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Through the volumetric averaging of the microscopic transport equations for the turbulent

kinetic energy, k, and its dissipation rate, «, a macroscopic model is proposed for flow in

porous media. As an outcome of the volume-averaging process, additional terms appeared

in the equations for k and e. These terms are adjusted assuming the porous structure to be

modeled as an infinity array of transversally displaced elliptic rods. This adjustment is

obtained by solving the microscopic flow governing equations numerically, using a low-

Reynolds formulation, in the periodic cell composing the infinite medium. Different porosity

and aspect ratios are investigated. The adjusted model is compared with similar results

found in the literature. A general view of the effect of the medium morphology on model

assumptions is obtained by comparing results for elliptic, cylindrical, and square rods.

1. INTRODUCTION

A number of natural and engineering systems can be characterized by some
sort of porous structure through which a fluid in turbulent regime permeates. Tur-
bulent boundary layers over forests and vegetation are examples of important en-
vironmental flows which can benefit from appropriate mathematical treatment. Also,
fluidized-bed combustors and chemical catalytic reactors are subjected to pressure-
loss variation due to changes in the flow regime inside the pores. In petroleum ex-
traction, the flow accelerates toward the pumping well while crossing regions of
variable porosity. Turbulent regime eventually occurs, affecting overall pressure
drop and well performance. In all cases, better understanding of turbulence through
adequate modeling can more realistically simulate real-world environmental and
engineering flows.
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Traditional mathematical treatment of flow in porous media is concerned with
situations of low Rep, the so-called pore Reynolds number, and applies the notion of
volume averaging to the governing equations. These models rely on the macroscopic
point of view and lose details of the flow pattern inside the pores. Macroscopic
equations, together with ad-hoc information, provide global flow properties such as
average velocities and temperatures [1–9].

For values of Rep greater than about 300, turbulence phenomena inside the
pores has been observed experimentally [10–12] and therefore, a turbulence model
also needs to be considered for proper statistical analysis of the flow. In this case, the
application of both space- and time-averaging operators has given rise to distinct
paths followed in the literature. Essentially, equations for the flow turbulence kinetic
energy following both time-space and space-time integration sequences have been
presented. In the first case [13–16], governing equations for the mean and turbulent
field are obtained by time-averaging the volume-averaged equations. In the second
methodology [12,17–20] a volume-average operator is applied to the local time-
averaged equation.

A recent path following the time-space sequence has been proposed [21–25]
based on the concept of double decomposition of flow properties in space and time
[26–28]. The double-decomposition concept led to a better characterization of the
flow turbulent kinetic energy and was a step before detailed numerical solutions of
the flow equations were carried out [29]. Calculations were needed for adjusting the
model and considered both the high-Re k–e closure [30] and the low-Reynolds
version of it [31]. Turbulent heat transfer has also been considered [32]. One of the
main motivations for this development was the ability to treat hybrid computational
domains with a single mathematical tool. Hybrid systems have been calculated for
the flow field [33], for nonisothermal recirculating flows in channels past a porous
obstacle [34, 35] and through a porous insert [36].

A morphology-based closure has also been suggested [37–42] based on the
volume-average theory. Use of such methodology, however, is regarded by many as
of little practical use in engineering applications [43]. In the literature, all of these
methodologies lead to different governing equations. Recently, all proposals in the
literature for turbulence modeling in porous media have been compiled into four
major categories and were presented in Ref. [44].

When setting up a model for turbulent flow through a porous structure, the
morphology of the medium plays an important role. Accordingly, one of the main
difficulties in establishing a reliable and ‘‘universal’’ mathematical model of the
averaged flow is how to characterize the topology of the medium. Many different
shapes and forms for the solid phase are found in naturally formed media and in
geometrically organized engineering systems. By resolving the microscopic flow
equation within the liquid phase, regardless of the form a porous structure may
present, information on the fine flow structure around the solid material can bring
insight to the modeling ideas used in devising equations for the time- and volume-
average flow. For that, a characterization of the medium topology is necessary in
order to reveal the microscopic flow structure.

Accordingly, Nakayama and Kuwahara [20] assumed the medium to be
formed by a spatially periodic array of square rods, whereas Pedras and de Lemos
[29, 31] used cylindrical rods instead. Later, Pedras and de Lemos [45], extended
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their work, considering longitudinally displaced rods. The aim of the present
contribution is to adjust these new terms by solving the flow field numerically
within a spatially periodic array of transversally oriented two-dimensional elliptic
rods. Together with previous work [29,45] overall mapping of medium morphology
of different kinds is expected to guide macroscopic modeling and compare closures
so far presented in the literature. Both low- and high-Re turbulence models are
employed.

2. MACROSCOPIC k–« EQUATIONS

In the work presented by de Lemos & Pedras [24] and Pedras and de Lemos [23],
the authors have applied the volume-averaging operator to the microscopic k–e
equations and proposed the following macroscopic k–e equations:
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where ck, c1e, c2e, and cm are nondimensional constants.
For macroscopic fully developed unidimensional flow in isotropic and homo-

geneous media, the limiting values for hkii and heii are given by kf and ef, respec-
tively. In this limiting condition, Eqs. (1) and (2) reduce to
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or in the following dimensionless form:

ef
ffiffiffiffi
K

p

j�uDj3
¼ ck

kf

j�uDj2
ð6Þ

The coefficient ck was adjusted in this limiting condition for the spatially periodic
cells shown in Figure 1. The figure represents different solid-phase shapes and is a

Figure 1. Model of R.E.V. (Representative Elementary Volume) periodic cell, and elliptically generated

grids: (a) longitudinal elliptic rods, a=b ¼ 5=3 [45]; (b) cylindrical rods, a=b ¼ 1 [23]; (c) transverse elliptic

rods, a=b ¼ 3=5.
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step toward mapping a number of different morphological descriptions of distinct
media. Ultimately, we intend to gather information on a variety of structures in
order to validate the macroscopic two-equation model using Eqs. (1)–(2). In the first
geometry, shown in Figure 1a, the ratio of ellipse axes is a=b ¼ 5=3 and the flow is
from left to right along the longer axis of the ellipse (longitudinal case). Both the
longitudinal rods of Figure 1a and the cylindrical case shown in Figure 1b were also
investigated by Pedras and de Lemos [23, 45] and are included here for the sake of
comparison. In the third periodic cell (Figure 1c), one has the transversal posi-
tioning of the same elliptical rod shown in Figure 1a. Also important to note is that
both the cylindrical and elliptical arrangements have nearly the same value for
porosity, so that all comparisons shown below, resulting from microscopic com-
putations, reflect changes due to other medium properties such as permeability and
morphology of the different geometric models. It is also important to emphasize the
influence of medium morphology on macroscopic models that, in principle, do not
explicitly account for any effect of turbulence. In fact, recent literature results by
Bhattacharya et al. [46] propose correlations for the inertia coefficient as a function
of medium and flow properties. In the path followed here, however, one unique
value for the inertia coefficient will be used when presenting macroscopic results.
Here, the explicit accounting for turbulent transport for high Re numbers, while
keeping a unique macroscopic inertia coefficient, can be seen as an alternative path
to adjusting the Forchheimer coefficient for large values of Re. Also important to
remember is that a distinction between laminar, nonlinear, and fully turbulent flow
in porous media is not as evident as in unobstructed flow, and that adequate models
covering a wide range of medium (K;f) and flow properties (ReH) are still to be
developed.

In all cases computed, the flow was assumed to enter through the left aperture
so that symmetry along the y direction and periodic boundary conditions along the x
coordinate were applied. Values of kf and ef were obtained by integrating the mi-
croscopic flow field for Reynolds number, ReH ¼ jh�uivjH=n, ranging from 104 to 106.
The porosity, given by f ¼ 1�abp=H2, was varied from 0.53 to 0.85 for longitudinal
ellipses and from 0.70 to 0.90 for the transversal case.

3. MICROSCOPIC FLOW EQUATIONS

In the numeric model, the following microscopic transport equations were
used, where barred quantities represent time-averaged components and primes in-
dicate turbulent fluctuations.
Continuity equation:

H � �u ¼ 0 ð7Þ
Momentum equation:

H � ðr�u�uÞ ¼ �H�pþ H � fm½H�u þ ðH�uÞT� � ru0u0g ð8Þ

k equation:

H � ðr�ukÞ ¼ H � mþ mt
sk

� �
Hk

� �
� ru0u0 : H�u � re ð9Þ
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e equation:
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Also, the Boussinesq concept for Reynolds stresses is given by

� ru0u0 ¼ mt½Hu þ ðHuÞT� � 2

3
rkI ð11Þ

where the turbulent viscosity is

mt ¼ rCm fm
k2

e
ð12Þ

In the above equation set, sk, se, C1, C2, and Cm are dimensionless constants,
whereas f2 and fm are damping functions.

The use, in this work, of the low- and high-Re k–emodels is justified by the fact
that the turbulent flow in porous media occurs for Reynolds numbers (based on the
pore) relatively low. To account for the low-Reynolds effects, the following damping
functions were adopted [47]:
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200
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where n is the coordinate normal to the wall. The model constants are given as
follows:

Cm ¼ 0:09 C1 ¼ 1:5 C2 ¼ 1:9 sk ¼ 1:4 se ¼ 1:3 ð15Þ

For the high-Re model the standard constants of Launder and Spalding [48] were
used.

With the assumption of macroscopic fully developed unidimensional flow,
the following boundary conditions for the periodic cells of Figure 1 were adopted. At
the walls:

�u ¼ 0; k ¼ 0; and e ¼ n
q2k
qn2

ð16Þ

On x ¼ 0 and x ¼ 2H (periodic boundaries):

�ujx¼0 ¼ �ujx¼2H; �njx¼0 ¼ �njx¼2H ð17Þ

kjx¼0 ¼ kjx¼2H; ejx¼0 ¼ ejx¼2H ð18Þ
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On y ¼ 0 and y ¼ H=2 symmetrical lines:

q�u
qy

¼ q�n
qy

¼ qk
qy

¼ qe
qy

¼ 0 ð19Þ

where �u and �v are components of �u.

4. NUMERICAL MODEL

The governing equations were discretized using the finite-volume procedure
[49]. The SIMPLE algorithm for the pressure–velocity coupling was adopted to
correct both the pressure and the velocity fields. Process starts with the solution of
the two momentum equations. Then the velocity field is adjusted in order to satisfy
the continuity principle. This adjustment is obtained by solving the pressure-
correction equation. After that, the turbulence model equations are relaxed to up-
date the k and e fields. This iteration sequence is repeated until convergence is
achieved. Details on the numerical discretization can be found in Rocamora and de
Lemos [30] and Pedras and de Lemos [29].

For the low-Re model, the node adjacent to the wall requires that utn=n � 1,
where ut is the friction velocity. To accomplish this requirement, the grid needs a
great number of points close to the wall, leading to computational meshes of large
sizes. In order to minimize this problem, all calculations were made in half of the
periodic cell (2H�H=2) and according to the boundary condition given by Eq. (19).
The use of the symmetry boundary condition reduces the grid to 300� 100 nodes.
A highly nonuniform grid arrangement was employed, with concentration of nodes
close to the wall. The calculations with longitudinal ellipses were executed using an
IBM SP2 and those for transversal ellipses used a PC with two Pentium III CPUs
running at 850Mhz.

5. RESULTS AND DISCUSSION

A total of 18 runs were carried out for each case (longitudinal and transversal
ellipses), 6 for laminar flow, 6 with the low-Re model, and 6 using the high-Re
theory. Some of the results for the longitudinal ellipses were presented by Pedras and
de Lemos [45] and are referred to here for the sake of completeness and comparison.
Table 1 summarizes the integrated values for the longitudinal ellipses (volumetric
averaging over the periodic cell obtained for turbulent flow), whereas Table 2
compiles the integrated quantities for the transversal cases. In all runs, the medium
permeability was calculated using the procedure adopted by Kuwahara et al. [18].

5.1. Microscopic Results and Integrated Values

Figure 2 presents velocity, pressure, k, and e fields for the longitudinal ellipses
with ReH ¼ 1:67� 105 (low-Re model) and f ¼ 0:70, whereas Figure 3 presents the
same variables, at the same conditions, for transversal ellipses. It is observed that
the flow accelerates in the upper and lower passages around the ellipse and se-
parates at the back. As expected, transversal ellipses present a larger wake region,
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which will contribute for larger pressure drop for the same mass flow rate through
the bed.

In the remaining fields, it is verified that the pressure increases at the front of
the ellipse and decreases at the upper and lower faces. The turbulence kinetic energy
is high at the front, on the top, and below the ellipse. The dissipation rate of k
presents behavior similar to the turbulence kinetic energy.

Figure 4 shows the overall pressure drop as a function of ReH obtained for
elliptic, cylindrical [29], and square rods [20]. The pressure drop across the cell is
defined as

dh�pii

dS
¼ 1

2HðH=2�D=2Þ

Z H=2

D=2

ðpjx¼2H � pjx¼0Þ dy ð20Þ

Table 1. Summary of the integrated results for the transversal ellipses (see Ref. [45])

Medium permeability ReH k7e model jh�uinj hkii heii

f ¼ 0:53 K ¼ 4:12E-05 1.67E+04 low 2.51E701 1.36E702 1.26E701

1.67Eþ 05 low 2.51Eþ 00 1.09Eþ 00 1.17Eþ 02

1.67Eþ 05 high 2.51Eþ 00 1.40Eþ 00 1.21Eþ 02

1.67Eþ 06 high 2.51Eþ 01 1.62Eþ 02 1.34Eþ 05

f ¼ 0:70 K ¼ 1:29E-04 1.67Eþ 04 low 2.51E701 1.06E702 5.72E702

1.67Eþ 05 low 2.51Eþ 00 8.16E701 4.71Eþ 01

1.67Eþ 05 high 2.51Eþ 00 8.71E701 4.45Eþ 01

1.67Eþ 06 high 2.51Eþ 01 9.99Eþ 01 5.00Eþ 04

f ¼ 0:85 K ¼ 3:25E-04 1.67Eþ 04 low 2.51E701 7.52E703 2.83E702

1.67Eþ 05 low 2.51Eþ 00 5.48E701 2.14Eþ 01

1.67Eþ 05 high 2.51Eþ 00 5.17E701 1.79Eþ 01

1.67Eþ 06 high 2.51Eþ 01 7.52Eþ 01 2.70Eþ 04

Table 2. Summary of the integrated results for the transversal ellipses

Medium permeability ReH k� e model jh�uinj hkii heii

f ¼ 0:70 K ¼ 2:31E-05 1.67Eþ 04 low 2.51E701 1.22E701 1.67Eþ 00

1.67Eþ 05 low 2.51Eþ 00 1.10Eþ 01 1.53Eþ 03

1.67Eþ 05 high 2.51Eþ 00 1.12Eþ 01 1.58Eþ 03

1.67Eþ 06 high 2.51Eþ 01 1.16Eþ 03 1.58Eþ 06

f ¼ 0:80 K ¼ 8:69E-05 1.67Eþ 04 low 2.51E701 6.10E702 4.68E701

1.67Eþ 05 low 2.51Eþ 00 4.60Eþ 00 3.73Eþ 02

1.67Eþ 05 high 2.51Eþ 00 5.40E+00 4.23E+02

1.67Eþ 06 high 2.51Eþ 01 5.61Eþ 02 4.27Eþ 05

f ¼ 0:90 K ¼ 2:32E-04 1.67Eþ 04 low 2.51E701 3.10E702 1.80E701

1.67Eþ 05 low 2.51Eþ 00 2.36Eþ 00 1.57Eþ 02

1.67Eþ 05 high 2.51Eþ 00 2.24Eþ 00 1.29Eþ 02

1.67Eþ 06 high 2.51Eþ 01 2.75Eþ 02 1.78Eþ 05
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Due the periodic boundary conditions applied (the inlet and outlet momentum
are the same), the overall pressure drop can be interpreted as the total drag, in-
cluding form and friction forces, inside the periodic cell. As expected, for the same
porosity and for transversal ellipses one gets the greater drag, followed by square,
cylindrical, and longitudinal elliptic rods. Although not shown here, one could
speculate that, for the same rod type, the higher the porosity the lower the pressure
drop, since smaller rods, spaced wider apart, would provoke not only a lower fric-
tional drag (due to smaller interfacial area) but also yield smaller wakes (and than
smaller pressure drag) behind the obstacles.

Figure 2. Microscopic results at ReH ¼ 1:67� 105 and f ¼ 0:70 for longitudinal ellipses: (a) velocity, (b)

pressure, (c) k, and (d) e.

Figure 3. Microscopic results at ReH ¼ 1:67� 105 and f ¼ 0:70 for transversal ellipses: (a) velocity, (b)

pressure, (c) k, and (d) e.
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Macroscopic turbulent kinetic energy as a function of medium morphology is
presented in Figure 5. As porosity decreases, maintaining ReH constant, or say,
reducing the flow passage and increasing the local fluid speed, the integrated tur-
bulence kinetic energy, hkii, increases (see also Tables 1 and 2). In others words, for a
fixed mass flow rate through a certain bed, a decrease in porosity implies accentuated
velocity gradients, which, in turn, results in larger production rates of k within the
fluid. Also, the effect of the medium morphology when comparing the two rod
dispositions is clearly indicated in the figure. For the same porosity and Reynolds
number, a larger frontal area of the transverse case forces the fluid to a much more
irregular path and induces large wake regions. Velocity gradients are everywhere of
larger values than those for the longitudinal setup, ultimately increasing the pro-
duction rates of k within the entire cell.

Accordingly, it is also interesting to point out that for the same f and ReH, the
integrated values shown in Table 1 for hkii (longitudinal ellipses) are lower than
those obtained for square [20] and for cylindrical rods [29], whereas for transversal
ellipses hkii values are greater among other cases compared. Figure 6 further plots
values for the nondimensional turbulent kinetic energy for all cases computed. It is
interesting to note that results in nondimensional form are nearly independent of
ReH. Also important to note in Figure 6 is the inappropriateness of the wall function
approach (high-Re computations) when a large recirculation bubble covers most of
the area of the solid (transversal ellipses). For ReH ¼ 1:67� 105, the low-Re model
was also computed and, for the transversal ellipses, the discrepancy between the two
wall treatments is large, due to the large wake region behind the solid. From

Figure 4. Overall pressure drop as a function of ReH and medium morphology: longitudinal ellipses, D [45]

cylindrical rods, u [23]; square rods, s [20]; transversal ellipses, �.
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Figures 5 and 6 one can finally conclude that smoother passages between long-
itudinal elliptic rods contribute to reducing sudden flow acceleration within the flow,
reducing overall velocity gradients, and, consequently, lowering production rates
and levels of hkii. Additional results for the permeability K are presented in Figure 7
for the different cells identified in Figure 1. Their values were calculated using the
method described by Kuwahara et al. [18]. In this method, the flow through the cell
was computed with a very small inlet mass flow rate and results were compared with
the Darcy formula. Here also, one can have the behavior of medium properties as a
function of medium morphology. All values for K increase with the porosity f, as
expected, and results for the cylindrical rod cases lie in between those for the two
other cells, in a consistent way.

Once the intrinsic values of kf and ef were obtained, they were plugged into
Eq. (6). The value of ck equal to 0.28 was determined by Pedras and de Lemos [29]
for cylindrical rods by noting the collapse of all data into the straight line. Here,
Figure 8 compiles results for cylindrical rods, for square bars [20], for longitudinal

Figure 5. Effect of porosity and medium morphology on the overall level of turbulent kinetic energy:

transversal ellipses, solid symbols; longitudinal ellipses, open symbols.
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Figure 6. Macroscopic turbulent kinetic energy as a function of medium morphology and ReH:

longitudinal ellipses, D [45]; cylindrical rods, u [23]; transversal ellipses, �.

Figure 7. Numerically obtained permeability K (m2) as a function of medium morphology: longitudinal

ellipses,D (Pedras & de Lemos 2001c); cylindrical rods,u (Pedras & de Lemos 2001a); transversal ellipses, �.
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ellipses [45], and for the present calculations involving transversal ellipses. The figure
indicates that, in spite of having a number of different shapes for representing the
solid phase, the turbulence closure for porous media proposed by Pedras and de
Lemos [23] seems to be of a reasonable degree of universality. Spanning from a
streamlined, low-drag longitudinal-ellipse case to a high-pressure-loss, large-wake
flow past transversal ellipses, a unique value for the introduced constant ck stimu-
lates further development on the model and indicates the appropriateness of the
macroscopic treatment followed so far.

5.2. Macroscopic Model Results

With the numerical evaluation of ck, calculations using the macroscopic tur-
bulence model can be performed. An initial test case consisting of simulating the flow
through a porous bed of length 10 H, starting with a preselected initial condition
greater than the final asymptotic values, was carried out. Similar test results were
reported by Pedras and de Lemos [23] and by Nakayama and Kuwahara [20], being
the values at the entrance, hkii ¼ 10kf and heii ¼ 30ef. Before presenting macro-
scopic simulations in a finite domain, a word about the use of constant ck, obtained
above for the limiting case of fully developed flow, seems timely. In fully developed,
steady-state flow through the several beds represented in Figure 1, macroscopic
transport terms vanish and the only terms left in Eqs. (1)–(2) are the source=sink
terms. This approximation allows for the determination of the numerical value of ck
as detailed above. This ‘‘isolation’’ of terms in order to tune individual proposals in
complex models is a common practice among turbulence modelers and is based on

Figure 8. Determination of value for ck using data for different medium morphology: longitudinal ellipses,

D [45]; cylindrical rods, u [23]; square rods, s [20]; transversal ellipses, �.
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Figure 9. Development of nondimensional turbulence kinetic energy: longitudinal ellipses, D [45];

cylindrical rods, u [23]; square rods, [20]; transversal ellipses, �.

Figure 10. Development of nondimensional dissipation rate: longitudinal ellipses, D [45]; cylindrical rods,

u [23]; square rods, s [20]; transversal ellipses, �.
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the premise that distinct terms in the equation represent different and independent
mechanisms. If the complete model is applied to a finite medium, the independence
of terms invoked previously still holds, and for that the use of the same constant ck
seems to be justifiable.

Figures 9 and 10 show results for hkii and heii along the flow. Calculations are
compared with similar results of Nakayama and Kuwahara [20] for an array of
square rods and with computations using Eqs. (1)–(2). Is interesting to note that, in
spite of differences in the shape of the rods, the axial decay is nearly the same in all
cases, indicating the coherence of the results herein with previous data published in
the literature.

6. CONCLUSIONS

A macroscopic turbulence model was adjusted for an infinite porous medium
formed by spatially periodic array of transversally displaced elliptic rods. This ad-
justment was carried out by solving the microscopic flow equations within the vol-
ume occupied by the fluid. After that, integrated flow properties were computed and
the proposed model constant was determined. In spite of having a number of dif-
ferent geometries for representing the medium morphology, one unique constant,
earlier introduced in the macroscopic k equation, was found to be appropriate for all
computed values. Then, the macroscopic model was tested by comparing numerical
results for the entrance region of a homogeneous isotropic porous medium with
available similar calculations. Good agreement with published data was observed.
Ultimately, calculations herein seems to indicate that the methodology proposed by
Pedras and de Lemos [23] can be applied to different media, being a step toward
developing a general model for turbulent transport in saturated porous media.
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