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Double-diffusive turbulent natural convection in a porous square cavity with
opposing temperature and concentration gradients☆
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This paper presents results for coupled heat and mass transport under laminar and turbulent flow regimes in
porous cavities. Two driving mechanisms are considered to contribute to the overall momentum transport,
namely temperature driven and concentration driven mass fluxes. Aiding and opposing flows are considered,
where temperature and concentration gradients are either in the same direction or of different sign,
respectively. Modeled equations are presented based on the double-decomposition concept, which considers
both time fluctuations and spatial deviations about mean values. Turbulent transport is accounted for via a
macroscopic version of the k–ε model. Variation of the cavity Nusselt and Sherwood numbers due to changes
on N, where N is the ratio of solute to thermal Grashof numbers, is presented. Results indicate that for adding
cases, mass and heat transfer across the cavity are enhanced faster than for cases with opposing temperature
and concentration gradients. For the conditions here investigated, the use a turbulence model gave results for
Nu and Sh that were nearly double when compared with laminar results for the same conditions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The studyof double-diffusivenatural convection inporousmedia has
manyenvironmental and industrial applications, includinggrain storage
and drying, petrochemical processes, oil and gas extraction, contami-
nant dispersion in underground water reservoirs and electrochemical
processes, to mention a few. The importance of double-diffusive natural
convection can be better appreciated by the volume of papers published
in this field, which was reviewed recently by Nield and Bejan [1].

Accordingly, double-diffusive convection in a vertical cavity
subject to horizontal temperature gradients has been investigated
by Trevisan and Bejan [2,3], Goyeau et al. [4], Mamou et al. [5,6],
Mohamad and Bennacer [7], Nithiarasu et al [8] and Bennacer et al
[9,10], among others. In most of the aforementioned papers, the intra-
pore flow was assumed to be laminar and it was demonstrated that,
depending on the governing parameters of the problem and on the
thermal to solute buoyancy ratio, various modes of convection prevail.
However, in some specific applications, the fluid mixture may become
turbulent and difficulties arise in the proper mathematical modeling
of the transport processes under both temperature and concentration
gradients. Due to such difficulties, there seems to be a lack in the
literature on turbulent solution of double-diffusive convection.

Motivated by the foregoing, in an earlier paper [11] a mathematical
framework for treating turbulent double-diffusive flows in porous
media was presented, but no numerical simulations were published.

That work was derived from a general mathematical model for
turbulent flow in porous media [12], which was developed under a
concept called “double-decomposition” [13]. Such concept considered
time fluctuations of the flow properties in addition to spatial
deviations, in relation to a volume-average, when setting up
macroscopic equations for the flow. Using such concept, non-buoyant
[14] as well as buoyant heat transfer has been considered [15–18] in
addition to turbulent mass transfer [19]. Application of such
methodology to channel flows with porous inserts [20,21] have also
been presented. However, in none of the above applications, results
for turbulent double-diffusion in porous media were presented.

The purpose of this contribution is to show numerical results for
turbulent double-diffusive in porous media, which are obtained with
the mathematical model earlier proposed in [11]. To the best of the
authors´ knowledge, no solutions for turbulent flow using the work in
[11] have been previously published. Here, both aiding and opposing
cases are investigated.

2. Macroscopic mathematical model

The problem considered here is showed schematically in Fig. 1a
and refers to a square cavity containing a saturated porous medium.
The cavity of height H, width L and aspect ratio A=H/L=1 is filled
with a binary fluid. The enclosure is isothermally heated from the left
and cooled from the opposing side. The top and bottomwalls are kept
insulated and the porous medium is considered to be rigid. The binary
fluid in the cavity of Fig. 1a is assumed to be Newtonian and to satisfy
the Boussinesq approximation.
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The equations used herein are derived in details in [11–13] and for
that their derivation need not be repeated here. They are developed
based on volume-averaging procedures which are fully described in
the literature [22–25].

The macroscopic continuity equation is then given by,

∇uD = 0 ð1Þ

where the Dupuit–Forchheimer relationship, uD̅=ϕ〈u〉̅i, has been
used and 〈u〉̅i identifies the intrinsic (liquid) average of the local
velocity vector u.̅ The macroscopic time-mean Reynolds equation for
an incompressible fluid with constant properties is given as,

ρ∇:
uDuD

ϕ

� �
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0
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where the last two terms in Eq. (2) represent the Darcy–Forchheimer
contribution. The symbol K is the porous medium permeability, cF is
the form drag coefficient (Forchheimer coefficient), 〈p 〉 i is the
intrinsic average pressure of the fluid, ρ is the fluid density, μ
represents the fluid viscosity and ϕ is the porosity of the porous
medium. Buoyancy effects due to temperature and concentration
variationswithin the cavity are also shown in Eq. (2). Themacroscopic
Reynolds stress −ρϕ〈u

0
u

0
〉i is modeled as,

−ρϕ〈u
0
u

0
〉
i = μtϕ2〈D〉

v−2
3
ϕρ〈k〉iI ð3Þ

Fig. 1. Configuration investigated: a) geometry and boundary conditions, b) stretched
grid.

Nomenclature

A aspect ratio
cF Forchheimer coefficient
cp specific heat
C mass concentration
Da Darcy number, Da=K/H2

Ddisp mass dispersion tensor
Ddisp,t turbulent mass dispersion tensor
D mass transfer coeffecient
Dt turbulent mass flux tensor
g gravity acceleration vector
Gβ
i Generation rate of 〈k〉 i due to buoyant effects

Grcϕ solute Grashof number based on H, Grcϕ=gβcϕΔCH3/v2

Grϕ thermal Grashof number based on H, Grϕ=gβϕΔTH3/v2

H height of enclosure
k turbulent kinetic energy per unit mass, k = u0 ⋅u0 = 2
〈k 〉 i intrinsic (fluid) average of k
K permeability
Kdisp Conductivity tensor due to dispersion
Kdisp,t Conductivity tensor due to turbulent dispersion
Kt Conductivity tensor due to turbulent heat flux
Ktor Conductivity tensor due to tortuosity
Le Lewis number, Le=Sc/Pr=D/α
N buoyancy ratio,N=Grcϕ/Grϕ,N=0 for thermal drive only.
Nu Nusselt number
p pressure
Pr Prandtl number, Pr=v/α
Ra⁎ Rayleigh–Darcy number, Ra⁎=GrϕPr Da (α/αeff),

αeff=λeff / (ρcp)f
Sc Schmidt number, Sc=v/Dℓ

Sh Sherwood number
T temperature
u velocity of the mixture
uD Darcy velocity vector

Greek symbols
α fluid thermal diffusivity, α=λf/(ρcp)f
βϕ macroscopic thermal expansion coefficient
βcϕ macroscopic solute expansion coefficient
ΔC concentration difference between plates, C1−C2
ΔT concentration difference between plates, T1−T2
λ(s, f) fluid/solid thermal conductivity
λeff effective thermal conductivity, λeff=(1−ϕ)λf+ϕλs

μ fluid mixture viscosity
μtϕ macroscopic turbulent viscosity
ε dissipation rate of k
〈ε 〉 i intrinsic (fluid) average of ε
ρ bulk density of the mixture
ϕ porosity

Subscripts
β buoyancy
ℓ chemical species
t turbulent
ϕ macroscopic
C concentration
T temperature
(s, f) solid/fluid

Superscripts
i intrinsic (fluid) average
v volume (fluid+solid) average
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where

〈D〉
v =

1
2

∇ðϕ〈u〉iÞ + ½∇ðϕ〈u〉iÞ�T
h i

ð4Þ

is the macroscopic deformation tensor, 〈k〉i = 〈u
0 ⋅u0

〉i = 2 is the
intrinsic turbulent kinetic energy and μ tϕ is the turbulent viscosity,
which is modeled in [13] similarly to the case of clear flow, in the form,

μ tϕ
= ρcμ

〈k〉i
2

〈ε〉i
ð5Þ

Coefficients βϕ and βcϕ in Eq. (2) are used to write the Grashof
numbers associated with the thermal and solute drives, in the form,

Grϕ =
gβϕΔTH

3

ν2 ;GrCϕ =
gβCϕ

ΔCH3

ν2 ð6Þ

where ΔT=T1−T2 and ΔT=C1−C2 are the maximum temperature
and concentration variation across the cavity, respectively. One should
note that for opposing thermal and concentrations drives, such maxi-
mum differences are of opposing sign. Also, the Rayleigh–Darcy num-
ber is a dimensionless parameter defined as Ra⁎=gβϕΔTHK/vαeff, with
αeff=λeff/(ρcp)f.

The ratio of Grashof numbers defines the buoyancy ratio, N, in the
form

N =
GrCϕ
Grϕ

=
βCϕ

ΔC

βϕΔT
ð7Þ

giving for Eq. (2),
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Either βcϕ=0 or ΔC=0 results in N=0, or say, only thermal drive
applies. Also, for βcϕ=0 and ΔC≠0 in Eq. (8), although no
concentration drive is modeled, a distribution of C within the field
will occur due to the flow established by the thermal drive.

Additional transport equations read (see [11] for details).

2.1. Heat transport

ðρcpÞf ∇⋅ðuD〈T〉
iÞ = ∇⋅ fKeff ⋅∇〈T〉ig ð9Þ

Keff = ½ϕλf + ð1−ϕÞλs�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
λeff

I + Ktor + Kt + Kdisp + Kdisp;t ð10Þ

2.2. Mass transport

∇ ⋅ðuD〈C〉
iÞ ¼ ∇ ⋅Deff ⋅∇ðϕ〈C〉iÞ ð11Þ

Deff = Ddisp + Ddiff + Dt + Ddisp;t ð12Þ

Ddiff = 〈D〉iI =
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1
ρ

μtϕ
Sct

I ð14Þ

Transport equations for 〈k 〉 i and its dissipation rate 〈ε〉i =
μ〈∇u0 : ð∇u0 ÞT 〉i = ρ including additional effects due to temperature
and concentration gradients are proposed as in [11]:
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where c1, c2, c3 and ck are constants. The generation rate of k due to
buoyancy is represented by Gβ

i and Gβc
i for both the thermal and solute

drives, respectively [11].

3. Integral parameters

The local Nusselt number on the hot wall of the square cavity
(x=0) is defined as,

Nuy = hL = λeff ∴Nuy =
∂〈T〉i

∂x

 !
x=0

L
T1−T2

ð17Þ

where T1 and T2 refers to the temperature limits imposed at the cavity
lateral walls (Fig. 1). The average Nusselt number is then given by,

Nu =
1
H
∫H

0
Nuy dy ð18Þ

Likewise, the local Sherwood number on the wall where the
highest concentration prevails, or say, at x=0 for adding drives and at
x=L for opposing cases, can be defined as,

Shy = hcL =D∴Shy =
∂〈C〉i

∂x

 !
xwall

L
C1−C2

ð19Þ

Here also 1 and 2 are subscripts referring to the maximum and
minimumconcentrationvalues, respectively, and hc is afilm coefficient
for mass transfer. The average Sherwood number is then given by,

Sh =
1
H
∫H

0
Shy dy ð20Þ

The variables h and hc are local film coefficients for heat and mass
transfer, respectively.

4. Numerical details

The numerical method employed for discretizing the governing
equations is the control-volume approach. A hybrid scheme, which
includes both the Upwind Differencing Scheme (UDS) and the Central
Differencing Scheme (CDS), was used for interpolating the convection

Table 1
Average Nusselt and Sherwood numbers for thermal drive only, N=0 with βcϕ=0,
(Le=10, A=1).

Ra⁎ Imposed
conditions

100 200 400 1000 2000

Nu ΔC
ΔT

= 1;

βCφ = 0

Present results 3.11 4.90 7.65 13.22 19.54
Goyeau et al. [4] 3.11 4.96 7.77 13.47 19.90
Trevisan and Bejan [2] 3.27 5.61 9.69 – –

Sh Present results 14.76 22.02 32.55 53.37 76.58
Goyeau et al. [4] 13.25 19.86 28.41 48.32 69.29
Trevisan and Bejan [2] 15.61 23.23 30.76 – –
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fluxes. The well-established SIMPLE algorithm [26] was followed for
handling the pressure–velocity coupling. Individual algebraic equa-
tions sets were solved by the SIP procedure of [27]. In addition,
concentration of nodal points closer to the walls reduces eventual
errors due to numerical diffusion which, in turn, are further
annihilated due to the hybrid scheme here adopted. Calculations for
laminar and turbulent flows used a 80×80 stretched grid for all cases
(Fig. 1b). For turbulent flow calculations, wall log laws were applied.

5. Results and discussion

As mentioned, this work refers to the study of natural convective
flows in a porous cavity of height H, width L and aspect ratio A=H/
L=1 saturated by a binary fluid. The flow is incompressible and a
two-dimensional steady state was assumed. Horizontal temperature
and concentration differences were specified between the vertical
walls (Fig. 1a).

The validation of the numerical code has been performed over a
large range of parameters for purely thermal natural convection in
porous media. Table 1 shows average Nusselt and Sherwood numbers
for laminar flow compared with those by [2] and [4]. Results in the
table consider mass transfer caused by thermal convection only
(N=0). In this configuration, the solute buoyancy force is not present
but mass transfer across the cavity occurs due to the thermally driven
flow. The table shows good agreement with similar computations
presented in the literature and indicates correct programming of the
numerical code developed.

Simulations considering laminar and turbulent flow for ϕ=0.8,
Ra⁎=2×106, Pr=10, Grϕ=2.25×1010, Da=8.88×10−6, λeff=λs=λf
and Le=1.0 are shown next. The buoyancy ratio Nwas varied from−5
to 5, for both model solutions.

Fig. 2 shows the average Nusselt and Sherwood numbers at the
heated wall as a function of N. For aiding flows (NN0), Nu and Sh

increase with N. The figure also shows that there are significant
variations between the laminar and turbulent model solutions, with
integral values nearly doublingwhen turbulence is considered, at least
for the particular conditions presented in the figure.

The case for N=0 indicates that convection is sole due to thermal
buoyancy. However, since the C-equation is also solved, the flow
mixes the concentration field and a corresponding Sherwood is
computed. The value of Nu is at minimum when N=−1, when the
two driving mechanisms oppose each other with equal strength.
Under such circumstances, conduction prevails across the cavity.

The figure further indicates that as N is decreased below −1,
negative buoyancy forces due to species distribution acts vertically
downward, along the heated wall, thereby opposing the vertically
upward thermal buoyancy drive. For that, transport rates are lower for
Nb−1 when compared with aiding cases having the same numerical
value of |N|. That is, laminar Nu and Sh for N=+4 are 15% higher
than for N=−4, for example. For turbulent solution, such differences
for the same values of N are around 23% for both Nu and Sh.

6. Conclusions

This work presents numerical computations for laminar and
turbulent flows using a macroscopic k–ε model with wall functions.
Double-diffusive natural convection in a square cavity, totally filledwith
porousmaterial, was simulated. The cavitywas heated from the left and
cooled from the opposing side. For aiding laminar flows, predicted
integral parameters were 15% higher when compared with flows with
similar but opposing conditions. For adding turbulent flows, Nu and Sh
values are roughly 23% higher than for the cases of opposing flows, at
least for the conditions here simulated.
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