14) represent the Darcy and For-
chheimer contributions. The symbol K is the porous medium perme-
ability, cF=0.55 is the form drag coefficient, 〈p〉i is the intrinsic
(fluid phase averaged) pressure of the fluid, ρf is the fluid density, μ
represents the fluid viscosity.

Assuming that a model for the Macroscopic Reynolds Stresses
−ρfϕ〈

P
u′ u′〉i is given by (see [25] for details),

−ρfϕ〈
P
u′ u′〉

i ¼ μ tϕ
2〈D̄〉

v−2
3
ϕρf 〈k〉

iI ð15Þ
with,

〈D̄〉
v ¼ 1

2
∇ ϕ〈ū〉i
� �

þ ∇ ϕ〈ū〉i
� �h iTh i

; ð16Þ

the momentum Eq. (14) reads after dropping body forces and some
rearrangement,

∇· ρf
ūDūD

ϕ

� �
−∇· μ þ μ tϕ

� �
∇ūD þ ∇ūDð ÞT
h in o

¼

−∇ ϕ〈p̄〉i
� �

− μϕ
K

ūD þ cFϕ ρf ūDj jūDffiffiffiffi
K

p
� 	 ð17Þ

where

μ tϕ
¼ ρf cμ

〈k〉i
2

〈ε〉i
: ð18Þ

Note that in Eq. (17) a modified pressure is used that includes the
last term in Eq. (15).

Assuming now that a relative movement between the two phases
is described by Eq. (8), the previous momentum Eq. (17) reads now
[26],

∇· ρf
ūDūD

ϕ

� �
−∇· μ þ μ tϕ

� �
∇ūD þ ∇ūDð ÞT
h in o

¼

−∇ ϕ〈p̄〉i
� �

− μϕ
K

ūrel þ
cF ϕρf ūrelj j ūrelffiffiffiffi

K
p

� 	
|{z}
Viscous and Form drags due to ū rel

: ð19Þ

The last two terms in the above equation represent the drag
caused by the difference in speed of the solid matrix and the flowing
gas. When the two materials flow along with the same velocity, then
fluid elements feel no extra forces caused by the porous matrix. Pres-
sure head necessary to drive the flow is therefore less then that re-
quired to push the fluid through a fixed porous substrate.

2.4. Turbulence modeling

Turbulence is handled by a macroscopic form of the standard k-ε
model (see [25] for details). A transport equation for 〈k〉i ¼
〈
P
u′·u′〉i=2 can be written as [26],

∇· ρf ūD〈k〉
i

� �
¼ ∇· μ þ

μ tϕ

σk

� �
∇ ϕ〈k〉i
� �� 	

−ρf 〈
P
u′ u′〉i : ∇ūD|{z}

Pi

þ ck ρf
ϕ 〈k〉i ūrelj jffiffiffiffi

K
p|{z}

Gi

−ρfϕ〈ε〉
i ð20Þ
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where Pi ¼ −ρf 〈
P
u′ u′〉i : ∇ūD is the production rate of 〈k〉i due to gra-

dients of u–D and the generation rate due to the porous substrate, Gi,
now depends on ūrelj j and reads,

Gi ¼ ckρfϕ〈k〉
i ūrelj j=

ffiffiffiffi
K

p
: ð21Þ

If there is no relative motion between the two phases, ūrel ¼ 0, im-
plying that no mean kinetic energy is transformed into turbulence by
the action of porous substrate. In this case, Gi will be of null value.

A corresponding equation for 〈ε〉i ¼ μ〈
P

∇u′ : ∇u′

 �T

〉i=ρf reads,

∇· ρf ūD〈ε〉
i

� �
¼∇· μ þ

μ tϕ

σε

� �
∇ ϕ〈ε〉i
� �� 	

þ c1 −ρf 〈
P
u′ u′〉i :∇ūD

� � 〈ε〉i
〈k〉i

þ c2 ck ρf
ϕ 〈k〉i ūrelj jffiffiffiffi

K
p|{z}

Gi

〈ε〉i

〈k〉i
−c2 ρfϕ

〈ε〉i
2

〈k〉i
:

ð22Þ

3. Macroscopic heat transfer

Macroscopic energy equations are obtained for both fluid and
solid phases by also applying time and volume average operators to
the instantaneous local equations [33]. As in the flow case, volume in-
tegration is performed over a Representative Elementary Volume
(REV). After including the heat released due to the combustion reac-
tion, one gets for both phases:

Gas : ∇·ðρf cpf ūD〈T̄f 〉
iÞ ¼ ∇· Keff ; f ·∇〈T̄f 〉

i
n o

þ hiai 〈T̄s〉
i−〈T̄f 〉

i
� �

þ ϕΔH Sfu; ð23Þ

Solid : ∇·ðρs cps us〈T̄s〉
iÞ ¼ ∇· Keff ;s·∇〈T̄s〉

i
n o

−hiai 〈T̄s〉
i−〈T̄f 〉

i
� �

; ð24Þ

where, ai ¼ Ai=V is the interfacial area per unit volume, hi is the film
coefficient for interfacial transport, Keff ;f and Keff ;s are the effective
conductivity tensors for fluid and solid, respectively, given by,

Keff; f ¼ ϕ kf

z}|{conduction
8><
>:

9>=
>; Iþ Kf ;s|{z}

local conduction

þ Kdisp|{z}
dispersion

þKt þ Kdisp;t|{z}
turbulence

ð25Þ

Keff ;s ¼ 1−ϕð Þ½ks
z}|{conduction

þ
16σ 〈T̄〉i

� �3
3βr

z}|{radiation

�

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Iþ Ks;f|{z}
local conduction

: ð26Þ

In Eqs. (23)–(26), I is the unit tensor,ΔH is the heat of combustion,
βr is the extinction coefficient, σ is the Stephan–Boltzman constant
[5.66961×10−8 W/m2K4] and Sfu is the rate of fuel consumption, to
be commented upon later. All mechanisms contributing to heat trans-
fer within the medium, together with turbulence and radiation, are
included as they impact on temperature distributions within the do-
main. Further, such distinct contributions of various mechanisms
are the outcome of the application of gradient type diffusion models,
in the form [33]:

Turbulent heat flux : − ρ cp
� �

f
ϕ 〈̄u′〉i〈T′f 〉

i
� �

¼ Kt·∇〈 T̄ f 〉
i
: ð27Þ

Thermal dispersion : − ρ cp
� �

f
ϕ 〈

i
u′

i T̄f 〉
i

� �
¼ Kdisp·∇〈 T̄ f 〉

i
: ð28Þ
Turbulent thermal dispersion : − ρ cp
� �

f
ϕ 〈
P
iu′ iT′f 〉

i
� �

¼ Kdisp;t·∇〈 T̄ f 〉
i
:

ð29Þ

Local conduction : ∇·
1
V

∫
Ai

ni kf T̄f dA

2
4

3
5 ¼ Kf ;s·∇〈 T̄s〉

i

−∇·
1
V

∫
Ai

ni ks T̄s dA

2
4

3
5 ¼ Ks;f ·∇〈 T̄ f 〉

i

:

ð30Þ
3.1. Intersticial heat transfer coefficient

In Eqs. (23) and (24) the heat transferred between the two phases
was modeled by means of a film coefficient, hi, such that:

hiai 〈T̄s〉
i−〈T̄f 〉

i
� �

¼ 1
ΔV

∫
Ai

ni·kf∇ T̄f dA ¼ 1
ΔV

∫
Ai

ni·ks∇ T̄sdA : ð31Þ

where, Ai is the interfacial area between the two phases and ai, as
mentioned above, is the interfacial area per unit volume or
ai ¼ Ai=ΔV . In foam-like or cellular media, the high values of ai
make them attractive for transferring thermal energy via conduction
through the solid followed by convection to a fluid stream.

A numerical correlation for the interfacial convective heat transfer
coefficient was proposed by Kuwahara et al. [34] for laminar flow as:

hiD
kf

¼ 1þ 4ð1−ϕÞ
ϕ

� �
þ 1
2
ð1−ϕÞ1=2 ReD Pr1=3; valid for 0:2 b ϕ b 0:9 : ð32Þ

For turbulent flow, the following expression was proposed in Saito
and de Lemos [33]:

hiD
kf

¼ 0:08
ReD
ϕ

� �0:8
Pr1=3; for 1:0×104

b
ReD
ϕ

b2:0×107
; valid for 0:2bϕb0:9 :

ð33Þ

The interstitial heat transfer coefficient hi is calculated by correla-
tions (32) and (33) for laminar and turbulent flow, respectively.
However, since the relative movement between phases is seen as
the promoter of convective heat transport from the fluid to the
solid, or vice-versa, a relative Reynolds number defined as,

ReD ¼ ρ ūrelj jD
μ

ð34Þ

is used in the correlations (32) and (33) instead of a Reynolds number
based on the absolute velocity of the fluid phase. Accordingly, when the
solid phase velocity approaches the fluid velocity, it is assumed here that
the only mechanism for transferring heat between phases is conduction.

4. Macroscopic combustion model

In this work, the gas phase is assumed to be composed by a pre-
mixture of air and gaseous fuel that undergoes combustion while
the solid matrix moves along with the gases. For analyzing such sys-
tem, the equation set above is complemented with a transport equa-
tion for the fuel and a kinetics model for the burning process [28].

4.1. Mass transport for fuel

Transport equation for the fuel reads,

∇⋅ ρf ūD〈 m̄fu〉
i

� �
¼∇⋅ρfDeff ⋅∇ ϕ〈 m̄fu〉

i
� �

�ϕ Sfu ð35Þ
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where 〈 m̄fu〉
i is the mass fraction for the fuel. The effective mass

transport tensor, Deff , is defined as:

Deff ¼ Ddisp|{z}
dispersion

þDdiff

z}|{diffusion

þ Dt þ Ddisp;t|{z}
turbulence

¼ Ddisp þ
1
ρf

μϕ

Sc‘
þ

μtφ

Sc‘;t

 !
I

¼ Ddisp þ
1
ρf

μϕ;eff
Sc‘;eff

 !
I ð36Þ

where Sc‘ and Sc‘;t are the laminar and turbulent Schmidt numbers for
species ‘, respectively, and “eff ” denotes an effective value. The dis-
persion tensor is defined such that,

−ρfϕ 〈
i ū i m̄fu 〉

i ¼ ρf Ddisp⋅∇ ϕ 〈m fu〉
i

� �
: ð37Þ

4.2. Simple chemistry

In this work, for simplicity, it is assumed that the exothermic reac-
tion is instantaneous and occurs in a single step, or say, it is kinetic-
controlled, a condition that for combustion of a mixture air/methane
is represented by the chemical reaction [12–14],

CH4 þ 2 1þΨð Þ O2 þ 3:76N2ð Þ→CO2 þ 2H2Oþ 2ΨO2

þ7:52 1þΨð ÞN2:

ð38Þ

For the case of N-heptane, reference [14] presents a similar equa-
tion, which reads,

C7H16 þ 11 1þΨð Þ O2 þ 3:76N2ð Þ→7CO2 þ 8H2Oþ 11ΨO2

þ41:36 1þΨð ÞN2

ð39Þ

and for Octane, one has,

C8H18 þ 12:5 1þΨð Þ O2 þ 3:76N2ð Þ→8CO2 þ 9H2Oþ 12:5ΨO2

þ47 1þΨð ÞN2:

ð40Þ

In the above chemical reactions,Ψ is the excess air in the reactant
stream at the inlet of the porous bed. A general expression for them
can be derived as,

CnH2m þ nþm
2

� �
1þΨð Þ O2 þ 3:76N2ð Þ→ nCO2 þmH2O

þ nþm
2

� �
ΨO2 þ nþm

2

� �
3:76 1þΨð ÞN2

ð41Þ

where the coefficients n and m can be found in Table 1. Eq. (41) is
here assumed to hold for the particular examples given in the table.
Further, for the stechiometric ratio, Ψ ¼ 0.

The local instantaneous rate of fuel consumption over the total
volume (fluid plus solid) was determined by a one step Arrhenius re-
action [35, 36], given by,

Sfu ¼ ρ2
f A 〈mfu〉

i
〈mox〉

i e−E=R 〈T̄〉i ð42Þ

where 〈mfu〉
i and 〈mox〉

i are the local instantaneous mass fractions for
the fuel and oxidant, respectively. Also, in Eq. (42) A is the pre-
Table 1
Coefficients in the general combustion Eq. (41).

Gas n m (n+m/2) (n+m/2)×3.76

Methane 1 2 2 7.52
N-heptane 7 8 11 41.36
Octane 8 9 12.5 47
exponential factor and E is the activation energy, where numerical
values for these parameters depend on the fuel considered [35].

Before presenting the results, a word on the use of Eq. (42) seems
timely. Here, for simplicity, Eq. (42) is assumed to hold for turbulent
flow in porous media, which might not be the case when calculating
turbulent free flame properties. For a discussion on possible exten-
sions of Eq. (42) to account for additional turbulent flow effects, see
[29].

Further, density ρf in the above equations is determined from the
perfect gas equation for a mixture of perfect gases:

ρf ¼
Po

RTf ∑
‘

1

m‘

M‘

ð43Þ

where Po is a reference pressure, R is the universal gas constant
[8.134 J/(mol.K)] and M‘ is the molecular weight of species ‘.

5. Sample results

We present here sample results for the plug flow formed by the
moving bed and flowing gas depicted in the system of Fig. 1. The
air/methane mixture enters the moving bed reactor and undergoes
combustion consuming fuel at a rate given by Eq. (42). Density is
updated using Eq. (43). Here, we considered that the gas phase
flows from left to right and leaves the porous reactor at x=L. The
exact location of the flame front, if combustion takes place, is the
sole outcome of the iterative process and no artificial numerical gim-
mick is implemented. For a discussion on the numerics implemented
in solving the above equation, the reader is urged to see [28].

Fig. 2a presents results for the axial non-dimensional fluid and
solid temperatures taken at the middle height of the channel
(y=H/2) for distinct values of the velocity slip ratio us/uD. Tempera-
tures were non-dimensionalized using the expression,

Θs;f ¼
Ts; f−Tmin

Tmax−Tmin
ð44Þ

where “max” and “min” refer to values in the entire computational
domain of Fig. 1. As the solid phase moves faster, approaching the
speed of the fluid stream, a longer entry length is necessary for ther-
mal equilibrium to be achieved since the relative velocity between
phases is reduced and, consequently, less intense is the exchange of
heat between phases. Also, the flame front, indicated here by the po-
sition where the gas phase reaches its maximum value, is moved for-
ward, towards the end of the reactor. The figure also indicates that for
higher values of us final equilibrium temperatures are lower. Keeping
the samemass flow rate of the incoming fuel, the amount of generated
heat is the same, regardless of the speed of the solid. As a result, a
higher solid speed will yield a lower solid temperature at the exit,
bring down the fluid temperature by means of the exchange of heat
between phases.

Finally, Fig. 2b shows results for the statistical filed in terms of the
non-dimensional turbulence kinetic energy 〈k〉v/uin2 . For a flat velocity
profile quickly formed inside the porous reactor, production rates of
turbulence kinetic energy are mostly due to the Gi-term that is de-
scribed by the model of Eq. (21). With increasing of the ratio us/uD,
the relative velocity between phases is reduced, which, in turn, re-
duces the generation of turbulence inside the medium. For the pa-
rameters here employed and for us/uDN0.25, the flow leaves the
reactor at x/L=1 without undergoing combustion. Further, as the
solid speed increases, the amount of mean mechanical energy con-
verted into turbulence is reduced.
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6. Conclusions

This paper presents a proposal for a full two-energy equation
allowing for movement of the porous bed and turbulent combustion
of the gas stream. Fuel consumption rate is expressed by the kinetic
controlled one-step Arrhenius expression, which contains products
of mass fraction of fuel and oxidant. Preliminary testing results for a
porous reactor with a moving bed and co-flowing gas indicates that
the flame front moves forward as the relative phase velocity is re-
duced. In addition, the level of turbulence kinetic energy is reduced
as less generation of k is obtained for higher values of the solid
velocity.
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