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Abstract

For hybrid media, involving both a porous structure and a clear flow region, difficulties arise due to the proper

mathematical treatment given at the interface. The literature proposes a jump condition in which shear stresses on both

sides of the interface are not of the same value. This paper presents numerical solutions for such hybrid medium,

considering here a channel partially filled with a porous layer through which fluid flows in turbulent regime. One unique

set of transport equations is applied to both regions. Effects of Reynolds number, porosity, permeability and jump

coefficient on mean and turbulence fields are investigated. Results indicate that depending on the value of the stress

jump parameters, a substantially different structure for the turbulent field is obtained.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Environmental flows of extreme importance, such as

turbulent atmospheric boundary layer over thick rain

forests, may benefit from more realistic mathematical

models. Accordingly, flow over layers of dense vegeta-

tion can be characterized by some sort of porous

structure through which a fluid permeates.

Traditionally, volume-average properties for an

homogenous treatment of flow in porous media are

obtained by means of the volume-average theorem

(VAT) [1,2]. When the domain presents a macroscopic

interfacial area, the literature proposes the existence of a

stress jump interface condition between the clear flow

region and the porous medium [3,4].

Purely numerical solutions for two-dimensional hy-

brid medium (porous region–clear flow) in an isothermal

channel has been considered in [5] based on the turbu-
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lence model proposed in [6,7]. That work has been de-

veloped under the double-decomposition concept [8–10].

Non-isothermal flows in channels past a porous obstacle

[11] and through a porous insert have also been pre-

sented [12]. In all previous work of [5,11,12], the inter-

face boundary condition considered a continuous

function for the stress field across the interface.

Recently, the interface jump condition has been in-

vestigated for laminar flows, either considering non-

linear effects in momentum equation [13] as well as

neglecting the Forchheimer term in the macroscopic

model [14]. Such works were based on the numerical

methodology proposed for hybrid media and applied by

[5,11,12]. In [15], a detailed numerical model for in-

cluding the interface jump condition was presented.

Therein, the authors simulated laminar flow over such

interfaces and validated their results against analytical

solutions by [16–18].

The objective of this paper is to extend the work of

[19] for laminar flows computing now turbulent regime.

Flows parallel to interfaces between a porous medium

and a clear fluid are computed considering the mathe-

matical treatment given by [3,4].
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Nomenclature

cF Forchheimer coefficient in Eq. (4)

c1, c2 constants in Eq. (9)

ck constant in Eq. (8)

cl constant in Eq. (7)

Da Darcy number, Da ¼ K=H 2

D deformation rate tensor, D ¼ ½ruþ
ðruÞT�=2

d particle or pore diameter

Gi production rate of k due to the porous ma-

trix, Gi ¼ ckq/hkiij�uuDj=
ffiffiffiffi
K

p

H distance between channel walls

I unit tensor

k turbulent kinetic energy per unit mass,

k ¼ u0 � u0=2
hkiv volume (fluid+ solid) average of k
hkii intrinsic (fluid) average of k
K permeability

L axial length of periodic section of channel

p thermodynamic pressure

hpii intrinsic (fluid) average of pressure p
P i production rate of k due to mean gradients

of �uuD, P i ¼ �qhu0u0ii : r�uuD
R time average of total drag per unit volume

ReH Reynolds number based on the channel

height, ReH ¼ qj�uuD jH
l

s clearance for unobstructed flow

Su source term
�uu microscopic time-averaged velocity vector

h�uuii intrinsic (fluid) average of �uu
�uuD Darcy velocity vector, �uuD ¼ /h�uuii
�uuDi

Darcy velocity vector at the interface
�uuDp

Darcy velocity vector parallel to the inter-

face

uDn
, uDp

components of Darcy velocity at interface

along g (normal) and n (parallel) directions,

respectively

uDi
, vDi

components of Darcy velocity at interface

along x and y, respectively
x, y Cartesian coordinates

Greek symbols

b interface stress jump coefficient

l fluid dynamic viscosity

leff effective viscosity for a porous medium

lt/
macroscopic turbulent viscosity

e dissipation rate of k, e ¼ lru0 : ðru0ÞT=q
heii intrinsic (fluid) average of e
q density

/ porosity

u general dependent variable

g, n generalized coordinates
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2. Macroscopic mathematical model

2.1. Geometry and governing equations

The flow under consideration is schematically

shown in Fig. 1 where a channel is partially filled with

a layer of a porous material. A constant property fluid

flows longitudinally from left to right permeating

through both the clear region and the porous structure.

The case in Fig. 1 uses symmetry boundary condition

at the channel center ðy ¼ 0Þ. Also, H ¼ 10 cm is the

distance in between the channel walls and s the clear-

ance for the non-obstructed flow passage. It should be

emphasized that the class of flow under consideration

involves porous substrates having a high porosity and

permeability. Shell and tube heat exchangers [20] and a

nuclear reactor core [21], for example, can be seen as

porous structures with the fluid phase flowing in tur-

bulent regime.

A macroscopic form of the governing equations is

obtained by taking the volumetric average of the entire

equation set. In this development, the porous medium is

considered to be rigid and saturated by the incom-

pressible fluid.
The macroscopic continuity equation is given by,

r � �uuD ¼ 0 ð1Þ
where the Dupuit–Forchheimer relationship, �uuD ¼
/h�uuii, has been used and h�uuii identifies the intrinsic

(liquid) average of the local velocity vector �uu [2]. Eq. (1)

represents the macroscopic continuity equation for an

incompressible fluid in a rigid porous medium.

The macroscopic time–mean Navier–Stokes (NS)

equation for an incompressible fluid with constant

properties can be written as,

q
o

ot
ð/h�uuiiÞ

�
þr � ð/h�uu�uuiiÞ

�
¼ �rð/h�ppiiÞ þ lr2ð/h�uuiiÞ þ r � ð�q/hu0u0iiÞ þ R

ð2Þ

As usually done when treating turbulence with statistical

tools, the correlation �qu0u0 appears after application of

the time-average operator to the local instantaneous NS

equation. Applying further the volume-average proce-

dure to the entire momentum equation (see [6] for de-

tails), results in the term �q/hu0u0ii of (2). This term is

here recalled as the macroscopic Reynolds stress tensor

(MRST). In addition, R in (2) represents the time–mean



Fig. 1. Model for turbulent channel flow with porous material.
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total drag per unit volume acting on the fluid by the

action of the porous structure. A common model for it is

known as the Darcy–Forchheimer extended model and

is given by:

R ¼ � l/
K

�uuD

"
þ cF/qj�uuDj�uuDffiffiffiffi

K
p

#
ð3Þ

where the constant cF is known in the literature as the

non-linear Forchheimer coefficient.

Then, making use again of the expression �uuD ¼ /h�uuii
and (3), Eq. (2) can be rewritten as,

q
o�uuD
ot

"
þr � �uuD�uuD

/

 !#

¼ �r /h�ppii
� �

þ lr2�uuD þr �
�
� q/hu0u0ii

�

� l/
K

�uuD

"
þ cF/qj�uuDj�uuDffiffiffiffi

K
p

#
ð4Þ

Further, a model for the MRST in analogy with the

Boussinesq concept for clear fluid can be written as:

�q/hu0u0ii ¼ lt/
2hDiv � 2

3
/qhkiiI ð5Þ

where

hDiv ¼ 1
2
½rð/h�uuiiÞ þ ½rð/h�uuiiÞ�T� ð6Þ

is the macroscopic deformation tensor, hkii is the in-

trinsic average for k and lt/
is the macroscopic turbulent

viscosity. The macroscopic turbulent viscosity, lt/
, used

in (5) is modeled similarly to the case of clear fluid flow

and a proposal for it was presented in [6] as,

lt/
¼ qclhkii

2

=heii ð7Þ
2.2. Macroscopic equations for hkii and heii

Transport equations for hkii ¼ hu0 � u0ii=2 and heii ¼
lhru0 : ðru0ÞTii=q in their so-called high Reynolds

number form are proposed in [6] as:

q
o

ot
ð/hkiiÞ

�
þr � ð�uuDhkiiÞ

�

¼ r � l

��
þ
lt/

rk

�
rð/hkiiÞ

�
þ P i þ Gi � q/heii ð8Þ

where P i ¼ �qhu0u0ii : r�uuD, Gi ¼ ckq
/hkii j�uuD jffiffiffi

K
p and

q
o

ot
ð/heiiÞ

�
þr � ð�uuDheiiÞ

�

¼ r � l

��
þ
lt/

re

�
rð/heiiÞ

�

þ c1P i hei
i

hkii
þ c2

heii

hkii
ðGi � q/heiiÞ ð9Þ

where c1, c2 and ck are constants, P i is the production

rate of hkii due to gradients of �uuD and Gi the generation

rate of the intrinsic average of k due to the action of the

porous matrix.

2.3. Interface and boundary conditions

The equation proposed in [3,4] for describing the

stress jump at the interface between the clear flow region

and the porous structure is given by,

leff

ouDp

og

����
Porous medium

� l
ouDp

og

����
Clear fluid

¼ b
lffiffiffiffi
K

p uDp

��
Interface

ð10Þ
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where uDp
is the Darcy velocity component parallel to

the interface (see Fig. 1), leff is the effective viscosity for

the porous region, l is the fluid dynamic viscosity, K
is the permeability and b an adjustable coefficient which

accounts for the stress jump at the interface.

It is important to emphasize that the macroscopic

model for the interface here employed makes no as-

sumption about the topology of the surface, nor is this

interface the one existing in transpired solid walls, for

example. Or say, although the microscopic interfacial

area surrounding the irregular geometry of solid parti-

cles facing the clear medium may be characterized by

statistical values, such as an average thickness or

roughness, in the present macroscopic view no such

thickness or roughness is associated with the interface.

In fact, in Kaviany [22, p. 71], the order of magnitude of

the roughness of the interface is of order of d (pore/

particle diameter), which is much higher than
ffiffiffiffi
K

p
, an-

other length associated with permeable media. Had the

interface roughness been considered, that would be of

the order of d, the mean particle/pore diameter. Here,

irregular or rough boundaries between the porous me-

dium and the clear fluid are treated under the macro-

scopic view and, as such, no statistical value of interface

thickness is attributed to the modeled surface separating

the two media. Likewise, transpired walls made of a

porous substrate with extremely small porous sizes are

here not treated. Also, the macroscopic velocity at the

interface and on its surroundings is assumed to be of

sufficient value so that a viscous sublayer similar to the

one existing over impermeable surfaces are not present

in the context herein.

In addition to Eq. (10), continuity of velocity, pres-

sure, statistical variables and their fluxes across the in-

terface are given by,

�uuDj0</<1 ¼ �uuDj/¼1 ð11Þ

h�ppiij0</<1 ¼ h�ppiij/¼1 ð12Þ

hkivj0</<1 ¼ hkivj/¼1 ð13Þ

l

�
þ
lt/

rk

�
ohkiv

oy

����
0</<1

¼ l

�
þ lt

rk

�
ohkiv

oy

����
/¼1

ð14Þ

heivj0</<1 ¼ heivj/¼1 ð15Þ

l

�
þ
lt/

re

�
oheiv

oy

����
0</<1

¼ l

�
þ lt

re

�
oheiv

oy

����
/¼1

ð16Þ

Further, the extension of (10) to the case of turbulent

flow can be given as,

ðleff þ lt/
Þ
o�uuDp

oy

�����
0</<1

� ðlþ ltÞ
o�uuDp

oy

�����
/¼1

¼ ðlþ ltÞ
bffiffiffiffi
K

p �uuDi

���
Interface

ð17Þ
Eqs. (11) and (12) were also proposed in [3,4] whereas

relationships (13)–(15), (17) were used by [23].

Before proceeding, a word about the use of expres-

sion (10) seems timely. In Ochoa-Tapia and Whitaker

[3,4] such an equation was proposed in order to ac-

commodate a possible discontinuity in the diffusion flux

of momentum across the interface. This model has al-

ready been applied to laminar flows involving analytical

[16–18] and purely numerical solutions [19]. As already

mentioned, an extension to turbulent has also been

published [23], which adopted the continuity of diffusion

fluxes for uD (without any stress jump), for hkiv (Eq.

(14)), as well as for heiv (condition (16)). When the right

hand side of Eq. (10) is equal to zero, or say, when no

stress jump is accounted for by setting b ¼ 0, for ex-

ample, one has a matching of diffusion fluxes across the

interface, much like Eqs. (14) and (16) for hkiv and heiv,
respectively. Or say, due to the fact that a second deri-

vate exists in expressions, (4), (8) and (9), it is possible,

but not mandatory, that diffusion fluxes match at the

interface (see [22], p. 92). Had a similar ‘‘jump’’ been

considered in order to account for some extra effect in

the hkiv-equation, for example, we would have had an

interface condition of the form:

l

�
þ
lt/

rk

�
ohkiv

oy

����
0</<1

� l

�
þ lt

rk

�
ohkiv

oy

����
/¼1

¼ ½jump term for hkiv� ð18Þ

instead of Eq. (14). Here, however, no such disconti-

nuity on diffusion fluxes for the statistical quantities is

assumed.

Also, standard wall functions have been employed

for calculating the flow in the proximity of channel

walls. Detailed information on such numerical treatment

can be found in [6,7]. Justification for using such simpler

treatment is twofold: (1) final velocity values close to the

interface will be a function not only of the inertia and

viscous effects in the full Navier–Stokes equation, but

also due to the Darcy and Forchheimer resistance terms.

Therefore, eventual errors coming from inaccurate use

of a more appropriate boundary conditions will have

little influence on the final value for the velocity close to

the wall since drag forces, caused by the porous struc-

ture, will play also an important role in determining the

final value for the wall velocity, (2) logarithm wall laws

are simple to be incorporated when simulating flow over

rigid surfaces and for that they have been modified to

include surface roughness and to simulate flows over

irregular surfaces at the bottom of rivers [24].

In addition, is it interesting to emphasize that the

class of flows under consideration is akin to having a

sequence of closely spaced grids in a flow with a flat

macroscopic Darcy velocity profile. Mechanical energy

is transformed into turbulence kinetic energy as the flow

crosses and is perturbed by the porous matrix. This in-
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(b)

Fig. 2. Notation for (a) control volume discretization and (b) interface treatment.
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terpretation of the model here used [6] has been detailed

in de Lemos and Pedras [25].

Further, one should point out that condition (17) was

first proposed by Ref. [23] and is valid along the mac-

roscopic surface area dividing the clear and the porous

regions. Application of the volume-average operators to

a representative elementary volume [1,2] gives rise to

terms such as the Darcy and Forchheimer flow resis-

tances which, according to the literature [3,4,16–18], are

not presented when analyzing macroscopic interfacial

areas as here considered.
3. Numerical details

In an accompanying paper by [19], the discretization

methodology used for including the jump condition in

the numerical solutions was discussed in details. For
that, only brief comments about the numerical proce-

dure are here made.

Fig. 2a shows a general control volume in a two-di-

mensional configuration. The faces of the volume are

formed by lines of constant coordinates g–n. The work

in [19] was set up for solving one-dimensional laminar

flows in the geometry of Fig. 1 and employed the spa-

tially periodic boundary condition along the x-coordi-
nate. This was done in order to simulate fully developed

flow. The spatially periodic condition was implemented

by running the 2D solution repetitively, until outlet

profiles in x ¼ L matched those at the inlet ðx ¼ 0Þ.
Details on the methodology here employed for simu-

lating fully developed flow using a two-dimensional

numerical tool and the periodic condition along the x-
direction can be found in [7,26,27].

For steady-state, a general form of the discrete

equations for a general variable u becomes,
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Grid: 50×40
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interface
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Ie þ Iw þ In þ Is ¼ Su ð19Þ
where Ie, Iw, In and Is are the fluxes of u at faces east,

west, north and south of the control volume of Fig. 2a,

respectively, and Su is a source term. Here, all compu-

tations were carried out until normalized residues of the

algebraic equations were brought down to 10�7.

Fig. 2b shows details of the interface dividing two

control volumes, one being located in the porous region

and the other lying in the clear fluid. The computational

grid based on generalized coordinate system g–n is such

that the interface coincides with a line of constant g,
extending itself along the n-coordinate. In this arrange-

ment, the interface between the two neighbor volumes,

each one located on each side of the interface, belongs to

both faces of the two volumes. Thus, according to Fig.

2b, �uuDi
is the Darcy velocity at the interface and �uuDp

its

component parallel to the interface.

The terms on the left of (17) were discretized ac-

cording to the nomenclature shown in Fig. 2a. Details of

such derivation can be found in [7] and for that they are

not repeated here. Also, numerical details for the dis-

cretization of the right of (17) appears in [19].
0.2

0.4

0.6
ReH=1.5×105

[ ]2
Du

k

Clear Fluid

interface

Porous Medium
4. Results and discussion

The flow in Fig. 1 was computed with the set of Eqs.

(4), (8) and (9) with additional constitutive equation (5)

and the Kolmogorov–Prandtl expression (7). Grid in-

dependence studies were conducted and for more than

40 nodal points in the cross-stream direction, the solu-

tion was essentially grid independent. The wall function

approach was used for treating the flow close to the wall.

One should emphasize that the numerical methodology
Fig. 3. Effect of mesh size on numerical solution.

0 0.2 0.4 0.6 0.8 1
0

H

y
(b)

Fig. 4. Effect of Reynolds number, ReH , on macroscopic field:

(a) mean velocity, (b) turbulent kinetic energy.
here considered was focused on two-dimensional flows,

so that simulating the fully developed situation shown in

the figure required the used of nodal points along the

axial direction as well as the employment of the spatially

periodic condition mentioned earlier. For all runs here

studied, a total of 50 nodes in the axial direction was

found to suffice. Also interesting to emphasize is that the

sign of coefficient b in expression (10) will depend on the

orientation of the y-axis in relation to the porous layer

location. Here, the same orientation was used as the one

given by Kuznetsov [16–18], which considers the porous

layer at the top of the channel with its normal pointing

towards the minus y-direction. As such, coherent com-

putations for laminar flow were obtained [19]. Further,
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grid independence studies were also carried out by Silva

and de Lemos [19] indicating the proper size of the

number of nodal points used around the interface.

There, the authors correctly reproduced, with their nu-

merical tool, the boundary layers around the interface

proposed by the analytical study of Kuznetsov [16–18].

Also for the case of turbulent flow, as seen in Fig. 3, the

number of grid point used seems to be appropriate.

The effect of ReH is shown in Fig. 4. The mean ve-

locity in Fig. 4a indicates the increasing mass flow rate,

within either the porous material or the clear passage, as

the Reynolds increases. In Fig. 4b the collapse of curves

for the turbulent kinetic energy divided by the mean

mechanical energy shows that, for the range of ReH
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Fig. 5. Effect of permeability, K on macroscopic field: (a) mean

velocity, (b) turbulent kinetic energy.
analyzed, the percentage of energy transformed into

turbulence remains the same.

Fig. 5 shows the effect of the permeability K on both

the mean and statistical fields. One can see that the

greater the permeability, more flow crosses the porous

substratum located in the region 0:5 < y=H < 1 (Fig.

5a). The curves representing the statistical field in Fig.

5b show that, except close to the interface, the levels of k
increase with increasing K. Within the clear fluid the

production of turbulent kinetic energy is known to be

dictated by gradients of the mean velocity (P i on the

right of (8)) whereas inside the permeable structure, the
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Fig. 6. Effect of porosity on macroscopic field: (a) mean ve-

locity, (b) turbulent kinetic energy.
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model of [6] proposes a factor proportional to �uuD as a

generating mechanism for k (Gi in Eq. (8)).

Fig. 6a investigates the effect of the value of / on the

behavior of the mean velocity field. One can note that

close to the interface, the greater the porosity, the higher

the mass flow rate within the permeable layer. At the

center of the channel, the velocity decreases in order to

keep the imposed mass flow rate the same. It is interesting

to observe that since the overall mass flow rate is forced to

be constant, instead of the overall pressure loss along the

channel, an increase in mass flow rate along the porous

bed in the interface region is compensated by a slight re-
0 0.2 0.4 0.6 0.8 1
0.0x100

4.0x100

8.0x100
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β
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Fig. 7. Effect of parameter b on hydrodynamic field: (a) mean

velocity, (b) turbulent field.
duction on local velocities close to the wall. Fig. 6b shows

corresponding curves for the behavior of the turbulent

kinetic energy. Away from the interface, values of k pre-

sent a slight increase as / is incremented. Greater values

for the turbulence level within the porous layer ðy=H >
0:6Þ are coherent with the model of Eq. (8) for the extra

generation rate due to the porous matrix. As said, this

extra Gi term (third on the right of (8)) was modeled as

proportional to �uuD and, inside the porous layer ðy=H >
0:6Þ, the mean Darcy velocity increase as / is reduced.

Fig. 7 finally presents numerical solutions for b vary-

ing from )0.5 to 0.5 for a fixed a fixed porosity / ¼ 0:6,
permeability K ¼ 4� 10�6 m2 and ReH ¼ 1� 105. Pro-

files for �uuD change substantially as the factor b is varied,

from a smooth variation across the interface for a nega-

tive b, to an abrupt change in the velocity profiles when

b > 0. For positive values, the Darcy velocity �uuD is higher

inside the permeable structure. In turn, turbulent kinetic

energy is generated at a faster rate by the model proposed

in Eq. (8). Although mean velocity profiles are flat in this

same porous region, reducing the production rate P i, the

generating mechanism Gi increases the overall value of k.
In the clear fluid, steeper gradients in the fluid layer also

contributes for increasing the value of the turbulent ki-

netic energy. Then, either by P i in the clear fluid or byGi in

the porous layer, turbulent kinetic energy is generated at a

faster rate for positive values of b. Ultimately, results in

Fig. 7 indicates that for flowswheremodels with b > 0 are

suitable, a greater portion of the mean mechanical energy

of the flow is converted into turbulence. If that is the case

of environmental flows over dense and thick rain forests,

for example, results herein might be useful to environ-

mentalists and engineers analyzing important natural and

engineering flows.
5. Concluding remarks

Numerical solutions for turbulent flow in composite

channels were obtained for different values of ReH , /, K
and b parameters. Results are coherent with model

proposals for mean and turbulent fields. Although sim-

ulations were presented for one-dimensional flows, the

implementation herein was done for two-dimensional

situations and carried out on a generalized coordinate

system. Future applications on natural environmental

flows of interest, such as atmospheric boundary layer

over rain forests, may bring insight on the determination

of the overall exchange rates of energy [28] and mass

transport [29] between the soil and the atmosphere.
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