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MEDIA USING A SPATIALLY PERIODIC ARRAY AND A
LOW RE TWO-EQUATION CLOSURE
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A spatially periodic array is used to simulate the turbulent flow field inside an elementary
control volume representing a porous medium. The low Reynolds (Re) version of the
k — & model is employed. Mean flow and turbulence equations are discvetized by mean:
of the control-volume approach. Boundary treatment incindes symmetry lines and spatic:tly
periodic conditions. A generalized coordinate system is used to generate the computational
grid. Solution of the flow equations is accomplished through the SIMPLE method.
Detailed computations are used to close the propased macroscopic turbulence model, Over-
all pressure drop and volume-averaged turbulence kinetic energy ( TKE) are presented.
For the condition analyted here the integral turbulence energy increases with reduction
of the medium porosity.

INTRODUCTION

There has been great interest lately regarding turbulent flow in porous media.
This is certainly related to the number of engineering systems having some sort
of porous structure through which a working fluid permeates. Transition to a
turbulent regime in the vicinity of oil wells, within large voids caused v i cou-
tinuous erosion because of oil flow, may affect the overall head loss. <"
bed combustors when subjected to a large incoming air flow required to a:.i....
to momentary power production increase also can be subjected to variations of
pressure loss because of changes in the flow regime.

When the pore Reynolds number Re, is less than about 150, classxcal math-
ematical models for flow in porous media [1-7] are based on a representative elemen-
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NOMENCLATURE
P constant in the extra production ip Darcy velocity vector
term for k-equation @' intrinsic velocity vector
x constant in the X,y Cartesian coordinates
Kolmogorov-Pradt! expression & dissipation rate of k,
D rod diameter ¢=yw:(Vn’)’/p
H height of periodic cell (e intrinsic (fluid) average for ¢
Ju damping function for y, €& fully developed value of ()
JA damping function for s-equation AV representative elementary
k turbulence kinetic energy volume
(OKE), k=vw-¥/2 AV, * volume of fluid inside AV
ky intrinsic (fluid) aveage for &, @ general variable
k) = @-w)'/2 ¢ porosity
K TKE based on the fluctuation of o) intrinsic (fluid) average of ¢
(G, ke = (0 - (@)1 2 o spatial deviation from intrinsic
ke fuly developed value of (k)! average of ¢
K medium permeability e macroscopic coefficient of
» distance normal to the wall exchange for porous media
P pressure '8 turbulent coefficient of exchange
P overall pressure, P =p + 2/3pk # fluid dynamic viscosity
P production term of k v fluid kinematic viscosity,
Re, pore Reynolds number v=plp
Rey Reynolds number based on H O turbulent Prandt! number for
S length of periodic cell, $ =2H = (kY
Se general source term for A turbulent Prandtl number for
o=U.V.ke @
] microscopic velocity vector P fluid density
uv Cartesian components of vector
é

tary volume (REV; Figure 1a) for which balance equations governing momentum,
energy, and mass transfer are written. For high Re (Re, > 300), however, turbulence
models presented in the literature follow two basic approaches. In the first method
[8-10}, governing equations for the mean and turbulent field are obtained by time
averaging the volume-averaged equations. In the second approach {11-16], a
volume-averaged operator is applied to the local time-averaged equation. The tur-
bulence kinetic energy associated with the flow in the two cases is different [17],
and a connection between these two quantities recently has been established [18].

Driven by the need for a better characterization of turbulent flow within such
media, we detail a methodology for closing a macroscopic turbulence model for
flow through a rigid saturated permeable medium [19]. Adjustment of the proposed
mode! includes solution of the flow governing equation within the periodic com-
putational cell represented in Figure 15. That periodic cell is a representation of
* the REYV as consisting of an infinite array of cylinders. The governing equations
are discretized using nonorthogonal coordinates conforming to the void volume
occupied by the fluid phase. Integrated parameters then are used in the macroscopic
model to close the mathematical problem.
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Figure 1. (a) Representative clementary volume (REV)

nonorthogonal grid.
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MICROSCOPIC REYNOLDS-AVERAGED NAVIER-STOKES (RANS)
EQUATIONS

The RANS equations describe fluid flow in continuum medium. They will be
solved in the domain of Figure 1. For the steady state condition they are promptly
written as

Continuity

V-i=(; 1
Momentum
V- (o) = —Vp+ uV%i + V- (~p'¥) @
where the stresses, — W, ;m the well-known Re str&cses. The use of the

eddy-diffusivity concept for expressing the stress-rate-of-strain relationship for
the Re stress appearing in (2) gives

—_ = 2
—pu'w’ = p,2D ~ 3 pkl 3)

where D = [Vid + (Vii)7}/2 is the mean deformation tensor, k =w -w/2 is the
turbulent kinetic energy per unit mass, and I is the unity tensor. Applying (3) to
(2) gives further

V.- (om) = -v(ﬁ;pk) +uV2ii+ V- (1,2D) @

The term (p + 2/3 pk) in (4) can be substituted by the total pressure P. To obtain an
equivalent expression for the macroscopic Re stress tensor, the volume-averaging
operator with respect to AV will be carried out in both Eqs. (2) and (4).

The low Re k—& model. The coefficient y, appearing in Eq. (3) is calculated
here using the standard low-Re k-¢ mode! and reads:

K
= Cublu— ()

where ¢, is a constant. Transport equations for k and ¢ are given by

V-(pﬁk):V-[(%-i-y)Vk]-}-Sk; Si=Pi—pe Pr=—paw:Vi (6)

V-(pig) = V- [(&+p)Ve]+S.; S,=c|1’k£—cz[;p§ )

({3

The term Py is the production rate of k and the damping functions f, and /; are taken
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from Abe et al. [20] as

oo el )
e g o ] o

where n is the distance from the nearest wall and v is the kinematic viscosity. The
constants used read:

=00 =15 a=19 or=14 0,=13 (10)

To keep a unidirectional value for the volumetric velocity average Gp (Darcy
velocity), we imposed the following conditions at the boundaries of the periodic cell
of Figure 1.

Atwalls, i =0,k=0, anda=v§§ (1)

Aty=0andy=g symmetry line, %%=0,¢=ﬁ,k,s

At the inlet and outlet periodic boundaries (x=0 and x=2H)

Ul =Ulrmar Vim0 = Vigmow (13)

ko =klmay  Eloso = Ele=2n (19

where U and ¥V are the components of .

Equation (13) entails the periodic boundary condition methodology applied
here. In the beginning of the calculations, the flow at the inlet (left side of Figure
1b) was set as having a constant U-component along y. Only at the start of calcu-
lations the V-component at the inlet position (x=0) was set to zero. After con-
vergence, the outlet profiles for both U and ¥, on the right side of Figure 15,
were fed at the inlet and a new run was started. Computations were once more car-
ried out until convergence was established. Subsequently, the profiles at exit (x =2H)
were plugged in again at the inlet and a new run was conducted. The entire process
was repeated until no difference between inlet and outlet profiles was detected. Later
in this work results for the intermediate nonzero profiles for ¥ at the outlet will be
shown.

The set of Eqgs. (1)+(4)-(6)7) comprises the transport equations necessary for
describing the flow in a clear fluid. Additional equations for completing the set are
(5)(8)-(9) and boundary condition imposed on the equations are (11)-(14). All
of these equations are discretized in the grid shown in Figure 15.



4 M. H. J. PEDRAS AND M. J. S. DE LEMOS

VOLUME AND TIME-AVERAGED k-t EQUATIONS
Volume and Time Average

The use of volume and time-averaging procedures for obtaining transport
equations for k and ¢ in porous media is discussed in detail in Refs. [17, 18].
For clarity, the major ideas therein are included here.

The macroscopic governmg equation for flow through a porous substratum can
be obtained by volume averaging the corresponding microscopic cquations over an
REV, AV [6). For a general fluid property, o, the intrinsic and volumetric averages
are related through the porosity ¢ as [19, 21]

@'=gy; [, 0 @r=sir o=7] s

where AV, is the volume of the ﬂmd contained in AV. The property ¢ then can be
defined as the sum of () and a term related to its spatial variation within the REV,

io, as [5]
e={p) +'p (16)

The spatial deviation is the difference between the real value (microscopic) and its
intrinsic (fluid-based average) value.

The need for considering time fluctuations occurs when turbulence effects are
of concern. The microscopic time-averaged equations are obtained from the instan-
tancous microscopic equations. For that, the time-averaged value of property,
@, associated with the fluid is given as

1 +At

K od i 17
where A is the integration time interval. The instantaneous property ¢ can be
defined as the sum of the time average, @, plus the fluctuating component, ¢":

¢=p+¢ (18)
From the definition of volume average (15) and time average (17) and assuming
a rigid medium, one can conclude the following properties:

@Y =@ (0V=(o) 'p=Top (19)
The proofs of identities (19) are found in detail in Pedras and de Lemos [17]. In
developing Egs. (19) the only restriction applied was the independence of AV in
relation to time and space. If the medium is further assumed to be rigid, then
AV; is dependent on space but is not time dependent [17).
With these ideas in mind, a proposition for volume- and time-averaged trans-
port cquations for k and ¢ equations can be made.

Model Equation for (k)’

An equation for the intrinsic average for the turbulence kinetic energy, (k)', is
obtained by applying the volume average operator (15) to the transport equation
for k (Eq. (6)). Making use of the Dupuit-Forchheimer relationship, @ip = (@),
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we propose a model [22, 23]

p[%(¢<k>‘)+ v. (i»(k)")] -v. [( +E ")V(¢<k)')]

— P : Vip + cypp L1001 :/'_”' —pdtef (20)

where ¢; and g; are constants and p(ww)’ is given by

~pb@D = 1, 2) ~ 390k} an

which is similar to the eddy diffusivity for microscopic flow embodied in Eq. (3).
Note, however, that the coefficient u,, appearing in (21) is not necessarily the same
coefficient appearing for clear fluid flow used in (3). Also, the introduced constant
¢ needs to be determined for closure of the mathematical problem. The method-
ology established for finding it is discussed below.

The proposed model for the (k)'-equation shown above has been discussed in
detail by Pedras and de Lemos [23]. For the sake of completeness, some of the ideas
therein are commented on here for clarity. In [23], the influence of the porous matrix
on the level of (k)! was considered by introducing the third term on the right side of
Eq. (20). In the limiting case of clear flow (¢ = 1 = K — o0) this extra generation
rate vanishes. Under this condition, (k)’ resembles k and the transport equation
for the turbulent kinetic energy in clear fluid is recovered. The physical meaning
of this extra term is therefore the rate of production of (k)’ because of the presence
of a porous matrix. Also, for flow through a porous bed, the amount of mechanical
energy converted into turbulence is expected to depend on the medium properties.
For the limiting case of high porosity and permeability media (¢ - I =
K — o0), and for one-dimensional fully developed flow with a flat velocity profile,
no fraction of the flow mechanical energy is expected to generate turbulence,
because, in this case, the situation represents clear fluid flow. Consequently, no tur-
bulence is generated and (k)', if existing at the inlet, decays to zero along the flow.
As the flow resistance increases, by increasing ¢/vK, gradients of local @ within
the pore will contribute to increasing (k). The proposed form for the x4 -
duction term included in Eq. (20) is consistent with this expected behavi: ;-

The macroscopic Re stresses tensor, modeled herein by (21), can be fu .
expanded with the help of v = (v}’ +'v’ as

-pp(We) = —po(w)' (W) + (' W) @)

The first term on the right is associated with time fluctuations (w)’ = (u)” (se¢ Eq.
(19)), whereas the second one represents the turbulent dispersion in porous medium
because of both time and spatial fluctuations of the microscopic velocity. The
intrinsic average for k is given here as (k)' = (W~ w)'/2. The he kinetic energy used
in Refs. [8-10) differs from (k)’ and is assumed to be k,, = ()7 - (w)'/2. Recently,
Pedras and de Lemos [17, 18] have shown the relationship between these two quan-
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tities as being
@) -y +(‘ll fu)f
2 2 2
(o Tury!
2

(kY =

=km+

23)

Model Equation for (g)’

Making use of the Dupuit-Forchheimer relationship, @i, = ¢ (&), we propose a
transport equation for (€)' as

P[% ($ie))+ V- (ﬁn(e)')] =V. [(ﬂ +%) V(¢(6)')]

— (e e¥lipl  (e)
+ci(—pu) : Vuo)((—k)—,+cz¢p¢ ckuj%—% 29
where 0., ¢, and ¢y, are constants. As with the case of (k)', the overall dissipation
rate of {¢)', the last term on the right side of (24), contains an additional factor that
is dependent on the porous substrate. This additional term vanishes for the limiting
case of clear fluid (¢ — 1 = K — o0). In addition, for macroscopic fully developed
unidimensional flow in isotropic and homogeneous media, the production rate of
(€)' solely will be because of spatial deviations within the REV and will dissipated
totally within the same domain. These ideas arc used below when determining a
. numerical value for the introduced constant ¢;.

Methodology for Numerically Finding ¢,

As mentioned in the beginning, the objective of this work is to describe a
numerical methodology with the purpose of establishing a workable turbulence
model for turbulent flow in porous media. This methodology consists in finding
a suitable value for the introduced constant c;. The method adopted here consists
in computing the clear flow equations (1)-(4)-(6)(7), subjected to the adjoining
equations (5)~(8)-(9), within the periodic cell in Figure 15. The periodic cell rep-
resents an infinity medium, and it is characterized by an array of circular rods.

The need to compute the fine flow properties for obtaining the
volume-integrated quantities has motivated the development of appropriate numeri-
cal tools. Those calculations were needed for adjusting the model and considered
either the low Re k-¢ closure [24] as well as the high Re version of it [25]. Heat
transfer analysis was also the subject of additional research and preliminary results
have been documented [26). Also, the most important outcome of this development
is the ability to treat hybrid computational domains with a single numerical tool
[27, 28].
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DISCRETIZATION OF TRANSPORT EQUATIONS

Grid 'I.ayout and Coordinate Transformation

The numerical method employed for discretizing the governing equations is the
control-volume approach. For clarity, Figure 2 shows a typical control volurne and
includes all notation, distances, and indexing used in transforming the equa:i: -
into the n-¢ coordinate system. For brevity, only the equations related to the eas:
and north faces are presented. With the help of Figure 2, the following distances
can be identified:

AX; = (Xne = Xee) DXz =(xg~xp) Axy=(xy—xp) AX=(Xne = Xnw)
Ay,’,=(y»¢’)'n) A}}E=(YE".VP) Ay.':(}’N-yP) Ay'g'=(y»e’ynw)

With approximations in (25), the vector form of the area at the east and north faces
are then given by

25)

A¢=neAe=Ay;el "A-\f,e)
A = 0,4, = ~Ayje, + Axje;

By definition the surface vectors are such that (A,), = —(A.)y and (A;)p = ~(Ay)s-
The velocity derivatives and cross derivatives with respect to x and y, appearing

(26)

Figim 2. Control volume and notation for generalized coordinate system,
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after transforming (3) into the curvilinear coordinate system §-n, are obtained by
taking
U _R U M 3U_1fayau_ay ]
x x 3 oxom J|om & 9 oy
aU omaU 33U I1[axaU ax ol

y o & J|L& o a & an
WKW I 1y iy v
x ox o oxdam J|dm & 353“
¥ _amdv sLav_lfaxoy ax av]

 ym yak Tk M am K
where J is the Jacobian of the transformation defined as

J==2X _ZY (28)

To obtain discrete forms of (4), both the velocity derivatives and the Jacobian
have to be approximated at faces “e” and “n” of the control volume of Figure
2. Also, for a general dependent vanable @ one has

W 9= | P9
af EE CP a"c Nne = MNse
29
_3gl PP | _Ox-0 @)
Che=Cme  Oml,  ny—np

Here, for case of notation, the following parameters are introduced based on the
distances shown in Figure 2 at faces east “‘e” and north “n™:

M= Ac - A0%  Th= AYjAK - A%
7, =AYy (Ue — Up) = 83(Une — Use)

1z = 8Yy(Une = Use) — AY3(Un — Up)

7y = Axg(Une — Use) ~ AX(Ug — Up)

ny = Ax}(Ux — Up) = AxX}(Une ~ Uny)
A

e

]

AY(Ve = Vp) = BYi(Voe = Vie)
AY:(Vae = Vi) = 82V = V)
”5 = Ax?(yne = Vee) -A-‘:(VE -Vp)

7‘: = Ax‘g’( Vy - VP) - Af,"( Vae = Vuw) (30)
Then using (30) to represent (28) at the east face, one has
Lo lsg-amn o,
T e P — M) (EE— EpNilne — 11,0)
J, = Ay:Ax? - A-V?A"'J - 18 31

(fne - enw)("l\' = 'IP) N (fne - fmv)('iN - "P)
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yielding for Egs. (27) at face *“e”

U . One = yuelUg = Up) = 0 = yeXUne = Use) _ 75
ax (xi Xp)ne = ¥se) = (Xne = Xee)YE—YyP) Il
- é_t_]_ x (xg = XpX Une = Use) = (Xne = Xse)(Ug — Up) _ ﬂ
i, (xE = xPXVne = ¥se) = (Xne = Xse)VE = ¥P) T,
v (yn = VseXVE = Vp) = VE = Yp) (Ve = Vie) _ f_c_
x|, " (xE = X0 = Vi) = Cne — X:)E—yp) 1L
| . = xpXVae = Vie) = (Xne = XeeXVE = VP) 75

.5; (%5 = xPX¥ne = Vse) = (Xne — XseXVE — Vp) I, 32)
and at face “n”

U (}'N }’P)( Une = Unw) = (Yne = yaw)(Un = UP) 7‘:

ax (xn = XuwY¥N = yP) = (XN = Xp)(¥ne = Vo) nn

|, One — XmelUn — Up) = (v = XN (Une ~ Unw) _ 7

Wl (e = Xm)ON = y8) = (5N = XP)Vne = Ym) ~ Tha

14 (}’N = YPXVoe = Viw) = Oine = ymeXVn = Vp) _ 7

x|y Cine = Xme)ON = y8) = (XN = XP)ne = V) Il

v (xnc —= Xewl VN = Vp) = (x§ — Xp Ve = Vaw) ﬂ 33)
3y (xu = Xme)YN — yP) = (XN — XP)(Yne — Yw) nn

Discretized Transport Equations

For a general dependent variable ¢, in a steady state flow, a discrete form of (4)
can be written as

L+L+1L,+15=S, (34

where 1., I, I,, and I, are the overall fluxes (convection plus diffusion) of ¢ (either
velocity component) at the east, west, north, and south control-volume faces,
respectively, and S,, the corresponding source term.

For the east face the flux can be written as

L= j (- @)A % (B - 0 )Ae 35
A,

where n, is the unit vector normal to 4, and ¢, is the average value of ¢ prevailing at
that face. Also, for coherence in the discretization process, one has for any nodal
point P (1) = —(L) and (K)p = —(ln)s.

The numerical treatment of convection and diffusion mechanisms is handled
separately. When (34) is written for the x-direction, the convection flux, €%, has
contributions from both faces east and north such as

IS = FU, I%=~FyUy (36)
where
p[UcAy! VeAx; ] and F, = p[V,Ax} UnAy" 1 (37
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For the diffusive flux in the same x-direction, /°*, one has for the east and north faces
I~ —(u+ u.)e[(%xq + % e+ (%‘L%}F Q]“Ae
1 % G+ ), [(%g +)e+ (%g ¥ %;)ez]n'Au 8
Applying coordinate transformation to (38), with the help of (30), we give a discrete
form for the diffusive fluxes in the x-direction at east and north faces:
12 = LT 0, - vty + gy
~ (Une = Un)28¥38; + Ax;AXS] - 228X}
12 = LB - Uy + gy
~ (Une = UneY2AY; A7} + AXIA%S] - 22AX) (39)

Also, for the y-momentum equation, convection and diffusive fluxes at both east and
north faces as obtained in a similar fashion.

The source term because of integration of the pressure gradient term over the
control volume of Figure 2 gives for the x-direction

5r,=~(Z)ov @)

The gradient of P with respect to x can be approximated by using (32) as

(E) z(Pc"Pw)(Yu"y:)“(Pn-Px)(ye_yw) @1)
x)p (%= Xe)¥n = ys) = (% — xXye =)

The denominator in (41) is equal to the area given by the vector product of the two

vectors connecting middle points of opposite control volume faces, ew and ms.

Therefore, the source term for the x-momentum equation can be approximated
for (40) giving a discrete form

Sp, = —(Pe — PYyu— ys) — (Pu — Po)ye — yu) (42)

For improving numerical stability, the diffusion term in (39) is further rewritten asa
combination of an implicit and an explicit contribution as

Ieo‘ =—(Ug - Up)D} + S (43)
NS—— o t— Ny
Implicitpart  Explicit part

where D7 on the right side of Eq. (43) is a diffusion cocfficient. The explicit part S
will make use of velocities at the grid points calculated at the previous iteration.
The production term in (6) is given by

AN _(an\} faU ar\?
”*="'[2(%’) () (75 ] )

All derivatives need to be evaluated at the central point P. To this end, derivatives of
the mean velocities with respect to Cartesian coordinates are transformed according
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to (27). With the help of those equations and using
A =(t=x) Af=(=x) 87 =0n=2) & =0e=)
My = &) &~ 1yf a2f
! = 8yP(U. - Uy) - AYf(Us - U))
"b = Ax'(Vn V) "‘AJ‘:(Ve - V)
! = Ax{(Up — Uy) - AX}(U, - Ul)
2 = 8y} (Ve - V) = By§(Va = V7)

finally we have a discrete expression for Py:

Pk—(—ﬁ-—;[z(u’)’ + 2]y + (xf + )] 45)
Values of the velocity components at cell face locations e, w, n, and s are calculated
using linear interpolation.
As was done with the pressure gradient term, integration of S, (¢ =k, ¢; see
Egs. (6)~(7)) over the cell volume of Figure 2 surrounding point P, and aire:iv
linearizing it to enhance convergence gives

'S_z/‘ SV =54 — Stop (46)
v

This dependence on @p is sometimes artificially introduced when a negative part of
S, does not exist (Patankar, 1980 [29]). Then when the integrated source Sj is
rewritten in the form of (46) one has

S =PV -Stk=—pedV = -(”‘° ‘W)k @

The values of k and ein S}* (with superscript o in (47)) are taken from the previous
iteration and, when the solution finally converges, k> — k and the two values cancel
out. For §,, the choices for S? and S}* are S} = c1eS};/k; Sp* = c2S}"*, respectively.

NUMERICAL RESULTS AND DISCUSSION
Computation Details

As mentioned, the equations for the microscopic flow were solved numerically
inside the elementary cell of Figure 1b. The discretized equations above were
rearranged in their familiar algebraic format. The numerical method SIMPLE
was employed for relaxing the mean and turbulence variables [29]. The inlet con-
ditions on the left side were updated, after substantial residue reduction, with outlet
profile on the right. This periodic boundary condition was applied repeatedly until
inlet and outlet velocity profiles essentially were equal. At the top and bottom bound-
aries symmetry conditions were applied.

Rey based on the cell height H varied from nearly 0.35 (creeping flow) to
1.2x10% (fully turbulent regime). A version of the standard k-¢ model for high
Re flow also was incorporated in the code developed. In this case, a wall function
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was used for bypassing the viscous sublayer close to the wall. The nonorthogonal
grid was composed of 150x100 control volumes for the high Re model and 300x 200
for the low Re cases. For Rey = 1.2 x 10°, both k-¢ models were calculated for com-
parison. The dimensions of the periodic cell for the cases considered in this work
were H=0.1m, S=2H, D=0.03m (¢ =0.8), 0.05m (¢ =0.6), and 0.06m (¢ =0.4).
The solutions were grid independent, and all normalized residuals were decreased
to 1075, Also, relaxation parameters for all variables (8, p. k, €) were kept equal
to 0.8.

Eighteen case were run, including six for laminar flow, six with the low Re k-¢
model, and six with the standard high Re closure. Porosity was varied, changing
the rod diameter, and the Re was increased for the same medium porosity. A sum-
mary of all relevant parameters is presented in Table 1.

-

Periodic Boundary Condition

As mentioned above, the strategy for applying a periodic boundary condition
to the cell of Figure 15 consisted in running the code several times until the inlet
and outlet profiles of all variables essentially were the same. The whole algorithm
considered “outer” runs and “inner” sweeps. Each “outer” run had fixed inlet values
and was composed of 1000 “inner” iterations, such that the residues for all depen-
dent variables were reduced to less than 10-5. In a subsequent run, all values at
outlet were plugged as boundary conditions at the inlet before another 1000 relax-
ation sweeps were applied again. The whole process continued until all inlet and

'

Table 1. Parameters for microscopic computations (velocities in m/s)

Turbulence k! @
Porosity Rey model w ip (m2/2) (m2/s3)
$=0.40 354E~01 Laminar 1.33E-05 9.30BE-06 Knum = 5.2 - 06 m2
: 1.20E+0! Laminar 4.50E-04 1.B0E-04 43 = 9.44E - 06 m?
120E+04 LowRe 4.50E-0I 180E-01 731 1.18E 400

120E4+05 LowRe 4.50E+00 180E+00 S592E+00 993E+02
120E405 HighRe 4.50E+00 130E4+00 5.71E+00 9.65E +02
120E+06 High Re 4.50E+01 180E+01  SS8IE+02 9.31E4-05

$=0.60 3.70E-01  Laminar 9.32E-06 S5.54E-06 Knum = 445E — 05 m?
120E401 Laminar 299E-04 1.79E-04 43 = 4.84E - 05m2
L.20E+04 LowRe 299B-01 1.79E~01  3.50E-02 2.25E-01
1.20E405 LowRe 299E+400 1.79E+00 2.26E+00 1.56E 402
1.20E+05 HighRe 299E+00 1.79E+00  2.65E+00 LTE+02
1.20E+06 HighRe 299E+01 179B+00 2.79E+02 1.81E +0$

$=0.80 388E~01 Laminar 7.20E-06 5.76E-06 Koum = 1.97E - 4 m2
120E401 Laminar 224E-04 1.79E-04 Keqn. 48 = 2.34E ~ 04 m2
1.20E404 LowRe 2.24E-01 1.79E-01  1.36E-02 4.90E-02
120E4+05 LowRe 224E+00 L79E+00  8.05E-01 3.19E+01
1.20E+05 HighRe 224E+00 179E+00  8.74E-01 328E+01
120E406 HighRe 224E+01 179E+01  94SE+01 349E+04




SIMULATION OF TURBULENT FLOW IN POROUS MEDIA 49

outlet profiles differed by not more than 0.001% Figure 3 shows the nondimensional
V profiles at the outlet after each run. The figure indicates that after 4000 inner
iterations the periodic condition was established., The maximum value for ¥ along
the gap was nearly 2.5% of the average axial velocity and occurred close to the = .

The nonzero values for ¥ properly indicated the existence of a boundary laycs -«
the gap walls.

Integral Parameters

The permeability appearing in porous media analysis (see Eqs. (20)-(24)) was
calculated by solving the flow equations inside the grid of Figure 15, for the Darcy
regime (creeping flow, Rey <1), and also by using the expression proposed in
Kuwahara et al. [12] of the form

3
xk=—2%_ _p 49)

0.03 ¢
0.02

0.01

VI#er 000

-0.01

-0.02

llll'lll1'rl1'lF

.0'03 1 ] L 4 l 1 11 L ‘ Lt L 2 l t 1 [ t . - L
0.0 0.2 0.4 0.6 0.8 1.0

y-D/2
H-D

Figure 3. Nondimensional profiles for ¥-component at outlet of periodic cell of Figure 15.
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The first value was given the name K, and was obtained by calculating the macro-
scopic pressure gradient across the periodic cell and applying it to the standard
Darcy law of flow. For different porosity ¢, a comparison with values from Eq.
(48) also is presented in Table 1. Except for ¢ =0.4, numerical values agree well
with the proposed correlation. Additional results in the table will be discussed later.

Overall pressure drop for a large range of Rey compared with results of
Kuwahara et al. [12] is presented in Figure 4. Results obtained for laminar fiow
and for both turbulence models used (low and high Re forms) agree well with pub-
lished numerical data. Slightly lower pressure drop values show in the figure for
large values of Rey could be because of the fact that in Kuwahara et al. [12)
the porous structure was simulated by an infinite array of square rods instead of
cylinders as here analyzed. Flow past cylinders presents a smother flow patten,
eventually implying a lower pressure drag for larger Re.

Figure 5 presents results for the effect of Rey and ¢ on the nondimensional
pressure gradient. For the same mass flow rate (same seepage velocity) the figure
indicates that the pressure drop increases with the reduction of porosity. It should
be pointed out that reducing ¢ implies increasing (i)’ to keep the same Darcy velocity
iip. As expected, the necessary pressure drop to overcome flow resistance is
increased. Figure 6 plots results for (k)' as a function of Rey and ¢. This figure
(and numerical values in Table 1) further indicates that for the same Darcy velocity
(Rey =constant), or, say, the same volumetric mass flow rate through the bed,
the overall integrated turbulence level increases with the reduction of the medium
porosity. A faster fluid running through a narrower space will display steeper vel-
ocity gradients throughout the domain. Those gradients, in turn, dictate the rate
at which the mean flow mechanical energy is transformed into turbulence energy

1.E+07 _
Lpvos b ! =020 High Re model
—6— Kuwahara et al,, 1998
| 1E+0S
xfle B Present results
X B4
%

1LE+03 Laminar Flow

1.E+01

1.E-01 1.B401 1.E+03 1.E+0S 1.E407

_«p)

LowRe model
1.E+02

Re,

Figure 4. Overall pressure drop as a function of Rey for the cell of Figure 1b.
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1E+8

Medium Porosity
—k— 04
—@— 0s
—— os

- 1E*7

1E+8
1E+4

1E+3

1E+2 —g
1E+1 j

I I l H l ' l l ]
1E-1 1E+0 1E+#1 1E+2 1E+3 1E+4 1E+§ 1E+6 i

Re,

Figure 5. Nondimensional pressure gradient as a function of porosity ¢ and Rey.

_d{pY m?
—ds FEa]
5

(see Eqn. (44)). Consequently, production rates of k will be higher, implying a higher
value for (k)'.

Distributed Parameters

Figures 7 and 8 show ii and P fields, respectively, for Rey = 1.2 x-10% (low Re
model) and ¢ varying from 0.4 to 0.8. The vector sizes are made to be equal to
enhance visualization. The flow accelerates at the upper and lower bounds of
the cylinders and detaches at the rear surface. Pressure increases at the front, upper,
and lower cylinder walls and recovers at the back. For lower porosity and the same
mass flow rate, the size of the wake region is reduced drastically. It is important
to emphasize that because of the increase in the inlet velocity, the overall pressure
drop is increased rather than reduced.

Figure 9 presents similar results for k. Steeper gradients for the turbulence
kinetic energy are more concentrated close to the cylinder walls as porosity
decreases. This effect is observed particularly at the cylinder rear region. For lower
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1E+2

1E4
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—ak— 04
—@— os
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1Ee4 1E+5 168 1E+
Re,

_ Figure 6. Variation of {k)’ as a function of porasity ¢ and Reg.

porosity, most turbulence production occurs close to the walls rather than at the bulk
of the flow. For higher ¢, however, the existence of a wake region behind the cylinder
and the lower volume occupied by the solid indicate that turbulence is produced
more evenly within the flow. Kuwahara et al. [12] also observed reduction of the
wake region as the porosity decreases. Figure 10 further presents the effect of
Rey on the spatial distribution of k. As can be observed in the figure, no substantial
difference is detected in the distribution of the turbulence kinetic energy, although
overall integral values (k) increase substantially with the increase of the mass flow
rate. Also interesting to note is the agreement between the low and high Re k-
solutions for Rey = 1.2 x 10° (Figures 106 and 10c), indicating the correctness
of the computer code developed and accuracy of the results presented.

Constant ¢; for the Macroscopic Model

Finally, the constant c; introduced in Eq. (20) now is determined for closure of
the macroscopic mathematical model proposed. For macroscopic fully developed
unidimensional flow in isotropic and homogeneous media the limiting values for
(k) and (¢)’ in the additional terms introduced in Eqs. (20) and (24) are given
the values k4 and ey, respectively. In this limiting condition, Eqs. (20) and (24) both
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Figare 7. Vector plots (Rey = 1.2 x 10%): (a) ¢ =0.4; (b) $=0.5; (c) $=038.

L X}
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[l

L
0%

Figure 8. Pressurc contours (Rey = 1.2 x 10°): (a) $=04, (b) $=0.6, () $=0.8.




55

SIMULATION OF TURBULENT FLOW IN POROUS MEDIA

¢)

Figure 9. Contour plots for (k)(Rey = 1.2 x

10°): (a) ¢=0.4; (b) $=0.6; (c) $=0.8.
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==
—
‘ a

e

Figure 10. Effect of mass flow rate on (k) (¢ =0.60): (a) Rey = 1.2 x 10° low Re; (B) Regy = 1.2 x 10°
low Re, (c) Rey = 1.2 x 10° high Re; (d) Rey = 1.2 x 10° high Re.

will reduce to the situation where production and dissipation rates balance each
other. Using then the limiting cases k4 and &4, we can combine both Eqgs. (20)
and (24), in this situation, into the nondimensional form

eevVK ke .
Toof ~ *Taol ®

To obtain c;, the microscopic computations described above for different
porosity and Rey were used to calculate the corresponding limiting values kg
and &4 (also seen in Table 1 under the notation (k)! and (2)f, respectively). Once
these intrinsic values were obtained, they were plugged into Eq. (49) with the per-
meability calculated by (48). The value of c; equal to 0.28 was found by noting
the collapse of all data into the straight line shown in Figure 11. Also interesting
point out is that, under the macroscopic model proposed here, a unique value
for ¢, was found to be adequate for a wide range of porosity and Re. Accordingly,
little spreading of computed values is observed around the straight line of Figure
11.

Note also that the figure shows corresponding results by Nakayama an
Kuwahara (15} In that work, a different methodology was employed, and
expressions for kg and &4 as functions of ¢ were proposed. Therefore, for a certain
porosity, the relationships in Nakayama and Kuwahara [15] allow for the
calculation of k4 and &. When plotted in Figure 11, these pairs ky — &4 also seem
to follow the same straight line (see solid symbols in the figure). This agreement
indicates the appropriateness of the methodology proposed here and gives support
to the modeling ideas presented here.
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Figure 11. Determination of value for ¢, using data for different porosity and Re.

CONCLUDING REMARKS

This work presented the numerical solution of the flow governing equations in
a domain used to represent porous media. The low Re turbulence model as well
as the high Re version of the k-¢ closure were applied. A proposal for a macroscopic
turbulence model based on volume integration of clear fluid equations was carried
out. Additional terms accounting for the presence of the solid matrix were intro-
duced along with an additional constant to be determined.

The computations showed that for small values of porosity the level of tur-
bulence kinetic energy is increased. For low porosity, concentration of turbulence
production close to solid surfaces was observed and nearly no recirculating moticn
behind the cylinder was detected. In addition, no substantial differences in the spatiai
distribution of normalized k were observed for different incoming mass flow rates.

The methodology followed for determining the introduced constant ¢; con-
sisted in solving first the clear fluid equations within a periodic cell. Integrated par-
ameters considering different porosity and Re number then were used to
establish a numerical value for the proposed constant.
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