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Turbulent flow in a composite channel☆
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Numerical solutions for turbulent flow in a composite channel are presented. Here, a channel with a centered
porous material is considered. The interface between the porous medium and the clear flow was assumed to
have different transversal positions and the porous matrix was simulated with distinct permeabilities.
Governing equations were discretized and solved for both domains making use of one unique numerical
methodology. Increasing the size of the porous material pushes the flow outwards, increasing the levels of
turbulent kinetic energy at the macroscopic interface. For high permeability media, a large amount of
mechanical energy is converted into turbulence inside the porous structure.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Enhancement of thermal efficiency of advanced heat collectors can
be achieved by inserting a porous heat sink inside such devices.
Accordingly, when modeling porous media, homogenization of local
properties is obtained by means of the Volume-Average Theorem
(VAT) [1,2]. When the domain presents a macroscopic interfacial area,
the literature proposes the existence of a stress jump interface
condition between the clear flow region and the porousmedium [3,4].
Analytical solutions involving suchmodels have been published [5–7].

Recently, Silva and de Lemos (2003a–b) [8,9] presented numerical
solutions for laminar and turbulent flow in a channel partially filled
with a flat layer of porous material. There, the authors considered the
stress jump condition at the interface. Such works were based on a
numerical methodology proposed for hybrid media, i.e., flow systems
containing both clear passages and finite porous materials.

It is important to emphasize that the classical problem of having a
laminar flow over a finite porous media, inside which a flat low-speed
flow occurs, has been studied by Beavers and Joseph (1967) [10]. In
that study, neither turbulence in the fluid layer, nor variation of the
seepage velocity inside the porous matrix, was considered. Here, both
effects are accounted for, or say, turbulence is assumed to exist in the
entire domain, including the highly porous material, as well as the

axial velocity is made to vary inside the porous structure as the
interface is approached. In this sense, the study herein differs
substantially from the classical work presented in Beavers and Joseph
(1967) [10].

As such, the objective of this paper is to investigate fully developed
flow, in turbulent regime, inside a tube containing a highly porous
material. In this paper, the size of the porous blockage is varied as well
as its permeability. Their effects on the mean and turbulent fields are
investigated. Here, only the flow structure is analyzed but extension
to heat transfer, including buoyant flows [11] as well as thermal non-
equilibrium between the solid and the fluid phase, has also been
investigated [12].

2. Macroscopic mathematical model

2.1. Geometry and governing equations

The flow under consideration is schematically shown in Fig. 1
where a channel is partially filled with a layer of a porous material.
Constant property fluid flows longitudinally from left to right
permeating through both the clear region and the porous structure.

A macroscopic form of the governing equations is obtained by
taking the volumetric average of the entire equation set. In this
development, the porous medium is considered to be rigid and
saturated by the incompressible fluid (see [13] for details).

The macroscopic continuity equation is given by,

∇ ⋅ uD = 0 ð1Þ

where the Dupuit–Forchheimer relationship, ūD=ϕ〈ū〉i, has been
used and 〈ū〉i identifies the intrinsic (liquid) average of the local time-
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averaged velocity vector ū [2,13]. Eq. (1) represents the macroscopic
continuity equation for an incompressible fluid in a rigid porous
medium.

The macroscopic time-mean Navier–Stokes (NS) equation for an
incompressible fluid with constant properties can be written as,

ρ∇⋅ uDuD

ϕ

� �
= −∇ ϕ〈p〉i

� �
+ μ∇2uD + ∇ ⋅ −ρϕ〈u′u′ 〉i

� �

− μ ϕ
K

uD +
cFϕ ρ juD juDffiffiffiffi

K
p

� �
ð2Þ

where μ is the fluid dynamic viscosity, K is the permeability , cF is
known in the literature as the non-linear Forchheimer coefficient and
the term −ρϕ〈u′u′ 〉i is the Macroscopic Reynolds Stress Tensor
(MRST). The last two terms in Eq. (2) represent the time-mean total
drag per unit volume acting on the fluid by the action of the porous
structure [13].

Further, a model for the MRST in analogy with the Boussinesq
concept for clear fluid can be written as:

−ρϕ〈u′u′ 〉i = μtϕ2〈D〉
v−2

3
ϕρ〈k〉iI ð3Þ

where

〈D〉v =
1
2

∇ ϕ〈u〉i
� �

+ ∇ ϕ〈u〉i
� �h iTh i

ð4Þ

is the macroscopic deformation tensor, 〈k〉i is the intrinsic average
for k and μtϕ is the macroscopic turbulent viscosity. The macroscopic
turbulent viscosity, μtϕ, used in Eq. (3) is modeled similarly to the case
of clear fluid flow and a proposal for it was reviewed in [13] as,

μ tϕ
= ρ cμ 〈k〉

i2
=〈ε〉i ð5Þ

2.2. Macroscopic equations for k and ε

Tr anspor t equa t i ons fo r 〈k〉i = 〈u′⋅u′ 〉i = 2 and 〈ε〉i =

μ 〈∇u′ : ∇u′ð ÞT 〉i=ρ in their so-called High Reynolds Number form are

reviewed by de Lemos (2006) [13] as:

ρ∇⋅ uD〈k〉
i

� �
= ∇⋅ μ +

μ tϕ

σk

� �
∇ ϕ〈k〉i
� �� �

+ P i + Gi − ρϕ〈ε〉i ð6Þ

ρ∇: uD〈ε〉
i

� �
= ∇⋅ μ +

μtϕ
σε

� �
∇ ϕ〈ε〉i
� �� �

+ c1P
i 〈ε〉

i

〈k〉i
+ c2

〈ε〉i

〈k〉i
Gi− ρϕ〈ε〉i

� �
ð7Þ

where the c's are constants, Pi = −ρ〈u′u′ 〉i : ∇uD is the production
rate of 〈k〉i due to gradients of ūD and Gi = ckρϕ 〈k〉i juD j =

ffiffiffiffi
K

p
is the

generation rate of the intrinsic average of k due to the action of the
porous matrix.

Nomenclature

At Transversal area of channel
cF Forchheimer coefficient in Eq. (2)
c's Constants in Eqs. (5)–(7)
D Deformation rate tensor, D=[∇u+(∇u)T]/2
Da Darcy number, Da=K/(2H)2

Dp Diameter of cylindrical rods
Gi Production rate of 〈k〉i due to the porous matrix,

Gi = ckρϕ 〈k〉i juD j =
ffiffiffiffi
K

p

g Gravity acceleration vector
H Distance between channel walls
h Thickness of porous layer
hp Non-dimensional porous layer thickness, hp=h/2H
I Unit tensor
k Turbulent kinetic energy per unit mass, k = u′⋅u′=2
〈k〉v Volume (fluid+solid) average of k
〈k〉i Intrinsic (fluid) average of k
K Permeability, K=Dp

2ϕ3/144(1−ϕ)2

p Thermodynamic pressure
〈p〉i Intrinsic (fluid) average of pressure p
Pi Production rate of k due to mean gradients of uD,

Pi = −ρ〈u′u′ 〉i : ∇uD

R Time average of total drag per unit volume
ReH Channel height based Reynolds number, ReH =

ρuD2Hð Þ= μ
Sϕ Source term
u Microscopic time-averaged velocity vector
〈u〉i Intrinsic (fluid) average of u
uD Darcy velocity vector, ūD=ϕ〈ū〉i

uDi
Darcy velocity vector at the interface

uDp Darcy velocity vector parallel to the interface
ūDin

Average Darcy velocity, uDin
= 1

At
∫
At

uDdA

uDn
, uDp

Components of Darcy velocity at interface along η
(normal) and ξ (parallel) directions, respectively

x, y Cartesian coordinates

Greek symbols
β Interface stress jump coefficient
μ Fluid dynamic viscosity
μeff Effective viscosity for a porous medium, μeff=μ/φ
μtφ Macroscopic turbulent viscosity

ε Dissipation rate of k, ε = μ∇u′ : ∇u′ð ÞT = ρ
〈ε〉i Intrinsic (fluid) average of ε
ρ Density
ϕ Porosity
φ General dependent variable
η, ξ Generalized coordinates
Δp Average pressure drop along channel , Δp =

1
At
∫
At

pexit−pinletð ÞdA

Subscripts
t Turbulent
ϕ Macroscopic
(s, f) Solid/fluid

Superscripts
i Intrinsic (fluid) average
v Volume (fluid+solid) average

Fig. 1. Channel with porous layer.
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2.3. Interface conditions

The equation proposed by Ochoa–Tapia and Whitaker (1995a–b)
[3,4] for describing the stress jump at the interface between the clear
flow region and the porous structure is given by,

μeff
∂uDp

∂η

����
Porous Medium

− μ
∂uDp

∂η

����
Clear Fluid

= β
μffiffiffiffi
K

p uDp

����
interface

ð8Þ

where uDp
is the Darcy velocity component parallel to the interface, μeff

is the effective viscosity for the porous region, and β an adjustable
coefficient that accounts for the stress jump at the interface. Here, for
simplicity, no such stress jump is considered (β=0).

In addition to Eq. (8), continuity of velocity, fluid pressure,
statistical variables and their fluxes across the interface are given by,

uD jPorous Medium = uD jClear Fluid ð9Þ

〈p〉i
��
Porous Medium = 〈p〉i

��
Clear Fluid ð10Þ

〈k〉v
��
Porous Medium = 〈k〉v

��
Clear Fluid ð11Þ

μ +
μtφ
σk

� � ∂〈k〉v

∂y

����
Porous Medium

= μ +
μt
σk

� � ∂〈k〉v

∂y

����
Clear Fluid

ð12Þ

〈ε〉v
��
Porous Medium = 〈ε〉v

��
Clear Fluid ð13Þ

μ +
μtφ
σε

� � ∂〈ε〉v

∂y

����
Porous Medium

= μ +
μt
σε

� � ∂〈ε〉v

∂y

����
Clear Fluid

ð14Þ

Further, the extension of Eq. (8) to the case of turbulent flow can
be given as,

μeff + μtφ
� � ∂uD p

∂y

����
Porous Medium

− μ + μtð Þ
∂uD p

∂y

����
Clear Fluid

= μ + μtð Þ βffiffiffiffi
K

p u
DP

����
interface

ð15Þ

Eqs. (9) and (10) were also proposed by Ochoa–Tapia and Whitaker
(1995a) [3] whereas relationships Eqs. (11) through (15) were used
by Lee and Howell (1987) [14].

3. Numerical details

In Silva and de Lemos (2003a) [8], the discretization methodology
used for including the jump condition in the numerical solutions was
discussed in detail. For that, only brief comments about the numerical
procedure are here made. Transport equations are discretized in a
generalized coordinate system η–ξ using the control volume method.
The faces of the volume are formed by lines of constant coordinates
η–ξ.

The use of the spatially periodic boundary condition along the x
coordinate was also discussed in Silva and de Lemos (2003a–b) [8,9]
and was applied in order to simulate fully developed flow. The
spatially periodic condition was implemented by running the 2D
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Fig. 2. Effect of grid size on velocity field.
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Fig. 3. Effect of porous layer thickness hp=h/H (see Fig. 1): a) non-dimensional mean
velocity, b) non-dimensional turbulent kinetic energy.
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solution repetitively, until outlet profiles in x=Lmatched those at the
inlet (x=0).

For steady-state condition, the standard form of the discrete
equations for a general variable φ becomes [15],

Ie + Iw + In + Is = Sϕ ð16Þ

where Ie, Iw, In e Is are the fluxes of φ at east,west, north and south faces
of the control volume and Sφ is a source term. All computations were
carried out until normalized residues of the algebraic equations were
brought down to 10−7. As also explained in Silva and de Lemos
(2003a) [8], the interface was positioned dividing two control
volumes, one being entirely located in the porous region and the
other lying in the clear fluid. The computational grid based on the
generalized coordinate system η–ξ is such that the macroscopic
interface coincides with a line of constant η, extending itself along the
ξ coordinate. In this arrangement, the face connecting two neighbor
volumes, each one located on each side of the macroscopic interface,
belongs to the macroscopic interface between the two media. With
that, ūDi

is the Darcy velocity at the interface and ūDp
stands for its

parallel component. Details of the discretization of the terms on the
left and right of Eq. (15) can be found in Silva and de Lemos (2003a)
[8].

4. Results and discussion

The flow in Fig. 1 was computed with the set of Eqs. (2)–(7)
including constitutive Eq. (3) and the Kolmogorov–Prandtl expression
Eq. (5). The wall function approach was used for treating the flow
close to the walls. Simulation of the fully developed condition
required the use of the spatially periodic condition, as already
mentioned.

Grid independence studies are presented in Fig. 2. The figure
shows several non-dimensional velocity profiles for hp=0 (clear
channel) and Reynolds number ReH=3×105. One should note that
here the definition of ReH for a two-dimensional channel of height 2H
is given by ReH = ρuD2Hð Þ= μ . The curves in Fig. 2 indicate that for
more than 72 nodal points in the cross-stream direction, the solution
is essentially grid independent. Further, one should recall that the
numerical methodology here considered was focused on two
dimensional flows, so that simulating fully developed cases shown

in the figures required the used of nodal points along the axial
direction and the employment of the spatially periodic condition
mentioned earlier. For all runs here studied, a total of 62 nodes in the
axial direction was found to suffice.

The effect of hp is shown next in Fig. 3. The mean velocity in Fig. 3a
shows that as the size of the porous material increases, the fluid is
pushed outwards and forced to flow in the clear passage, increasing
the velocity gradient at the wall. Consequently, enhanced heat
transfer rates are expected to exist for larger porous blockages.
Fig. 3b shows corresponding profiles for the non-dimensional
turbulent kinetic energy defined as 〈k〉v/(ūDin

)2. As the interface
approaches, most of the kinetic energy is produced around it, whose
peak increases as the free flow gap is reduced. However, the larger the
blockage size, the larger the necessary pressure drop to pump the flow
though the tube (Fig. 4), a result that must be taken into consideration
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Fig. 4. Pressure drop as a function of porous layer thickness hp.
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Fig. 5. Effect of Da on: a) mean velocity, b) turbulent kinetic energy.
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when considering heat systems involving channels with porous
material inside.

Fig. 5 finally shows the effect of Darcy number on the fluid
structure. As the porous material becomes more permeable, less fluid
flows though the clearance between the wall and the interface
(Fig. 5a). Corresponding profiles for 〈k〉v/(ūDin

)2 are presented in
Fig. 5b and shows that for low permeability cases, the flow tend
towards an annular flow, with the peak of k located around the
interface. On the other hand, as the fluid permeates the porous matrix
more easily, most of the turbulent kinetic energy is generated inside
the porous medium, indicating that mean mechanical energy of the
flow is transformed into turbulence, a flow feature modeled by the
extra generation term Gi in Eq. (6).

5. Conclusions

Numerical solutions for turbulent flow in a composite channel
were obtained. The interface between the porous medium and the
clear flow was assumed to have different radial positions and the
porous matrix was simulated with distinct permeabilities. Governing
equationswere discretized and solved for both domainsmaking use of
one unique numerical methodology. Increasing the size of the porous
material pushes the flow outwards, increasing the levels of turbulent
kinetic energy at the macroscopic interface. For high permeability
media, a large amount of mechanical energy is converted into
turbulence inside the porous structure.

Acknowledgments

The authors would like to thank CNPq and FAPES, Brazil, for their
invaluable financial support during the preparation of this work.

References

[1] S. Whitaker, Advances in theory of fluid motion in porous media, Industrial &
Engineering Chemistry 61 (12) (1969) 14–28.

[2] W.G. Gray, P.C.Y. Lee, On the theorems for local volume averaging of multiphase
system, International Journal of Multiphase Flow 3 (4) (1977) 333–340.

[3] J.A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a
porous medium and a homogeneous fluid – I. Theoretical development,
International Journal of Heat and Mass Transfer 38 (14) (1995) 2635–2646.

[4] J.A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a
porous medium and a homogeneous fluid – II. Comparison with experiment,
International Journal of Heat and Mass Transfer 38 (14) (1995) 2647–2655.

[5] A.V. Kuznetsov, Analytical investigation of the fluid flow in the interface region
between a porous medium and a clear fluid in channels partially filled with a
porous medium, Applied Scientific Research 56 (1) (1996) 53–67.

[6] A.V. Kuznetsov, Influence of the stress jump condition at the porous-medium/
clear-fluid interface on a flow at a porous wall, International Communications in
Heat and Mass Transfer 24 (3) (1997) 401–410.

[7] A.V. Kuznetsov, Fluid mechanics and heat transfer in the interface region between
a porous medium and a fluid layer: a boundary layer solution, Journal of Porous
Media 2 (3) (1999) 309–321.

[8] R.A. Silva, M.J.S. de Lemos, Numerical analysis of the stress jump interface
condition for laminar flow over a porous layer, Numerical Heat Transfer – Part A
Applications 43 (6) (2003) 603–617.

[9] R.A. Silva, M.J.S. de Lemos, Turbulent flow in a channel occupied by a porous layer
considering the stress jump at the interface, International Journal of Heat and
Mass Transfer 46 (26) (2003) 5113–5121.

[10] G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall,
Journal of Fluid Mechanics 30 (1) (1967) 197–207.

[11] E.J. Braga, M.J.S. de Lemos, Laminar natural convection in cavities filled with
circular and square rods, International Communications in Heat and Mass
Transfer 32 (10) (2005) 1289–1297.

[12] M.B. Saito, de Lemos, Interfacial heat transfer coefficient for non-equilibrium
convective transport in porous media, International Communications in Heat and
Mass Transfer 32 (5) (2005) 666–676 2005.

[13] M.J.S. de Lemos, Turbulence in porous media: modeling and applications, Elsevier,
Kidlington, 2006.

[14] K. Lee, J.R. Howell, Forced convective and radiative transfer within a highly porous
layer exposed to a turbulent external flow field, Proceedings of the 1987 ASME-
JSME Thermal Engineering Joint Conf., 2, 1987, pp. 377–386.

[15] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, New York,
1980.

1023R.A. Silva, M.J.S. de Lemos / International Communications in Heat and Mass Transfer 38 (2011) 1019–1023


