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This work investigates the influence of physical properties on heat transfer between the solid and fluid
phases in a porous reactor, in which both the permeable bed and the working fluid move in the same
direction with respect to fixed bounding walls. For simulating laminar flow and heat transfer, a two-
energy equation model is applied in addition to a mechanical model. Transport equations are discretized
using the control-volume method and the system of algebraic equations is relaxed via the SIMPLE algo-
rithm. The effects of Reynolds number, solid-to-fluid velocity ratio, permeability, porosity, ratio of solid-
to-fluid thermal capacity and ratio of solid-to-fluid thermal conductivity on flow and heat transport are
analyzed. The laminar model is validated by means of an analytical solution. Results for concurrent lam-
inar flow indicate that, when the speed of the solid approaches that of the fluid, the strong axial convec-
tion of the solid, as well as the reduction of the relative velocity, cause an increase in the axial length
needed for thermal equilibrium between phases to occur. Longer thermal developing lengths are also
found for higher permeabilities and higher porosities. For higher solid-to-fluid thermal capacities and
higher solid-to-fluid thermal conductivity ratios, the temperature of the solid phase shows less axial var-
iation regardless of its velocity in relation to the fluid phase.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing interest in the use of moving bed technol-
ogy for chemical compound separation, recuperation of petro-
chemical processes, drying of grains and seeds and removal of
organic matter in affluents, to mention a few applications. The
advantages of using a moving bed configuration are low invest-
ment, low energy consumption, low maintenance and improve-
ment process performance. Accordingly, granular moving bed
configurations are present in a number of engineering systems,
including those involving iron ore preparation for steel production,
for manufacturing of advanced materials and, more recently, for
biomass use in environment-friendly energy production equip-
ment. Before proceeding, one should mention that although most
applications in industry are concerned with turbulent flow through
permeable beds, here only the laminar flow regime is investigated.
By that, one can established a consistent line of study in order to
analyze turbulent flows with appropriate models in the future.

With respect to pelletization of iron ore, Parisi and Laborde [1]
and Negri et al. [2] presented a study about the direct reduction of
iron oxide in a countercurrent reactor in a moving bed. Also within
this context, Valipour et al. [3] developed a mathematical model to
ll rights reserved.

: +55 1239475842.
simulate grain kinetics and thermal behavior of a pellet of porous
iron oxide. Their study considered chemical reactions with a mix-
ture of hydrogen, carbon monoxide, carbon dioxide and water va-
por. Further, Valipour and Saboohi [4] presented a mathematical
model to simulate the multiple heterogeneous reactions in a mov-
ing bed of porous pellets on a reactor. Valipour and Saboohi [5] de-
scribed a model to predict flow in a cylindrical reactor in which
pellets of iron ore went through a gas mixture.

Henda and Falcioni [6] described the thermal performance of a
pre-heater that consists of a moving bed of pellets of nickel in con-
current flow with a gas, using both one and two equations energy
models.

Further, biomass pelletization and preparation for energy pro-
duction may be considered as a system having a moving porous
bed. Examples are given by Ryu et al. [7], Boman et al. [8] and Shi-
mizu et al. [9], who presented mathematical models of the gasifi-
cation a system using a moving bed in the burning of biomass.
Already Kayal and Chakravarty [10], Rogel and Aguillón [11] and
Nussbaumer [12] investigated technologies to cope with the prob-
lem of pollutant emission during of combustion and co-combus-
tion of biomass. Other basic studies on reactive flow in fluidized
beds can be found in the literature [13–15].

For thermal analysis of non-reacting systems, Nakayama et al.
[16] presented the exact solution of different energy equations,
for solid and fluid phases, for cases of engineering interest. They
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Nomenclature

Ai interfacial area (m2)
ai interfacial area per unit volume, ai = Ai/DV (m�1)
cF Forchheimer coefficient
cp specific heat (J/kg K)
D particle diameter, size of square rod (m)
D deformation rate tensor, D = [ru + (ru)T]/2 (s�1)
G tortuosity parameter
H distance between channel walls (m)
hi Interfacial heat transfer coefficient (W/m2 K)
K permeability (m2)
Kxx axial component of thermal dispersion tensor (W/mK)
kstg effective stagnant thermal conductivity of saturated

porous medium (W/mK)
ks/kf thermal conductivity ratio of solid to fluid
L channel length (m)
p thermodynamic pressure (N/m2)
hpii intrinsic (fluid) average of pressure p (N/m2)
Pe Peclet number, Eq. (30)
Ped Peclet number based on the D and uD

Re Reynolds number based on uD

ReD Reynolds number based on urel

hTfi fluid temperature (K)
hTsi solid temperature (K)
u microscopic velocity vector (m/s)
huii Intrinsic (fluid) average of u (m/s)
uD Darcy velocity vector, uD = /huii (m/s)
urel relative velocity based on total volume, urel = uD � uS

(m/s)
X dimensionless coordinate

Greek symbols
a parameter in Eqs. (28) and (29) (negative real root)
c phase identifier
l fluid dynamic viscosity (kg/ms)
q density (kg/m3)
/ porosity

Subscript
s,f s = solid, f = fluid
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included in their study heat transfer analyses for one-dimensional
porous plate with internal heat generation and thermally develop-
ing unidirectional flow through a semi-infinite porous medium.
Such two-energy equation model has been investigated by a num-
ber of authors and is based on the idea that under certain condi-
tions the two phases, namely the solid and the fluid, cannot have
their temperatures considered to be equal and, as such, they need
be evaluated using distinct transport equations [17–19].

Accordingly, in a series of papers a macroscopic model for fixed
porous media, considering local thermal equilibrium (LTE) be-
tween the fluid and solid matrix, was first proposed and applied
to non-buoyant [20] as well as to buoyant flows [21]. Later, in or-
der to tackle problems subjected to thermal non-equilibrium, stud-
ies on the interfacial heat transfer coefficient between phases were
conducted [22,23]. Subsequently, macroscopic laminar flow
through a porous reactor was simulated using correlations for
interstitial heat transfer [24]. None of the papers just mentioned,
however, considered movement of the solid phase. For cases when
the solid phase also moves, computations for a moving porous bed
were first presented in Ref. [25], which made use of a full macro-
scopic two-energy equation model [26].

The purpose of this contribution is to extend the work of [25] in
order to analyze now the influence of flow parameters and physical
properties, of both the solid and the fluid phases, in order to eval-
uate their impact on temperature distribution and heat transfer in
a permeable medium.

1.1. Macroscopic model for flow equations

The equations to follow are available in the open literature and
for that their derivation are not repeated here [27]. The geometry
considered in this work is schematically shown in Fig. 1a. A moving
permeable bed with constant velocity travels along the reactor de-
picted in the figure. Incoming fluid and solid phase have different
temperatures at inlet.

1.2. Fixed bed

A macroscopic form of the governing equations is obtained by
taking the volumetric average of the entire equation set. In this
development, the porous medium is considered to be rigid, fixed
and saturated by the incompressible fluid. As mentioned, deriva-
tion of this equation set is already available in the literature [27]
so that details need not to be repeated here. Nevertheless, for the
sake of completeness, the final laminar incompressible form of
the equations is here presented:

Continuity:

r � uD ¼ 0 ð1Þ

Momentum:

q
@uD

@t
þr � uDuD

/

� �� �
¼ �rð/h�piiÞ þ lr2uD

� l/
K

uD þ
cF/qjuDjuDffiffiffiffi

K
p

� �
; ð2Þ

where the last two terms in Eq. (2) represent the Darcy and Forch-
heimer contributions.

1.3. Moving bed

For a moving bed, only cases where the solid phase velocity is
kept constant will be considered here, or say, we consider here a
moving bed that crosses a fixed control volume in addition to a
flowing fluid, which is not necessarily moving with a velocity
aligned with the solid phase velocity. The steps below show first
some basic definitions prior to presenting a proposal for a set of
transport equations for analyzing such systems.

A general form for a volume-average of any property u, distrib-
uted within a phase c that occupy volume DVc, can be written as
[28,29],

huic ¼ 1
DVc

Z
DVc

udVc ð3Þ

In the general case, the volume ratio occupied by phase c will be
/c=DVc/DV.

If there are two phases, a solid c = s and a fluid phase c = f, vol-
ume average can be established on both regions. Also,

/s ¼ DVs=DV ¼ 1� DVf =DV ¼ 1� / f ð4Þ

and for simplicity of notation one can drop the superscript ‘‘f’’ to get

/s ¼ 1� / ð5Þ
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Fig. 1. Physical and numerical models: (a) Porous bed reactor with a moving solid
matrix. (b) Control volume and notation.
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As such, calling the instantaneous local velocities for the solid
and fluid phases, us and u, respectively, one can obtain the average
for the solid velocity, within the solid phase, as follows,

huis ¼ 1
DVs

Z
DVs

usdVs ð6Þ

with, in turn, can be related to an average velocity referent to the
entire REV as,

uS ¼
DVs

DV

z}|{ð1�/Þ

1
DVs

Z
DVs

usdVs|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
huis

ð7Þ

A further approximation herein is that the porous bed is kept ri-
gid and moves with a steady average velocity us.

Both velocities can then be written as,

uD ¼ /huii and us ¼ ð1� /Þhuis ¼ const ð8Þ

A relative velocity is then defined as,

urel ¼ uD � uS ð9Þ

Assuming that the relative movement between the two phases
is macroscopically described by Eq. (9), the momentum equation
reads,

q
@uD

@t
þr � uDuD

/

� �� �
¼ �rð/h�piiÞ þ lr2uD

� l/
K

urel þ
cF/qjureljurelffiffiffiffi

K
p

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

relative drag

; ð10Þ
1.4. Two-energy equation model

As for the flow, the macroscopic equations to heat transport in
porous media are obtained by applying the average volume to
microscopic equations. The mathematical model used to describe
the heat transfer between the solid and fluid in a unit of moving
bed is based on the two-energy equations model, which can be
written as:

fðqcpÞf /g
@hTf ii

@t
þ ðqcpÞfr � ðuDhTf iiÞ

¼ r � fKeff ;f � rhTf iig þ hiaiðhTsii � hTf iiÞ ð11Þ

fð1� /ÞðqcpÞsg
@hTsii

@t
þ ðqcpÞsr � ðuShTsiiÞ

¼ r � fKeff ;s � rhTsiig � hiaiðhTsii � hTf iiÞ ð12Þ

where, Keff,f and Keff,s are the effective conductivity tensors for fluid
and solid, respectively, given by:

Keff ;f ¼ ½/kf �Iþ Kf ;s þ Kdisp ð13Þ

Keff ;s ¼ ½ð1� /Þks�Iþ Ks;f ð14Þ

where I is the unit tensor and Kdisp, Kf,s and Ks,f are coefficients de-
fined as,

Thermal dispersion : �ðqcpÞf ð/h
iuiTf iiÞ ¼ Kdisp � rhTf ii ð15Þ

Local conduction :
r � 1

DV

R
Ai

nikf Tf dA
h i

¼ Kf ;s � rhTsii

�r � 1
DV

R
Ai

niksTsdA
h i

¼ Ks;f � rhTf ii

8><
>: ð16Þ

where ni in (16) as already noted, is the unit vector pointing out-
wards of the fluid phase. In this work, for simplicity, one assumes
that the overall thermal resistance between the two phases is con-
trolled by the interfacial film coefficient, which considers the
boundary layer at the solid–fluid interface, rather than by the ther-
mal resistance within the solid and the fluid phases. Such an
assumption might be more valid for turbulent flows, but here it is
also employed for laminar cases in the absence of better informa-
tion. As such, the local conduction coefficients Kf,s, Ks,f are here ne-
glected for the sake of simplicity. Additional information on the
models in Eqs. (13), (14) can be found in Ref. [20].

Non-dimensional temperatures for the solid and fluid are de-
fined as:

hs;f ¼
hTs;f ii � Tmin

Tmax � Tmin
ð17Þ

where the subscripts s, f stands for the solid and fluid phases,
respectively, and ‘‘max’’ and ‘‘min’’ refers to both temperature max-
imum and minimum of either phase.

1.5. Interfacial heat transfer coefficient

The heat transferred between the two phases was modeled by
means of a film coefficient hi, or interstitial heat transfer coeffi-
cient, present in Eqs. (11) and (12), such that,

hiaiðhTsii � hTf iiÞ ¼
1
rV

Z
Ai

ni � kfrTf dA

¼ 1
DV

Z
Ai

ni � ksrTsdA ð18Þ

where Ai is the interfacial area between the two phases and ai is the
interfacial area per unit volume or ai = Ai/rV. The high values of ai

make them attractive for transferring thermal energy via conduc-
tion through the solid followed by convection to a fluid stream.

Wakao et al. [30] obtained a heuristic correlation for a closely
packed bed of particle diameter D and compared their results with



Table 1
Properties and non-dimensional parameters considered in the investigation.

a ks
kf

/ G keff/kf Kxx/kf

0.625 40 0.4 �0.013219 4.29293 50
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experimental data. This correlation for the interfacial heat transfer
coefficient is given by,

hiD
kf
¼ 2þ 1:1Re0:6

D Pr1=3; for / > 0:9 ð19Þ

Further, a numerical correlation for the interfacial convective
heat transfer coefficient was proposed by Kuwahara et al. [31]
for a laminar flow as,

hiD
kf
¼ 1þ4ð1�/Þ

/

� �
þ1

2
ð1�/Þ1=2ReDPr1=3; valid for 0:2</<0:9:

ð20Þ

Results in Eq. (20) depend on the porosity and are valid for packed
beds of particle diameter D. In addition, Saito and de Lemos [22]
also obtained the interfacial heat transfer coefficient for laminar
flows though an infinite square rod array using the same methodol-
ogy as Kuwahara et al. [31].

The interstitial heat transfer coefficient hi is calculated by corre-
lations Eq. (20) for laminar flow. However, since the relative move-
ment between phases is seen as the promoter of convective heat
transport from the fluid to the solid, or vice-versa, a relative Rey-
nolds number defined as,

ReD ¼
qjureljD

l
ð21Þ

is used in the correlation Eq. (20) instead of a Reynolds number
based on the absolute velocity of the fluid phase. Accordingly, when
the solid phase velocity approaches the fluid velocity, the only
mechanism for transferring heat between phases is conduction.

2. Numerical method and boundary conditions

The problem under investigation is a flow through a channel
completely filled with a porous medium, as shown in Fig. 1a.
Boundary conditions for laminar flows in porous media are similar
to the clear channel flow. The numerical method used to discretize
the flow and energy equations was Control Volume approach. The
SIMPLE method of Patankar [32] was used to the handle the pres-
sure–velocity coupling and applied for relaxing the systems of
algebraic equations.

Fig. 1b presents a typical control volume written in the general-
ized coordinates system g � n. The discretized form of the two-
dimensional conservation equation for a generic property u, in
permanent regime, is given by:

Ie þ Iw þ In þ Is ¼ Su ð22Þ

where Ie, Iw, In and Is represent, respectively, the fluxes of u in the
faces east, west, north and south of the control volume and Su its
source term.
Table 2
Physical properties of solid and fluid used in Eqs. (28) and (29

kf (W/m K) qf (kg/m3) cpf (J/k

Fluid: water vapour

0.0345 0.4345 1986.8

Solid: silicon dioxide
ks (W/m K) qs (kg/m3) cps (J/k

1.38 2220 745
Standard source term linearization is accomplished by using,

Su � S��u hui
i
P þ S�u ð23Þ

Discretization of the momentum equation in the x-direction gives,

S�x ¼ ðS�xe ÞP � ðS
�x
w ÞP þ ðS

�x
n ÞP � ðS

�x
s ÞP þ S�P ð24Þ

S��x ¼ S��u ð25Þ

where S⁄x is the diffusive part, here treated in an implicit form. The
second term, S⁄⁄x, entails the additional drag forces due to the por-
ous matrix, which are here treated explicitly.

Convergence was monitored in terms of the normalized residue,
which was set to be lower than 10�9.

Boundary conditions are given by:
On the solid walls:

huii ¼ 0; qw ¼ 0 ð26Þ

On the entrance:

uD ¼ uinlet; hTf ii ¼ Tf
inlet; hTsii ¼ Ts

inlet: ð27Þ
3. Results and discussion

The problem under investigation is a laminar flow through a
channel completely filled with a moving layer of a porous material,
as depicted in Fig. 1a. The channel shown in Fig. 1a has length and
height given by L and H, respectively. As mentioned previously, the
geometry of Fig. 1a was numerically investigated using the control-
volume method of Fig. 1b. The porous matrix moves with constant
velocity us. Here, validation of the presented simulations consid-
ered a fixed solid matrix, i.e., uS/uD = 0, for which an analytical
solution is available in the literature [16]. Additional results follow
taking into consideration uS/uD > 0. All runs for moving bed cases
are detailed in Table 3. Also, the fluid and solid phases are given
different temperatures at the inlet.

3.1. Code validation

Since the problem presented in Nakayama et al. [16] is similar
to the problem showed in this work, we used the analytical solu-
tion presented by them in order to access the accuracy of the
developed code. More specifically, we applied the analysis of Ref.
[16] to the case of one-dimensional thermally developing stagnant
flow through a semi-infinite porous medium. Although it is recog-
nized that the main objective herein is the analysis a moving bed,
the scarcity of experimental data in the literature, which considers
a moving fluid through permeable media, limit us to compare our
results with those for the stagnant fluid analysis of Ref. [16]. As
more data is gathered in the literature, a more in-depth and com-
plete validation procedure can be pursued. For the time being,
however, comparisons with analytical solutions for interstitial heat
transfer in stagnant fluid are expected to suffice.

Fig. 2 shows values for the longitudinal non-dimensional tem-
perature profiles compared with the analytical solution by Nakay-
ama et al. [16], written as,
).

g K) l (Ns/m2) T (K)

173.1 � 10�7 507.5

g K) T (K)

300



Table 3
Cases and parameters used.

X

Θ
f,

Θ
s

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Nakayama and Kuwahara (2001) - Fluid Phase
Nakayama and Kuwahara (2001) - Solid Phase
Presents Results - Fluid Phase, Θf

Presents Results - Solid Phase, Θs

Fig. 2. Comparison of dimensionless temperature profiles hf and hs with those
presented in Nakayama et al. [16].
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hf ¼
hTif � Tmin

ðTmax � TminÞ

¼ 1þ
a kS

kf
ð1� /þ kS

kf
� 1

� 	
GÞ

Peþ a keffþKxx

kf

� 	h i
8<
:

9=
;� ðexpð�aXÞ � 1Þ ð28Þ

hs ¼
hTis � Tmin

ðTmax � TminÞ

¼ 1þ
a kS

kf
1� /þ kS

kf
� 1

� 	
G

� 	
Peþ a keffþKxx

kf

� 	h i
8<
:

9=
;� ðexpð�aXÞ � 1Þ

� expð�aXÞ ð29Þ

where Pe is the Peclet number given by

Pe ¼ Ped

ð6ð1� /Þð2þ 1:1Pr�4=15
f Pe0:6

d ÞÞ
0:5 ð30Þ

with,

Ped ¼
qf cpf juDjD

kf
; ð31Þ

X is a dimensionless coordinate given by:

X ¼ xffiffiffiffiffiffi
kf

aihi

q ; ð32Þ

The tortuosity parameter present in Eqs. (28) and (29), is given by:

G ¼
kstg

kf
� /� 1ð1� /Þ ks

kf

ks
kf
� 1

� 	2 ; ð33Þ

As discussed in Hsu et al. [33], the tortuosity parameter G is al-
ways negative and depends only on the local interfacial geometry
and on the solid and fluid thermal properties. According to [33],
the tortuosity effect is to reduce the effective thermal conductivity
by increasing the thermal path. In our case, the tortuosity tensor
appears only in the one energy equation model, as shown in Roca-
mora and de Lemos [20]. In this work, what corresponds to the tor-
tuosity parameter G in Eq. (33) is the model for local conduction
shown in Eq. (16).

Further, the tortuosity coefficient and the thermal dispersion,
which appear in the model of Nakayama et al. [16], are not consid-
ered in our model. Here, we assume that in a one-dimensional
problem, the most important and relevant parameter in this case
is the film coefficient hi, which accounts for the heat exchange be-
tween the phases. As mentioned before, an assumption made here
is that the overall thermal resistance between the two phases is
controlled by the interfacial heat transfer coefficient rather than
by the thermal resistance within each phase.

Therefore, for comparisons with the analytical solution pre-
sented in Ref. [16], which used for hi the expression of Wakao
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et al. [30], Eq. (19), we forced the coefficient hi in the two ap-
proaches to be equal. Or say, we compared Eq. (20) to Eq. (19)
when computing the same value of hi. By doing this, we found that
the values of porosity and particle diameter had to be different in
each equation in order to get the same coefficient hi. Thus, we
found a porosity / = 0.7 and a particle diameter D = 0.044 m in
our case (Eq. (20)), which gave the same value of hi used in Ref.
[16] with a different porosity / = 0.4, and particle diameter
D = 0.04 m in Eq. (19).

As a result of keeping the same value of hi, using distinct poros-
ities in both approaches, we obtained results very close to those by
Nakayama et al. [16], as can be seen in Fig. 2, with a relative error
of order of 10�3. Further, the effective stagnant thermal conductiv-
ity of saturated porous medium kstg is given by Hsu et al. [33] as,

kstg

kf
¼ 1� ð1� /Þ2=3 þ

½ð1� /Þ2=3 ks
kf
�

½ð1� ð1� /Þ1=3Þ ks
kf
þ ð1� /Þ1=3�

: ð34Þ

The axial component of thermal dispersion tensor Kxx in Wakao
and Kaguei [34] is given by,
(a) 

x/L

Θ
f,

Θ
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Θf, ReD=10
Θs, ReD=10
Θf, ReD=50
Θs, ReD=50
Θf, ReD=100
Θs, ReD=100

(b) 

x/L

Θ
f,

Θ
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Θf, us/uD=0.0
Θs, us/uD=0.0
Θf, us/uD=0.25
Θs, us/uD=0.25
Θf, us/uD=0.50
Θs, us/uD=0.50
Θf, us/uD=0.75
Θs, us/uD=0.75
Θf, us/uD=0.95
Θs, us/uD=0.95

Fig. 3. Non-dimensional temperatures for ks/kf = 25, / = 0.9, Da = 3.371 � 10�3,
(qcp)s/(qcp)f = 1.5, (a) as a function of ReD, us/uD = 0.5, (b) as a function of us/uD.
Kxx

kf
¼ 0:5Ped: ð35Þ

In Eqs. (28) and (29) �a is the negative real root that can be un-
iquely determined from the a cubic characteristic equation that is
discussed in detail in Nakayama et al. [16]. The parameters calcu-
lated according to the expressions found in [16] are shown in Table 1.
The properties of solid and fluid were such that ks/kf = 40. They are
presented in Table 2. It is clearly seen from Fig. 2 that good agree-
ment between the numerical solution of Eqs. (11) and (12) and the
analytical solution given by Eqs. (28) and (29) was obtained.

The influence of the flow and material properties on the tem-
perature distributions of solid and fluid phases are show next.
The simulations to follow were run for concurrent laminar flow
and considered the effect of varying the Reynolds number, the
phase velocity ratio, permeability, porosity and the ratio of thermal
capacity of solid and fluid.

3.2. Effect of Reynolds number, ReD

Fig. 3a shows values for the longitudinal non-dimensional tem-
perature profiles as a function of ReD. The Reynolds number was
calculated based on relative velocity urel and for a slip ratio uS/
uD = 0.5. As such, for increasing ReD while keeping uS/uD constant,
both the fluid and the solid phases had to increase according to
the relationship for concurrent flow,

ReD ¼
qurelD

l
¼ quDD

l
1� uS

uD

� �
¼ Re 1� uS

uD

� �
ð36Þ

Back to Fig. 3, one can see that the cold fluid is heated up as it
permeates the hot porous structure. Also, because the magnitude
of both velocities increase for a higher ReD, one can see that the ax-
ial length needed for reaching the equilibrium value is increased as
ReD increases.

3.3. Effect of slip ratio, us/uD

Fig. 3b shows temperature profiles for a moving bed, as a func-
tion of us/uD. It is observed that the higher the value of us/uD, the
greater is the temperature difference between fluid and solid
phases. The stronger axial convection due to a higher us brings
more solid phase energy into the reactor, leading to high values
of the solid temperature along the axial direction. In addition,
increasing us/uD for the same fluid velocity leads to a raise in the
equilibrium temperature as more thermal energy is brought into
the system. When the solid velocity approaches that of the fluid,
the velocity of the solid phase becomes large, leading to a longer
equilibrium length. Further, decreasing the relative velocity be-
tween phases as us increases reduces the interstitial heat transfer
rate and, consequently, exchange of heat between phases becomes
mostly governed by conduction, which further contributes towards
a longer axial length for thermal equilibrium to be established.

3.4. Effect of Darcy number, Da

Fig. 4a presents the effect of particle diameter D on the axial
temperature profiles. For a give particle diameter, permeability is
given according to the Ergun equation by (see [22]):

K ¼ D2/2

144ð1� /Þ2
ð37Þ

leading to a Darcy number Da = K/H2 where H is the height of chan-
nel. The Reynolds number and the porosity are kept constant for all
curves. It is observed in Fig. 4 that for a small permeability, as a re-
sult of a decrease of particle diameter while keeping the porosity
constant, a larger interfacial heat transfer area promotes heat
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transfer between phases and reduces the length necessary for ther-
mal equilibrium to be reached.
3.5. Effect of porosity, /

Fig. 4b shows the effect of porosity on the longitudinal temper-
ature distribution. The Reynolds number ReD, the velocity ratio be-
tween the solid and fluid phases uS/uD = 0.5 and the ratio of
thermal capacity (qcp)s/(qcp)f = 1.5 are kept constant for all curves.
For a small porosity, a larger interfacial heat transfer area promotes
heat transfer between phases and reduces the length necessary for
thermal equilibrium to be reach. Also, for a fixed Reynolds number
based on uD = / <u>i, an increase in porosity corresponds to a
reduction in the fluid velocity <u>i, which further reduces the cool-
ing effect by reducing the interfacial heat transfer coefficient hi be-
tween phases. Consequently, the product hiai will be decreased as
porosity / increases, which indicates damping of convective trans-
fer through the interfacial area.
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Fig. 4. Non-dimensional temperatures for us/uD = 0.5, (qcp)s/(qcp)f = 1.5, ks/kf = 25;
(a) as a function of Da, / = 0.9, (b) as a function of /, ReD = 62.5.
3.6. Effect of thermal capacity ratio (qcp)s/(qcp)f

Fig. 5 shows the effect of the thermal capacity ratio on dimen-
sionless temperature distribution along the axial direction. The
density and specific heat of the fluid are kept constant given by
q = 0.4345 kg/m3 and (cp)f = 1986.8 J/kg K, respectively. It is ob-
served in Fig. 5 that increasing the thermal capacity of the solid
(qcp)s, the equilibrium temperature tends to approach the inlet of
the solid, or say, for higher values of (qcp)s more energy exchange
is needed to vary the temperature of the solid by a certain amount.
3.7. Effect of thermal conductivity ratio ks/kf

Fig. 6a shows the effect of ks/kf on longitudinal non-dimensional
temperatures. It is noted that the higher the ratio ks/kf, the longer is
the length needed for thermal development since heat is trans-
ported only by conduction within the solid, which causes its
temperature distribution to be more connected to the inlet
temperature. In addition, a longer developing length and a higher
equilibrium temperature are obtained as ks/kf increases.

With increasing ks/kf for us/uD = 0.1 (Fig. 6b), also here we can
note higher solid temperatures along the reactor as well higher
equilibrium temperatures of the system. Enhancing convection of
the solid also raises the equilibrium temperature (see Fig. 3b),
which can be better seen when comparing corresponding final
equilibrium values for ks/kf = 1 in Fig. 6a and b. On the other hand,
by decreasing the thermal conductivity ratio, also here a shorter
axial length is needed for the equilibrium temperature to be
reached.

Further increasing the slip ratio to us/uD = 0.4 (Fig. 6c), one can
see that the axial convection strength of the solid for ks/kf = 1, when
compared to the similar cases in Figs 6a and b, yield the most sig-
nificant changes in raising the equilibrium temperature. For exam-
ple, nondimensional equilibrium temperatures rise from around
0.02 for us/uD = 0 and ks/kf = 1 (Fig. 6a) to more than 0.35 for us/
uD = 0.4 and the same thermal conductivity ratio equal to unity
(Fig. 6a).

Therefore, when comparing the two mechanisms, namely
advection and conduction of the solid phase, higher ratios ks/kf

have less impact on raising the equilibrium temperature than the
increase in the velocity ratio us/uD.
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Fig. 5. Non-dimensional temperatures as a function of (qcp)s/(qcp)f, us/uD = 0.5, ks/
kf = 25, / = 0.9, Da = 1.498 � 10�3, ReD = 25.
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Fig. 6. Non-dimensional temperatures as a function of ks/kf, / = 0.6, Da = 2.601 �
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4. Conclusions

This paper investigated the behavior of a two-energy equation
model to simulate flow and heat transfer in a moving porous
bed. Numerical solutions for laminar flow in a moving porous
bed were obtained for different Reynolds number ReD, slip ratio
us/uD, Darcy number Da, porosity /, ratio of thermal capacity
(qcp)s/(qcp)f and of ratio of thermal conductivity ks/kf, ranging the
slip ratio us/uD. Governing equations were discretized and numer-
ically solved. The following conclusions were observed:

(1) For a stagnant fluid, excellent agreement was obtained when
comparing the results herein with the analytical solution by
Nakayama et al. [16], which was used for validating the
accuracy of the computational code developed.

(2) For low values of ReD, us/uD, Da, /, (qcp)s/(qcp)f and ks/kf,
thermal equilibrium between phases require smaller axial
lengths.

(3) Increasing the speed of the solid relative to a fixed fluid
speed enhances the solid convection strength through the
reactor as well as reduces the transport of energy between
the phases, leading, ultimately, to an increase in the axial
length necessary for thermal equilibrium to occur. The
results presented here have a wide application to analysis
and optimization of engineering processes in which a mov-
ing bed configuration could be identified.
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