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A number of natural and engineering systems can be characterized by some sort of porous

structure through which a working fluid permeates. Boundary layers over tropical forests

and spreading of chemical contaminants through underground water reservoirs are ex-

amples of important environmental flows that can benefit form appropriate mathematical

treatment. For hybrid media, involving both a porous structure and a clear flow region,

difficulties arise due to the proper mathematical treatment given at the interface. The lit-

erature proposes a jump condition in which stresses at both sides of the interface are not of

the same value. The objective of this article is to present a numerical implementation for

solving such a hybrid medium, considering here a channel partially filled with a porous

layer through which fluid flows in laminar regime. One unique set of transport equations is

applied to both regions. Numerical results are compared with available analytical solutions

in the literature for two cases, namely, with and without the nonlinear Forchheimer term.

Results are presented for the mean velocity across both the porous structure and the clear

region. The influence of medium properties, such as porosity and permeability, is discussed.

INTRODUCTION

Recently, there has been growing awareness of the need to preserve the en-
vironment. The study of atmospheric boundary-layer flows over rain forests and
vegetation could bring insight to scientists about overall exchange rates of mass and
energy between the soil and the atmosphere. In this sense, proper mathematical
modeling of such flows could be advantageous for more realistic analyses of the
environment. Accordingly, environmental flows like those could be characterized by
a hybrid domain, consisting of a clear region and a layer of a permeable medium,
over which air flows around the interface between the two media.

Traditional modeling of flow in porous medium makes use of macroscopic
variables and transport equations [1–5] where volume average properties are
obtained by means of proper mathematical tools [6, 7]. For flow presenting a
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macroscopic interfacial area, the literature proposes the existence of a stress jump
interface condition between the clear flow region and the porous medium [8, 9]. This
model for the flow near an interface has been investigated analytically for a channel
partially filed with a porous material. Solutions in such composite channels not
considering the nonlinear Forchheimer term have been presented [10]. Additional
work extending that analytical technique for including nonlinear effects has also
been presented [11, 12]. Although exact in nature, such solutions are limited to one-
dimensional, fully developed flow and for that reason they are of limited application
in simulating real three-dimensional engineering flows.

Purely numerical solutions for two-dimensional hybrid medium (porous
region-clear flow) in an isothermal channel has been considered in [13] based on the
turbulence model proposed in [14–16]. That work has been developed under the
double-decomposition concept [17–19], a new methodology recently compared with
other views in the literature [20]. Nonisothermal flow in channels past a porous
obstacle [21] and through a porous insert have also been presented [22]. In all pre-
vious work [13, 21, 22], the interface boundary condition considered a continuous
function for the stress field across the interface.

Recently, numerical solutions not considering the nonlinear term in the macro-
scopic momentum equation for composite channels have been presented [23]. Also
simulated was the case when nonlinear effects were introduced [24]. Such works
were based on the numerical methodology proposed for hybrid media and applied
in [13, 21, 22].

The objective of this work is to document the numerical methodology followed
when implementing the stress jump boundary condition. Such implementation is
based on the mathematical treatment given in [8, 9]. For checking the numerical
accuracy of the solution, comparisons with analytical distributions are carried out.

NOMENCLATURE

Ai macroscopic interface area between

the porous region and the clear flow

Am
i microscopic interfacial area between

the solid and the liquid phases

cF Forchheimer coefficient in Eq. (7)

Da Darcy number ð¼K=H2Þ
H distance between the channel walls

K permeability

l distance from the lower wall to the

center of the porous medium

L axial length of periodic section of

channel

n unit vector normal to the interface

p unit vector parallel to the interface

p thermodynamic pressure

h pii intrinsic (fluid) average of pressure p

R total drag per unit volume

ReH Reynolds number based on the chan-

nel height ¼rjuDjH=mð Þ
s clear region thickness

Sj source term

u microscopic (local) velocity vector

huii intrinsic (fluid) average of u

uD Darcy velocity vector (volume average

over u) ð¼ fhuiiÞ
uDi

Darcy velocity vector at the interface

uDp
Darcy velocity vector parallel to the

interface

uDn
; uDp

components of Darcy velocity at

interface along Z (normal) and x
(parallel) directions, respectively

uDi
; nDi

components of Darcy velocity at

interface along x and y, respectively

x; y Cartesian coordinates

b interface stress jump coefficient

Z; x generalized coordinates

m dynamic viscosity

meff effective viscosity for a porous

medium

r density

f porosity

j general dependent variable
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Effects of grid size, Reynods number, permeability K, and porosity f variation are
investigated.

MACROSCOPIC MODEL

Geometry

The flows investigated here are shown schematically in Figure 1. The channels
are partially filled with a layer of a porous material. A constant-property fluid flows
longitudinally from left to right, permeating through both the clear region and the
porous structure. The case in the Figure 1a uses symmetry boundary condition at the
channel center ( y ¼ 0), whereas in Figure 1b a solid wall in assumed at the bottom

Figure 1. Model for channel flow with porous material: (a) without the Forchheimer term; (b) with the

Forcheimer term.
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surface. Also, in Figure 1, H is the distance between the channel walls and s is the
clearance for the nonobstructed flow passage.

Governing Equations

A macroscopic form of the governing equations is obtained by taking the volu-
metric average of the entire equation set. In this development, the porous medium is
considered to be rigid, undeformable, and saturated by an incompressible fluid.

The microscopic continuity equation for the fluid phase is given by

H � u ¼ 0 ð1Þ

Applying the volume-average operator to Eq. (1), one has (see [14])

H � uD ¼ 0 ð2Þ

where the local velocity vector u is of null value at the local interfacial area Am
i (not

to be confused with the macroscopic interface area Ai) and the Dupuit-Forchheimer
relationship, uD ¼ fhuii, has been used, where the operator ‘‘h i’’ identifies the in-
trinsic (liquid volume-based) average of u [7]. Equation (2) represents the macro-
scopic continuity equation for an incompressible fluid in a rigid porous medium.

The microscopic Navier–Stokes equation for an incompressible fluid with
constant properties can be written as

r
qu
qt

þ H � ðuuÞ
� �

¼ �Hpþ mH2u ð3Þ

Hsu and Cheng [5] have applied the volume-averaging procedure to Eq. (3),
obtaining

r
q
qt

ðfhuiiÞ þ H � ðfhuuiiÞ
� �

¼ �HðfhpiiÞ þ mH2ðfhuiiÞ þ R ð4Þ

where

R ¼ m
DV

Z
Am

i

n � ðHuÞ dS� 1

DV

Z
Am

i

np dS ð5Þ

The term R represents the total drag per unit volume acting on the fluid by the action
of the porous structure. A common model for it is known as the Darcy–Forchheimer
extended model and is given by

�R ¼ � mf
K

uD þ cFfrjuDjuDffiffiffiffi
K

p
� �

ð6Þ

where the constant cF is known in the literature as the nonlinear Forchheimer
coefficient.
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Then, making use again of the expression uD ¼ fhuii, Eq. (6) can be
rewritten as

r
quD
qt

þ H � uDuD

f

� �� �
¼ �HðfhpiiÞ þ mH2uD � mf

K
uD þ cFfrjuDjuDffiffiffiffi

K
p

� �
ð7Þ

Interface Condition between the Clear Fluid and the Porous Medium

The equation proposed in [8, 9] for describing the stress jump at the interface
between the clear flow region and the porous structures is given by

meff
quDx

qZ

����
porous medium

� m
quDx

qZ

����
clear fluid

¼ b
mffiffiffiffi
K

p uDx

����
interface

ð8Þ

where uDx is the Darcy velocity component parallel to the interface aligned with the
direction x and normal to the direction Z, meff is the effective viscosity for the porous
region, m is the fluid dynamic viscosity, K is the permeability, and b is an adjustable
coefficient which accounts for the stress jump at the interface. Equation (8) will be
later adapted to the geometry and coordinate system employed here.

NUMERICAL MODEL

The numerical method used for discretizing the system of equations is the
control-volume method of Patankar [25]. In the implementation here, a system of
generalized coordinates was used, although all simulation to be shown employed
only Cartesian coordinates. Nevertheless, the use of a general system Z�x for dis-
cretizing the equations was found to be adequate for future simulations.

Because the entire derivation is set up for solving two-dimensional flows, both
cases employ the spatially periodic boundary condition along the coordinate.
This is done in order to simulate fully developed flow, for which analytical solu-
tions are available for comparison. The spatially periodic condition is imple-
mented by running the solution repetitively, until outlet profiles in x ¼ L match
those at the inlet (x ¼ 0). Figure 2a shows a general control volume in a two-
dimensional configuration. The faces of the volume are formed by lines of constant
coordinates Z–x.

For steady state, a general form of the discrete equations for a general variable
j becomes

Ie þ Iw þ In þ Is ¼ Sj ð9Þ

where Ie; Iw; In; and Is are the fluxes of j at faces east, west, north, and south of the
control volume of Figure 2a, respectively, and Sj is a source term. Details on the
numerical methodology employed in obtaining (9) can be found in [15]. Here, all
computations were carried out until the residue of the algebraic equations was
brought down to 1077, where the residue was defined as the difference between the
right and left sides of the discretized equations.
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Implementation of the Interface Condition

For hybrid domains, in addition to Eq. (8), continuity of velocity and pressure
fields prevailing at the interface is given by

uDj0<f<1¼ uDjf¼1 ð10Þ

Figure 2. Notation for: (a) control volume discretization; (b) interface treatment.
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ph iij0<f<1¼ hpii
��
f¼1

ð11Þ

Conditions (8), (10), and (11) were proposed in [8], using the concept of stress jump
at the interface.

Figure 2b show details of the interface dividing two control volumes, one being
located in the porous region and the other lying in the clear fluid. The computational
grid based on generalized coordinate system Z–x is such that the interface coincides
with a line of constant Z, extending along the x coordinate. In this arrangement, the
interface between the two neighbor volumes, each one located at each side of the
interface, belongs to both faces of the two volumes. Thus, according to Figure 2b,
uDi

is the Darcy velocity at the interface and uDF
its component parallel to the

interface itself. It is interesting to point out that although the results presented here
are based on an orthogonal Cartesian coordinate system, the derivation to follow is
extended to a general system of coordinates Z–x, the only restriction being the
alignment of the interface with a line of constant coordinate. The motivation
behind this generalization is to prepare the numerical tool for future use in a
complex geometry.

The terms on the left of (8) were discretized according to the nomenclature
shown in Figure 2a. Details of the derivation can be found in [15] and need not be
repeated here. This work focuses on the handling of the term on the right of (8), for
which a detailed study is presented below.

Returning to Figure 2b, one can identify all variables located at the interface.
According to the figure, the Darcy velocity at the interface is given by uDi

. It can be
written in either the x–y or Z–x coordinate system as

uDi
¼ uDi

e1 þ nDi
e2 ¼ uDn

nþ uDp
p ð12Þ

where uDi
and nDi

are the components of uDi
in the x and y directions, respectively.

Likewise, uDn
and uDp

are the uDi
components along Z and x, respectively.

The macroscopic interfacial area vector, normal to the surface, can be ex-
pressed as

Ai ¼ nAi ¼ �ðyne � ynwÞe1 þ ðxne � xnwÞe2 ¼ �Dyie1 þ Dxie2 ð13Þ

The unit vector normal to the interface, n, is given by

n ¼ Ai

jAij
ð14Þ

and therefore its orthogonal unit vector, parallel to the interface, is

p ¼ ðxne � xnwÞe1 þ ðyne � ynwÞe2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxne � xnwÞ2 þ ðyne � ynwÞ2

q
2
64

3
75 ð15Þ
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Because the geometry considered has twodimensions, one has jAij ¼ Ai ¼ ‘i � 1,
giving, further,

p ¼ Dxi e1 þ Dyi e2
‘i

ð16Þ

Therefore, the velocity component parallel to the interface, uDp
, can be calculated as

the scalar product of (12) and (15) in the form

uDp
¼ uDi

� p ð17Þ

uDp
¼ uDi

ðxne � xnwÞ þ nDi
ðyne � ynwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxne � xnwÞ2 þ ðyne � ynwÞ2
q

2
64

3
75 ¼ uDi

Dxi þ nDi
Dyi

‘i
ð18Þ

A Darcy velocity vector parallel to the interface, uDp
, is then given by

uDp
¼ uDp

p ¼ uDi
Dxi þ nDi

Dyi
‘i

Dxi e1 þ Dyi e2
‘i

� �
ð19Þ

Integrating the left-hand side of (8) over the macroscopic interfacial area Ai, and
considering further constant velocity uDp

and constant properties prevailing over the
integration area, one has

I
bx;y
i ¼

Z
Ai

m
bffiffiffiffi
K

p uDp
dAi � mi

bffiffiffiffi
K

p uDp
Ai ¼ mi

bffiffiffiffi
K

p uDp
‘i ð20Þ

Making use of (19), one has, further,

I
bx;y
i ¼ mi

bffiffiffiffi
K

p ðuDi
Dxi þ nDi

DyiÞ
‘i

ðDxi e1 þ Dyi e2Þ ð21Þ

For numerical solution in a general two-dimensional geometry, the momentum
equation components in the x and y are obtained by decomposing (21) such that

I
bx
i ¼ mi

bffiffiffiffi
K

p ðuDi
Dxi þ nDi

DyiÞ
‘i

Dxi ð22Þ

and

I
by
i ¼ mi

bffiffiffiffi
K

p ðuDi
Dxi þ nDi

DyiÞ
‘i

Dyi ð23Þ

Terms on the right of (22) and (23) are added to the discretized momentum
equation components in the directions x and y, respectively, when the nodal point
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in question has a face coincident with the interface. For ease of implementation,
these additional terms are treated in an explicit form and are added to the right-hand
side of (9).

RESULTS AND DISCUSSION

The two cases pictured in Figure 1 are associated with solutions of different
forms of Eq. (7). Case (a) on the top of the figure is solved without the last term on
the right of (7). An analytical solution for this case was first proposed in [10]. On the
other hand, case (b) in the same figure considers a nonlinear term, also referred to in
the literature as a Forchheimer term. Analytical distributions for the velocity field
were presented in [11, 12]. In both cases, numerical predictions use analytical profiles
for validation of the numerical implementation herein.

Grid-independence studies are shown in Figure 3. The figure shows several
nondimensional velocity profiles for f¼ 0.6, K¼ 46107 7m2, and Darcy number
Da ¼ 4� 10�3, where Da ¼ K=H2. The value for the coefficient b is set equal to zero
for all solutions presented in the figure. The curves indicate that for more than 40
nodal points in the cross-stream direction, the solution is essentially grid-
independent. One should point out that the numerical methodology considered here
was focused on two-dimensional flows, so that simulating fully developed situation
shown in the figures required the use of nodal points along the axial direction and the
employment of the spatially periodic condition mentioned earlier. For all runs stu-
died here, a total of 50 nodes in the axial direction was found to suffice.

Figure 4 show the effect of the permeability K reproduced by both the nu-
merical solution and the one-dimensional theoretical treatment. One can see that the
greater the permeability, more flow crosses the porous substratum located in the
region 0.5< y=H< 1. The agreement between numerical and analytical solution can
be noted in the figure.

Figure 5 investigates the effect of the value of f on the behavior of the velocity
field. Here also, as expected, the greater the porosity, the higher is the mass flow rate
within the permeable layer. On should point out, however, that all solutions pre-
sented in Figures 4 and 5 are obtained for a fixed Reynolds number, so that overall
mass flow rate through the channel was held constant. The use of the pressure gra-
dient when setting up the nondimensional velocity profiles in the figures may mis-
leadingly indicate an increase in the flow rate in the clear passage, at the channel
center, for the cases of increasing K or f. Also to note is that results in Figures 4 and 5
are for b¼ 0, indicating that even without considering the numerical implementation
of the jump condition, the main object of this investigation, the computer code de-
veloped seems to reproduce the exact solution correctly. With these preliminary tests
done, further results including the jump at the interface can be better assessed.

Extending the foregoing results, Figure 6 finally compares both the analytical
and the numerical solution for b varying from 70.5 to 0.5 for a fixed porosity
f¼ 0.6 and constant Darcy number Da¼ 461073. Here also, results seem to in-
dicate the correctness of the numerical implementations for the range of the para-
meters investigated. Ultimately, results in Figure 6 show the appropriateness of the
numerical methodology employed here for considering the stress jump at the inter-
face between a porous medium and a clear region.
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Figure 3. Effect of grid size on velocity field: (a) without the Fochheimer term; (b) with the Forchheimer

term.
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Figure 4. Comparison between analytical and numerical solution for different permeability, K: (a) without

the Fochheimer term; (b) with the Forchheimer term.
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Figure 5. Comparison between analytical and numerical solution for different porosity, f: (a) without the
Fochheimer term; (b) with the Forchheimer term.
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Figure 6. Comparison between analytical and numerical solution for different values of b: (a) without the
Fochheimer term; (b) with the Forchheimer term.
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CONCLUDING REMARKS

Numerical solutions for laminar flow in composite channels were obtained for
two situations, namely, considering and neglecting the nonlinear Forchheimer term
in the axial momentum equation. Comparison with strictly analytical solution
validated the developed numerical tool for situations where the porosity,
the permeability, and the jump coefficient were varied. Although results were pre-
sented for one-dimensional flows, the implementation herein was done for two-
dimensional situations and carried out on a generalized coordinate system. Future
applications on complex geometry are expected to contribute to the analysis of
important engineering flows.
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