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a b s t r a c t

In this paper, a model for turbulent flow and heat transfer in a highly porous medium is proposed and
applied to a porous channel bounded by parallel plates. Macroscopic continuity, momentum and energy
equations are presented. Local non-thermal equilibrium is considered by means of independent equa-
tions for the solid matrix and the working fluid. The numerical methodology used is based on the con-
trol-volume approach. The effects of thermal dispersion, Reynolds number, dimensionless particle
diameter, thermal conductivity ratio and Darcy number, on the Nusselt number, are presented. For lam-
inar and turbulent flows the thermal dispersion mechanism leads to larger local temperature differences.
Increase in Re number causes values for Nu, of both phases, to increase. Porosity increase causes the solid
phase Nusselt number to decrease whereas the fluid Nusselt number in augmented. In general, an
increase in the particle diameter increases Nusselt number. Also, the thermal conductivity ratio causes
the most pronounced effect on Nusselt numbers.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to simulate turbulent flow and heat transfer in per-
meable media has many industrial and environment applications,
such as analyses of chemical reactors, groundwater flow, fluidized
bed combustion, grain storage, dryers, energy storage units and gas
flow in reservoirs, to mention a few.

For highly porous media, or say, when the void space within the
pores corresponds to about 80–95% of the total volume (fluid and
solid), additional modeling difficulties arise due to the fact that tur-
bulence might exist in the fluid phase. The literature recognizes
that such condition appears when the Reynolds number based on
the statistical pore size, ReD, is higher than around 300.

Further, when analyzing heat transfer in porous media, there
are basically two approached to follow. One can assume thermal
equilibrium between the solid matrix and the working fluid (local
thermal equilibrium model – LTE), or else, one can analyze each
phase with an independent energy balance equation (local non-
thermal equilibrium model – LNTE).

The hypothesis of local thermal equilibrium (LTE) demands sev-
eral constraints which have been considered by a number of
authors [1–6]. For instance, the LTE hypothesis is no longer valid
when the particles or pores are not small enough, when the ther-
mal properties differ widely, or when convective transport is not
important. Also, most recent papers on the effects of local thermal

non-equilibrium deal with unsteady situations [7,8], which are
here not considered. Further, when there is a significant heat gen-
eration in any of the phases, the system will rapidly depart from
the local thermal equilibrium condition [9]. For such extreme con-
ditions, the one-energy equation model (LTE) is inadequate to cor-
rectly describe both the transients associated with the quench
front penetrating the hot dry porous layer, as well as regions where
dry out occurs.

As mentioned, when the assumption of local thermal equilib-
rium fails, one possible solution is to develop separate transport
equations for each phase [10–12] and this leads to macroscopic
models, which are referred to in the literature as LNTE closures.
For heat transport through a porous medium, a LNTE model in-
volves the derivation of energy equation for both the solid and
the fluid, which, in turn, requires additional information on the
interfacial heat transfer coefficient between the fluid phase and
the solid phase [13,14]. For that, the use of LNTE models is, on
the whole, more involving [15].

Further, if the flow is turbulent, additional difficulties arise due
to the fact that the flow properties fluctuate with time and vary
with location within the medium [16]. To handle such cases, pro-
posals for treating turbulent flow in porous media have been pre-
sented in the literature [17,18] as well as a review on turbulence
modeling in porous structures [19]. Significant contributions have
also been made by other groups [20,21].

In this paper, we extend a macroscopic model that has been
developed and published in a series of papers [22–24], which were
based on the two-equation turbulence model of [25] but considered
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both time fluctuations and space deviation of all variables involved.
That technique has been extended to non-buoyant heat transfer [26],
buoyant flows [27–31], mass transfer [32], double-diffusive trans-
port [33] and to hybrid (porous/clear) media [34,35]. Recently, the
specific problem of treating interfaces between a finite porous med-
ium and a surrounding free-flow region, considering a diffusion-
jump condition for both laminar [36] and turbulence fields [37–
39], have also been investigated under the concept first proposed
by [22–24]. These applications are here reviewed in order to give a
broader view on the work already published in this field.

Following the concept proposed in [22], de Lemos and Rocamor-
a [40] developed a macroscopic energy equation for porous
medium, considering local thermal equilibrium (LTE) between
the fluid and solid matrix. Later, Saito and de Lemos [41] proposed
a correlation for the interfacial heat transfer coefficient for turbu-
lent flow in an infinite staggered array of square rods. In a recent
paper [42], laminar flow through a porous reactor has been simu-
lated, using correlations for laminar interfacial heat transfer
[13,14]. However, in none of the above mentioned works, models
for macroscopic turbulent flow, including the LNTE closure, have
been combined to analyze heat transfer in a porous bed.

The objective of the present contribution is to present computa-
tions for a full two-energy equation model, which combines the
interfacial heat transfer correlation given by [41] and the turbulent
flow model of [22–24]. As such, the range of application of LNTE
models for porous media is extended from pure laminar [15,42]
to fully turbulent [41] flow regime.

2. Mathematical modeling

2.1. Local instantaneous transport equations

The governing equations for the flow and energy for an incom-
pressible fluid are given by:

Continuity: r � u ¼ 0 ð1Þ

Momentum: q
ou
ot
þr � ðuuÞ

� �
¼ �rpþ lr2u ð2Þ

Energy-Fluid Phase: ðqcpÞf
oT f

ot
þr � ðuT f Þ

� �
¼ r � ðkfrT f Þ þ Sf

ð3Þ

Energy-Solid Phase ðPorous MatrixÞ: ðqcpÞs
oTs

ot
¼r� ðksrTsÞþ Ss

ð4Þ

where the subscripts f and s refer to fluid and solid phases, respec-
tively. Here, T is the temperature, kf and ks are the fluid and solid
thermal conductivities, respectively, cp is the specific heat and S is
the heat generation term. If there is no heat generation either in
the solid or in the fluid, one has Sf = Ss = 0.

2.2. Double-decomposition of variables

Macroscopic transport equations for turbulent flow in a porous
medium are obtained through the simultaneous application of
time and volume average operators over a generic fluid property
u. Such concepts are defined as [22–24].

�u ¼ 1
Dt

Z tþDt

t
udt; with u ¼ �uþu0 ð5Þ

huii ¼ 1
DV f

Z
DV f

udV ; huiv ¼ /huii;

/ ¼ DV f

DV
; with u ¼ huii þ iu ð6Þ

Nomenclature

Latin characters
Ai interface total area between the fluid and solid
cF Forchheimer coefficient
cp fluid specific heat
D particle or rod diameter
Da Darcy number, Da = K/H2

hi interfacial heat transfer coefficient
H channel height
I unit tensor
K permeability
k turbulence kinetic energy per unit mass
kf fluid thermal conductivity
ks solid thermal conductivity
Kdisp dispersion tensor
Kf,s thermal conductivity tensor for fluid phase
Ks,f thermal conductivity tensor for solid phase
Kt turbulent diffusion tensor
Kdisp,t turbulent dispersion tensor
L channel length
p pressure
Pr Pr = m/a, Prandtl number
ReD Reynolds number based on D and superficial velocity �uD

T temperature
T time averaged temperature
u local instantaneous velocity
�uD time-mean Darcy or superficial velocity

(time-volume average of u)

Y Y = y/H, dimensionless transversal coordinate
X X = x/H, dimensionless longitudinal coordinate

Greek characters
a fluid thermal diffusivity
DV representative elementary volume
DVf fluid volume inside DV
l fluid dynamic viscosity
lt eddy viscosity
lt/

macroscopic eddy viscosity
m fluid kinematic viscosity
q fluid density
/ / = DVf/DV, porosity
h hðs;fÞ ¼ Tw�T

Tw�T inletðs;fÞ
, dimensionless local temperature

H Hðs;fÞ ¼
Tmðs;fÞ �T inletf
T inlets�T inletf

, Dimensionless bulk temperature

Special characters
u general variable
huii intrinsic average
huiv volume average
iu spatial deviation

Subscripts
B bulk
w wall
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where DVf is the volume of the fluid contained in a representative
elementary volume (REV) DV, intrinsic average and volume average
are represented, respectively, by hii and hiv. The double decomposi-
tion idea, introduced and fully described in [22–24], combines Eqs.
(5) and (6) and can be summarized as:

huii ¼ �uh ii; �iu ¼ iu; hu0ii ¼ huii
0

ð7Þ

and,

u0 ¼ hu0ii þ iu0
iu ¼ iuþ iu0

)
where iu0 ¼ u0 � hu0ii ¼ iu� iu ð8Þ

Therefore, the quantity u can be expressed by either,

u ¼ huii þ huii
0
þ iuþ iu0 ð9Þ

or

u ¼ �uh ii þ i �uþ hu0ii þ iu0 ð10Þ

The term iu0 can be viewed as either the temporal fluctuation of the
spatial deviation or the spatial deviation of the temporal fluctuation
of the quantity u.

2.3. Macroscopic flow equations

When the average operators (5) and (6) are simultaneously ap-
plied over Eqs. (1) and (2), macroscopic equations for turbulent
flow are obtained. Volume integration is performed over a REV
[16,42], resulting in,

Continuity : r � �uD ¼ 0 ð11Þ

where �uD ¼ / �uh ii and �uh ii identifies the intrinsic (liquid) average of
the time-averaged velocity vector �u.

Momentum:

q
o�uD

ot
þr �

�uD �uD

/

� �� �
¼ �r / �ph ii

� 	
þ lr2 �uD �r � q/ u0u0


 �i
� 	

� l/
K

�uD þ
cF/qj�uDj�uDffiffiffiffi

K
p

� �
ð12Þ

where the last two terms in Eq. (12) represent the Darcy and Forch-
heimer or form drags. The symbol K is the porous medium perme-
ability, cF is the form drag or Forchheimer coefficient, �ph ii is the
intrinsic average pressure of the fluid and u is the porosity of the
porous medium.

The macroscopic Reynolds stress, �q/ u0u0

 �i

, appearing in Eq.
(12) is given as,

�q/ u0u0

 �i ¼ lt/

2 �D

 �v � 2

3
/qhkiiI ð13Þ

where

�D

 �v ¼ 1

2
r / �uh ii
� 	

þ rð/ �uh iiÞ
h iT

� �
ð14Þ

is the macroscopic deformation tensor, hkii ¼ u0 � u0

 �i

=2 is the
intrinsic turbulent kinetic energy, and lt/

, is the turbulent viscosity,
which is modeled in [23] similarly to the case of clear flow, in the
form,

lt/
¼ qcl

hkii
2

heii
ð15Þ

The intrinsic turbulent kinetic energy per unit mass and its dissipa-
tion rate are governed by the following equations:

q
o

ot
ð/hkiiÞ þ r � ð�uDhkiiÞ

� �

¼ r � lþ
lt/

rk

� �
rð/hkiiÞ

� �
� q u0u0


 �ir�uD

þ ckq
/hkiij�uDjffiffiffiffi

K
p � q/heii ð16Þ

q
o

ot
/heii
� 	

þr � ð�uDheiiÞ
� �

¼ r � lþ
lt/

re

� �
rð/heiiÞ

� �

þ c1 �q u0u0

 �ir�uD

� 	 heii
hkii

þ c2ckq
/heiij�uDjffiffiffiffi

K
p � c2 q/

heii
2

hkii
ð17Þ

where rk ¼ 1; re ¼ 1:3, c1 = 1.44, c2 = 1.92, cl ¼ 0:09 and ck = 0.28
are non-dimensional constants [24,25].

2.4. Macroscopic energy equations

Similarly, macroscopic energy equations are obtained for both
fluid and solid phases by applying time and volume average oper-
ators to Eqs. (3) and (4). As in the flow case, volume integration is
performed over a REV, resulting in,

ðqcpÞf
o/ T f

 �i

ot
þr � / �uh ii T f


 �i þ i �uiT f

 �i|fflfflfflffl{zfflfflfflffl}

thermal disperson

þ hu0iihT 0f i
i|fflfflfflfflffl{zfflfflfflfflffl}

turbulent heat flux

0
B@

8><
>:

2
64

þ iu0 iT 0f
D Ei

|fflfflfflfflffl{zfflfflfflfflffl}
turbulent thermal disperson

1
CCA
9>>=
>>;
3
775

¼ r � kfr / T f

 �i

� 	
þ 1

DV

Z
Ai

nikf T f dA

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction

þ 1
DV

Z
Ai

ni � kfrT f dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð18Þ

where the expansion,

u0T 0f
D Ei

¼ ðhu0ii þ iu0ÞðhT 0f i
i þ iT 0Þ

D Ei
¼ hu0iihT 0f i

i þ iu0 iT 0f
D Ei

ð19Þ

has been used in light of the double decomposition concept given
by Eqs. (7)–(10) [25]. For the solid phase, one has,

ðqcpÞs
oð1�/Þ Ts


 �i

ot

( )
¼r� ksr ð1�/Þ Ts


 �i
h i

� 1
DV

Z
Ai

niksTs dA

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction

� 1
DV

Z
Ai

ni � ksrTs dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð20Þ

In (18) and (20), Ts

 �i

and T f

 �i

denote the intrinsic average tem-
perature of solid and fluid phases, respectively, Ai is the interfacial
area within the REV and ni is the unit vector normal to the fluid–so-
lid interface, pointing from the fluid towards the solid phase. Eqs.
(18) and (20) are the macroscopic energy equations for the fluid
and the porous matrix (solid), respectively.

In order to use Eqs. (18) and (20), the underscored terms
have to be modeled as a function of the intrinsically averaged
temperature of solid phase and fluid, Ts


 �i
and T f


 �i
. To accom-

plish this, a gradient type diffusion model is used for all the
terms, in the form,
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Turbulent heat flux : �ðqcpÞf /hu0iihT 0fi
i

� 	
¼ Kt � r T f


 �i ð21Þ

Thermal dispersion : �ðqcpÞf /hi �uiT f ii
� 	

¼ Kdisp � r T f

 �i ð22Þ

Turbulent thermal dispersion : �ðqcpÞf / iu0 iT 0f
D Ei

� �
¼ Kdisp;t � r T f


 �i ð23Þ

Local conduction : r � 1
DV

Z
Ai

nikf T f dA

" #

¼ Kf ;s � r Ts

 �i �r � 1

DV

Z
Ai

niksTs dA

" #
¼ Ks;f � r T f


 �i

ð24Þ

where ni in (24) as already noted, is the unit vector pointing out-
wards of the fluid phase. In this work, for simplicity, one assumed
that for turbulent flow the overall thermal resistance between the
two phases is controlled by the interfacial film coefficient, rather
than by the thermal resistance within each phase. As such, the tor-
tuosity coefficients Kf,s, Ks,f are here neglected for the sake of
simplicity.

The heat transferred between the two phases can be modeled
by means of a film coefficient hi such that,

hiai Ts

 �i � T f


 �i
� 	

¼ 1
DV

Z
Ai

ni � kfrT f dA ¼ 1
DV

Z
Ai

ni � ksrTs dA

ð25Þ

where ai = Ai/DV is the surface area per unit volume.
For the above shown expressions, Eqs. (18) and (20) can be

written as:

ðqcpÞf/
� � o T f


 �i

ot
þ ðqcpÞfr � uD T f


 �i
� 	

¼ r � Keff;f � r T f

 �i

n o
þ hiai Ts


 �i � T f

 �i

� 	
ð26Þ

fð1� /ÞðqcpÞsg
o Ts

 �i

ot
¼ r � Keff;s � r Ts


 �i
n o

� hiai Ts

 �i � T f


 �i
� 	

ð27Þ

where Keff,f and Keff,s are the effective conductivity tensor for fluid
and solid, respectively, given by:

Keff;f ¼ ½/kf �Iþ Kf ;s þ Kt þ Kdisp þ Kdisp;t ð28Þ

Keff;s ¼ ½ð1� /Þks�Iþ Ks;f ð29Þ

and I is the unit tensor.
In order to be able to apply Eq. (26), it is necessary to determine

the dispersion and conductivity tensors in Eq. (28), i.e., Kf,s, Kt, Kdisp

and Kdisp,t. Following Kuwahara and Nakayama [43] and Quintard
et al. [12], Kf,s and Kdisp, are obtained by making use of a unit cell
subjected to periodic boundary conditions, where (22) are (24)
are numerically resolved. Further, dispersion tensor components

are then obtained directly from the microscopic results, for a unit
cell, and reads for PeD P 10 [43]:

ðKdispÞyy

kf
¼ 0:052ð1� /Þ0:5PeD; for transverse dispersion ð30Þ

ðKdispÞxx

kf
¼ 2:1

PeD

ð1� /Þ0:1
; for longitudinal dispersion ð31Þ

The turbulent heat flux and turbulent thermal dispersion terms, Kt

and Kdisp,t, which cannot be determined from such a microscopic
calculation, are here modeled through the Eddy diffusivity concept,
as:

Kt þ Kdisp;t ¼ /ðqcpÞf
mt/

rT
I ð32Þ

where rT = 0.9 is the macroscopic turbulent Prandtl number for the
fluid energy equation.

2.5. Interfacial heat transfer, hi

Wakao et al. [13] proposed a correlation for hi for closely packed
bed and compared results with their experimental data. This corre-
lation reads,

hiD
kf
¼ 2þ 1:1Re0:6

D Pr1=3 ð33Þ

Kuwahara et al. [14] also obtained the interfacial convective heat
transfer coefficient for laminar flow, as follows:

hiD
kf
¼ 1þ4ð1�/Þ

/

� �
þ1

2
ð1�/Þ1=2ReDPr1=3; valid for 0:2</< 0:9

ð34Þ

Eq. (34) is based on porosity dependency and is valid for packed
beds of particle diameter D.

Following this same methodology, in which the porous medium
is considered an infinite number of solid square rods, Saito and de
Lemos [41] proposed a correlation for obtaining the interfacial heat
transfer coefficient for turbulent flow as,

hiD
kf
¼ 0:08

ReD

/

� �0:8

Pr1=3; for 1:0� 104 <
ReD

/
< 2:0� 107;

valid for 0:2 < / < 0:9 ð35Þ

Table 1
Correlations for heat transfer coefficient and fluid-to-solid specific area ai.

Reference Correlation Equation ai Flow regime

Wakao et al. [13] hi D
kf
¼ 2þ 1:1Re0:6

D Pr1=3 (33) 6ð1�/Þ
D

Laminar

Kuwahara et al. [14] hi D
kf
¼ 1þ 4ð1�/Þ

/

� 	
þ 1

2 ð1� /Þ1=2ReDPr1=3 (34) 4ð1�/Þ
D

Laminar

Saito and de Lemos [41] hi D
kf
¼ 0:08 ReD

/

� 	0:8
Pr1=3 (35) 4ð1�/Þ

D
Turbulent

uinlet

Tinlet

x 

y 

L 

Constant wall temperature or heat flux  

Tw or qw

Tw or qw

Constant wall temperature or heat flux 

2H 

Fig. 1. Geometry under investigation and coordinate system.
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Table 1 shows three variant correlations for the fluid to solid
heat transfer coefficient hi and the specific surface area of the por-
ous medium ai, which appears in both energy equations.

The Nusselt number for a porous medium is calculated for both
the fluid and solid phases and is defined as,

Fluid phase Nusselt number,

Nuf ¼ �
2H

Tw � Tmf

ohT f ii

oy

 !
ð36Þ

Solid phase Nusselt number,

Nus ¼ �
2H

Tw � Tms

ohTsii

oy

 !
ð37Þ

where Tmf and Tms are the average temperature of the fluid and the
solid phase, respectively, and are defined as follows:

Tmf ¼
R

uT f dy
uBH

ð38Þ

Tms ¼
R

Ts dy
H

ð39Þ

The solid-phase Nusselt number, Nus, was proposed by Alazmi and
Vafai [45] and refers to a non-dimensional temperature gradient for
the solid phase at the wall. This concept has also been applied in
reference [42] for laminar flows.

Non-dimensional local and cross-section averaged tempera-
tures, for both phases, are defined as,

hðs;fÞ ¼
Tw � Tðs;fÞ

Tw � T inletðs;fÞ

ð40Þ

Hðs;fÞ ¼
Tmðs;fÞ � T inletf

T inlets � T inletf

ð41Þ

Temperature gradients at wall, necessary to calculate the fluid
Nusselt number in Eq. (36), are evaluated via the High Re Turbu-
lence Model, which makes use of wall functions as follows:

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.4 0.8 1.2 1.6 2.0

X

Θ
(s

,f
)

Fluid Phase

Solid Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.4 0.8 1.2 1.6 2.0

X

Θ
(s

,f
)

Fluid Phase

Solid Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.4 0.8 1.2 1.6 2.0

X

Θ
(s

,f
)

Fluid Phase

Solid Phase

a

b

c

Fig. 2. Fluid and solid cross-sectional averaged temperatures along the flow,
Da = 10�4, ReD = 100, / = 0.6, D/H = 1.03 � 10�1, ks/kf = 25: (a) heff = 10hi; (b) heff = hi;
and (c) heff = 0.1hi.

0.0
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0.4

0.6

0.8

1.0
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0.0 0.1 0.2 0.3 0.4 0.5

Y

θ
(s

,f
)

Fluid Phase - Non-Thermal Dispersion 

Solid Phase - Non-Thermal Dispersion

Fluid Phase - Thermal Dispersion

Solid Phase - Thermal Dispersion

0.0

0.2

0.4

0.6
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0.0 0.1 0.2 0.3 0.4 0.5
Y

θ
(s
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Fluid Phase - Non-Thermal Dispersion 
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Fluid Phase - Thermal Dispersion
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0.0
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0.0 0.1 0.2 0.3 0.4 0.5

Y

θ
(s

,f
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Fluid Phase - Non-Thermal Dispersion 

Solid Phase - Non-Thermal Dispersion

Fluid Phase - Thermal Dispersion

Solid Phase - Thermal Dispersion

a

b

c

Fig. 3. Effect of thermal dispersion on local non-dimensional temperatures,
Da = 10�4, ReD = 100, / = 0.6, D/H = 1.03 � 10�1, ks/kf = 25: (a) X = 0.1, (b) X = 0.5,
and (c) X = 1.

2428 M.B. Saito, M.J.S. de Lemos / International Journal of Heat and Mass Transfer 53 (2010) 2424–2433



Author's personal copy

�u
us
¼ 1

j
lnðyþEÞ; k ¼ u2

s

c1=2
l

; e ¼ c3=4
l k3=2

w

jyw
;

qw ¼
ðqcpÞf c

1=4
l k1=2

w T � Tw
� �

rt
j lnðyþwÞ þ cQ ðPrÞ
� � ð42Þ

where us ¼ sw
q

� 	1=2
, yþw ¼

ywus
m , cQ ¼ 12:5Pr2=3 þ 2:12 lnðPrÞ�

5:3 for Pr > 0:5.
In Eq. (42), qw is wall heat flux, us is wall-friction velocity, yw is

the coordinate normal to wall and j is the von Kármán constant.
Further, in Eq. (42) E is equal to 9.0 for smooth walls.

3. Numerical method

The problem under investigation is a flow through a channel
completely filled with a porous medium, as shown in Fig. 1. Bound-
ary conditions and periodic constraints for turbulent flows in por-
ous media are similar to the clear channel flow.

The numerical method utilized to discretize the flow and energy
equations in the unit cell is the Finite Control Volume approach.
The SIMPLE method of Patankar [46] was used for handling the
velocity–pressure coupling. Convergence was monitored in terms
of the normalized residue for each variable. The maximum residue
allowed for convergence check was set to 10�9, being the variables
normalized by appropriate reference values.

4. Results and discussion

Results below were obtained after extensive testing on grid size
independence and search for optimal relaxation parameters. Due
to lack of space here, the interest reader is referred to previous
work where such studies are presented in detail [26–39].

4.1. Laminar flow

Exact solutions for thermal non-equilibrium of laminar flow in
porous media are presented in [44] and comparisons with the
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Fig. 5. Effect of thermal dispersion on local non-dimensional temperatures,
Da = 10�4, ReD = 5 � 104, / = 0.6; D/H = 1.03 � 10�1, ks/kf = 25: (a) X = 0.1, (b)
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present simulations were carried out in order to assess the correct-
ness of the code here employed. Due to lack of space, and due to
the fact that turbulent flow is the primary subject of this work,
such results are here not presented and shall be the subject of a
forthcoming paper.

First, in order to verify the correctness of the solutions, a sensi-
tivity study on the value of hi for laminar flow is presented. It is ex-
pected that the higher the interfacial heat transfer coefficient, the
smaller the differences between the fluid and the solid tempera-
tures and the faster the fully developed equilibrium temperature
is achieved. Temperature distributions for both phases and for
the conditions Da ¼ 10�4; ReD ¼ 100; / ¼ 0:6; D=H ¼ 1:03� 10�1;

ks=kf ¼ 25 and hf jinlet – hsjinlet are plotted in Fig. 2 along the non-
dimensional coordinate X = x/H. The value for Da is calculated as
Da = K/H2 where K is the permeability given by [47]

K ¼ D2/3

144ð1� /Þ2
ð43Þ

or

Da ¼ K

H2 ¼
ðD=HÞ2/3

144ð1� /Þ2
ð44Þ

Values for D and / are chosen such that a certain Da is obtained,
without reflecting necessarily real values of a specific medium.

In Fig. 2 a nominal value for hi is calculated with correlation (34).
An effective value heff is artificially introduced by modifying this
nominal value. The figure indicates that the solid phase is cooled
down to the thermal equilibrium temperature as the fluid flows
downstream the channel. In Fig. 2, the nominal value for hi in em-
ployed (Fig. 2b) and compared with effective higher (Fig. 2a) and
lower (Fig. 2c) hi values. Corresponding shortening (Fig. 2a) and
extension (Fig. 2c) of developing length are correctly calculated.

The effect of thermal dispersion on the temperature profiles,
also for the conditions Da = 10�4, ReD = 100, / = 0.6, D/H = 1.03 �
10�1 and ks/kf = 25, is shown in Fig. 3 at three distinct axial posi-
tions X. The thermal dispersion tensor components are given by
expressions (31) and (30). It is clearly seen from the figure that
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the differences in temperature between the solid and fluid phases
temperatures at transverse positions are larger when Kdisp is con-
sidered, particularly at the channel entrance region, X = 0.1
(Fig. 3a). An explanation for such behavior is that the thermal dis-
persion is an additional transport mechanism acting on the fluid
phase, yielding flatter cross-sectional profiles for T f


 �i
, resulting

in larger differences from corresponding local values of Ts

 �i

. The
figure also indicates that such differences are reduced along the
flow (Fig. 3b and c) as the two phases exchange heat through their
interstitial area.

4.2. Turbulent flow

Also for turbulent flow (ReD = 5 � 104), a sensitive analysis on
the value of hi is performed in order to evaluate the correctness
of code programming. Fig. 4 shows results for the cross-section
averaged temperatures for both the solid and fluid phases. As in
the case of laminar flow (Fig. 2), a nominal value for hi in employed
in Fig. 4b and compared with artificially increased (Fig. 4a) and re-
duced (Fig. 4c) values of the interfacial film coefficient. Also for tur-
bulent flow, shorter (Fig. 4a) and larger (Fig. 4c) developing lengths
correspond to higher and lower values for hi, respectively, indicat-
ing that physically realistic results for temperatures are obtained.

Next, the effect of introducing Kdisp in the calculations for tur-
bulent flow is presented is Fig. 5, for the conditions Da = 10�4,
ReD = 5 � 104, D/H = 1.03 � 10�1, ks/kf = 25 and / = 0.6. The differ-
ences between the solid and fluid phase temperature profiles are
greater when thermal dispersion is incorporated in the macro-
scopic model, particularly in the near wall region (Y < 0.1), which
embraces the boundary layer that is much thinner than for lam-
inar flows cases, see Fig. 3 for comparison. Therefore, here also
the role of the additional mechanism of dispersion is to promote
diffusion across the cross-section of the channel, leading to flatter
T f

 �i

profiles and larger temperature differences from corre-
sponding local values of Ts


 �i
. Effects of Reynolds number, ReD,

porosity, /, non-dimensional particle diameter, D/L, and solid-
to-fluid thermal conductivity, ks/kf, on temperature behavior are
shown next.

Fig. 6 shows the effect of the Reynolds number and boundary
condition on Nu. One can note in the figure that an increase in
ReD results in an increase in Nusselt, for all cases, as expected.
For high values of ReD, Nuf and Nus are closer to each other when
compared with similar computations for ReD = 105 (Fig. 6b).
Fig. 6c shows a comparison of all cases and indicates that Nuf at-
tains higher values than Nus, along the flow direction.

In Fig. 7a and b, the effect of porosity / on Nu is presented. An
increase in porosity causes the solid phase Nusselt number to de-
crease whereas Nuf in augmented, for both boundary condition
types. Increase in this difference for low porosity medium could
be explained by noting that a higher / gives a lower hi, according
to Eq. (35), as well as a lower ai, as seen in Table 1. Their product,
hiai, is proportional to the heat transfer between phases, as shown
by the two energy equations (26) and (27). Consequently, a high
porosity medium will have the intensity of energy transfer be-
tween phases reduced, reflecting in the temperature fields and,
ultimately, on the calculated Nu values.

Fig. 8 shows the effect of the non-dimensional particle diame-
ter D/L on Nusselt, for a fixed porosity. In general, an increase in
the particle diameter D/L results in an increase in Nusselt, for
both phases and both boundary condition types (Fig. 8a and b).
When porosity is constant and the thermal dispersion effects
are omitted, the particle diameter only affects hi and ai (see Eq.
(35) and Table 1). A reduced value for D/L with a constant / in-
creases the interstitial area, promoting the exchange of energy
between phases, leading to a reduction of the temperature gradi-
ents in the wall region, which ultimately reflects on the Nu val-

ues. Fig. 8c compiles such findings and shows for turbulent
flow, small differences on Nu prevail in spite of the boundary con-
dition type used.

Effects of the ratio ks/kf is presented in Fig. 9. All computations
made so far were obtained with ks/kf = 25 and when one compares
Fig. 9a and 9b, one can note that the lower such ratio, the closer are
the values for the Nusselt numbers, regardless of the boundary
condition used. When the fluid and the solid conduct heat at rates
of the same order, their temperatures levels do not differ much,
with reflection on the proximity of corresponding Nusselt num-
bers. Further, differences between the Nusselt numbers for
qw = const. and T w = const. are reduced for the solid, when ks/kf

is large, and increased for the fluid, for small values of ks/kf (Fig. 9c).

5. Conclusions

This paper investigated the behavior of a two-energy equation
model to simulate flow and heat transfer in a porous bed. Effects
of thermal dispersion, Reynolds number, particle diameter, poros-
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ity and solid-to-fluid thermal conductivity ratio were investigated.
The following conclusions can be drawn:

(1) For laminar flow, the thermal dispersion mechanism pro-
motes energy exchange in the fluid phase, leading to larger
local temperature differences when the solid and the fluid
temperature are compared along the channel cross-section,
particularly at the entry region.

(2) For turbulent flow, the effect of including the thermal dis-
persion mechanism is concentrated in the region close to
the wall, within the boundary layer, where such tempera-
ture differences are pronounced.

(3) Increase in Re number causes values for Nu of both phases to
increase and to approach each other.

(4) An increase in porosity causes the solid phase Nusselt num-
ber to decrease whereas Nuf in augmented, for both bound-
ary condition types. A high porosity medium will have the
intensity of energy transfer between phases reduced, reflect-
ing in the temperature fields and, ultimately, on the calcu-
lated Nu values.

(5) A reduced value for D/L with a constant porosity increases
the interstitial area, promoting the exchange of energy
between phases, leading to a reduction of the temperature
gradients in the wall region. In general, an increase in the
particle diameter results in an increase in Nusselt, for both
phases and both boundary conditions.

(6) The thermal conductivity ratio ks/kf causes the most effect
on Nusselt numbers, and the grater the ratio, the most wider
apart are Nus and Nuf, with a reduction of Nusselt for the
solid phase.
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