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Recent Mathematical Models for
Turbulent Flow in Saturated Rigid
Porous Media
Turbulence models proposed for flow through permeable structures depend on the
of application of time and volume average operators. Two developed methodolo
following the two orders of integration, lead to different governing equations for
statistical quantities. The flow turbulence kinetic energy resulting in each case is diffe
This paper reviews recently published mathematical models developed for such flow
concept of double decomposition is discussed and models are classified in terms
order of application of time and volume averaging operators, among other peculiari
A total of four major classes of models are identified and a general discussion on
main characteristics is carried out. Proposed equations for turbulence kinetic en
following time-space and space-time integration sequences are derived and similar
are compared. Treatment of the drag coefficient and closure of the interfacial su
integrals are discussed.@DOI: 10.1115/1.1413243#
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Introduction
On the basis of the pore Reynolds number, Rep , the literature

recognizes distinct flow regimes in porous media spanning fr
creeping flow (Rep,1) to fully turbulent regime (Rep.300).
The mathematical treatment for high Reynolds flow has given
to interesting discussions in the literature and remains a con
versial issue.

For Rep less than about 150, traditional analysis of flow
porous media~Darcy @1#, Forchheimer@2#, Brinkman @3#, Ward
@4#, Whitaker @5#, Bear @6#, Vafai and Tien@7#! makes use of a
Representative Elementary Volume~REV! for which transport
equations are written. When the pore Reynolds number is gre
than about 300, turbulence models in the literature follow t
approaches. In the first one~Lee and Howell@8#, Wang and Takle
@9#, Antohe and Lage@10#, Getachew et al.@11#!, governing equa-
tions for the mean and turbulent field are obtained by tim
averaging the volume-averaged equations. We shall refer to t
as A-L models. In the second methodology~Masuoka and Takatsu
@12#, Kuwahara et al.@13#, Kuwahara and Nakayama@14#,
Takatsu and Masuoka@15#, Nakayama and Kuwahara@16#!, a
volume-average operator is applied to the local time-avera
equation. Here, this second approach is named N-K mode
morphology-based closure has also been suggested~Travkin and
Catton @17#, Travkin et al.@18#, Gratton et al.@19#, Travkin and
Catton@20#, Travkin and Catton@21#, Travkin et al.@22#! based on
the Volume Average Theory. Use of such methodology, howe
is regarded by many as of little practical use in engineering ap
cations~Lage @23#, p. 23!. This third class of model will be here
referred to as T-C approach. In the literature, all of these meth
ologies lead to different governing equations.

Motivated by the foregoing discussion, a preliminary propo
for a turbulence model for porous material was established~Pe-
dras and de Lemos@24#!. Then, a study on the different views i
the literature has lead to the proposition of thedouble-
decompositionidea~Pedras and de Lemos@25#! and to subsequen
development of the earlier preliminary model~Pedras and de Le
mos@26#!. The double-decomposition concept led to a better ch
acterization of the flow turbulent kinetic energy~Pedras and de
Lemos@27#! and was a step before detailed numerical solution
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the flow equations were carried out~Pedras and de Lemos@28#!.
Calculations were needed for adjusting the model and consid
either the high Rek-e closure~Rocamore and de Lemos@29#! as
well as the Low Reynolds version of it~Pedras and de Lemo
@28#!. Full documentation of the modeling steps is detailed in
Lemos and Pedras@30#, and Pedras and de Lemos@25#.

Heat transfer analysis was also the subject of additional
search~Rocamora and de Lemos@31,32#!. One of the main moti-
vations for this development was the ability to treat hybrid co
putational domains with a single mathematical tool. Hyb
systems have been calculated for the flow field~de Lemos and
Pedras@33#!, for nonisothermal recirculating flows in channe
past a porous obstacle~Rocamora and de Lemos@34,35#! and
through a porous insert~Rocamora and de Lemos@36,37#!.

More specifically, in the work of Pedras and de Lemos@25,27#,
it was shown that the order of application of time and volum
average operators was immaterial in regard to the final equat
obtained for the mean flow. However, when obtaining a mac
scopic transport equation for the turbulent kinetic energy, the
der of application of averages will imply in a different quanti
being transported. This is because there is an additional m
ematical operation needed for forming the turbulent kinetic
ergy. This operation consists in the scalar product of the fluctu
ing velocity by its own transport equation. When this sca
product is taken after the volume integration process, as in
models ~Lee and Howell@8#, Wang and Takle@9#, Antohe and
Lage @10#!, the quantity undergoing time integration is^u8& i

•^u8& i . Here, differently from the case of the mean flow equ
tions, the two domains of integration are no longer independen
each other. On the other hand, when proceeding with the sc
product first at the microscopic level, with the N-K approach
different variable is subjected to time integration (u8•u8) ~Ma-
suoka and Takatsu@12#, Kuwahara et al.@14#, Kuwahara and Na-
kayama@13#, Takatsu and Masuoka@37#, Nakayama and Kuwa-
hara @16#!. In this second method, according to Pedras and
Lemos @27#, a broader form of the turbulence kinetic energy
obtained and all microscopic effects are considered.

The objective of this paper is to classify and compare tur
lence models for porous medium presented in the literature~de
Lemos@38#!. Proposed equations for the turbulent kinetic ene
are rewritten in light of the double decomposition concept of P
dras and de Lemos@27# and the interrelationship between corr
spondent terms is discussed~de Lemos and Pedras@39#!. Weak-
ness and advantages of these two methodologies are discuss
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an attempt to assess their practical use in engineering comp
tion. It is expected that the contribution herein provide some
sight to turbulence modelers devoted to analyze engineering
tems and environmental flows which can be modeled as a po
structure having a fluid flowing in turbulent regime.

Macroscopic Fluctuating Velocity
The derivation to follow has been presented in de Lemos

Pedras@39#. To the best of the authors’ knowledge, an equation
the volume-average velocity fluctuation was there derived, for
first time, in light of the double-decomposition concept of Ped
and de Lemos@40#. For clarity, some basic relationships from th
double-decomposition idea are here included.

Double Decomposition. For a general fluid property,w, the
intrinsic and volumetric averages are related through the poro
f as ~Bear @6#!,

^w& i5
1

DVf
E

DVf

wdV;^w&v5f^w& i ;f5
DVf

DV
(1)

whereDVf is the volume of the fluid contained inDV. The prop-
erty w can then be defined as the sum of^w& i and its spatial
variation within the REV,iw, as~Whittaker @5#!,

w5^w& i1 iw (2)

Time fluctuations have to be considered when turbulence
fects are of concern. The microscopic time-averaged equation
obtained from the instantaneous microscopic equations. For
the time-average value of property,w, associated with the fluid is
given as:

w̄5
1

DtEt

t1Dt

wdt (3)

whereDt is the integration time interval. The instantaneous pro
erty, w, can be defined as the sum of the time average,w̄, plus the
fluctuating component,w8:

w5w̄1w8 (4)

From the work of Pedras and de Lemos@27#, and Rocamora and
de Lemos@32#, one can write for any flow propertyw, combining
decompositions~2! and ~4!,

^w&85^w̄& i (5)

^w& i 85^w8& i (6)

i w̄5 iw (7)

Leading a full variable decomposition as~Pedras and de Lemo
@40,41#!:

w5^w̄& i1^w8& i1 i w̄1 iw8
(8)

5^w& i1^w& i 81 iw 1 iw8

Equation~8! comprises thedouble decompositionconcept used in
the development to follow. One should point out that~8! refers to
any medium property over which the volume and time averag
operators are simultaneously applied. It is not restricted to fl
flow problems~e.g., compressible or incompressible, viscous
inviscid!. Characterization of macroscopic fluctuation tempe
tures could well use the idea embodied in~8!. The only limitation
is the independence oftime and spaceintegration domains and
therefore, swelling, shrinking, or vibrating media are not cons
ered within this frame work~see Pedras and de Lemos@25,27# for
a discussion on the limitations of Eq.~8!!. With these ideas in
mind, an equation for macroscopic velocity fluctuations is sho
next.
936 Õ Vol. 123, DECEMBER 2001
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Macroscopic Velocity Fluctuation. The starting point for an
equation for the flow turbulent kinetic energy is an equation
the microscopic velocity fluctuationu8. Such a relationship can b
written after subtracting the equation for the mean velocityū from
the instantaneous momentum equation, resulting in~Hinze @42#,
Warsi @43#!:

rH ]u8

]t
1¹•@ ūu81u8ū1u8u82u8u8#J 52¹p81m¹2u8.

(9)

Now, the volumetric average of~9! will give,

r
]

]t
~f^u8& i !1r¹1$f@^ūu8& i1^u8ū& i1^u8u8& i2^u8u8& i #%

52¹~f^p8& i !1m¹2~f^u8& i !1R8 (10)

where,

R85
m

DVEAi

n•~¹u8!dS2
1

DVEAi

np8dS (11)

is the fluctuating part of the total drag due to the porous struct
Expanding further the divergent operator in~10! in light of ~8!,

one ends up with an equation for^u8& i as,

r
]

]t
~f^u8& i !1r¹•$f@^ū& i^u8& i1^u8& i^ū& i1^u8& i^u8& i

1^ i ūiu8& i1^ iu8 i ū& i1^ iu8 iu8& i2^u8& i^u8& i2^ iu8 iu8& i #%

52¹~f^p8& i !1m¹2~f^u8& i !1R8 (12)

Macroscopic Turbulent Kinetic Energy
The objective of this section is to derive both transport eq

tions for km and ^k& i in order to compare similar terms.

Equation for kmÄŠu8‹ i "Šu8‹ i Õ2. From the instantaneous mi
croscopic continuity equation for a constant property fluid o
has,

¹•~f^u& i !50⇒¹•@f~^ū& i1^ū8& i !#50 (13)

with time average,

¹•~f~ ū& i !50 (14)

From ~13! and ~14! one verifies that,

¹•~f^u8& i !50 (15)

Taking the scalar product of~10! by ^u8& i , making use of~13!-
~14!-~15! and time averaging it, an equation forkm will have for
each of its terms~note thatf is here considered as independent
time!:

r^u8& i
•

]

]t
~f^u8& i !5r

]~fkm!

]t
(16)

r^u8& i
•$¹•~f^ūu8& i !%5r^u8& i

•$¹•@f^ū& i^u8& i1f^ i ūiu8& i #%

5r¹•@f^ū& ikm#

1r^u8& i
•$¹•@f^ i ūiu8& i #% (17)

r^u8& i
•$¹•~f^u8ū& i !%5r^u8& i$¹•@f~u8& i^ū& i1f^ iu8 i ū& i #%

5rf^u8& i^u8& i :¹^ū& i

1r^u8& i
•$¹•@f^ iu8 i ū& i #% (18)
Transactions of the ASME
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r^u8& i
•$¹•~f^u8u8! i !%

5r^u8& i
•$¹•@f^u8& i^u8& i1f^ iu8 iu8& i #%

5r¹•Ff^u8& i ^u8& i
•^u8& i

2
G1r^u8& i

•$¹•@f^ iu8 iu8& i #% (19)

r^u8& i
•$¹•~2f^u8u8& i !%50 (20)

2^u8& i
•¹~f^p8& i !52¹•@f^u8& i^p8& i # (21)

m^u8& i
•¹2~f^u8& i !5m¹2~fkm!2rfem (22)

^u8& i
•R8[0 (23)

where em5n¹^u8& i :(¹^u8& i)T. In handling ~21! the porosityf
was assumed to be constant only for simplifying the manipula
to be shown next. This procedure, however, does not represe
limitation in deriving a general form transport equation forkm
since term~21! will require further modeling.

Another important point is the treatment given to the sca
product shown in~23!. Here, a different view from the work in the
Lee and Howell@8#, Wang and Takle@9#, Antohe and Lage@10#,
and Getachewa et al.@11#, is considered. The fluctuating dra
form R8 acts through the solid-fluid interfacial area and, as su
on fluid particles at rest. The fluctuating mechanical energy r
resented by the operation in~23! is not associated with any fluid
particle movement and, as a result, is here considered to be of
value. This point shall be further discussed later in this paper

A final equation forkm gives,

r
]~fkm!

]t
1r¹•@f^ū& ikm#

52r¹•H f^u8& iF ^p8& i

r
1

^u8& i
•^u8& i

2
G J

1m¹2~fkm!2rf^u8& i^u8& i :¹^ū& i2rfem2Dm (24)

where

Dm5r^u8& i
•$¹•@f~^ i ūiu8& i1^ iu8 i ū& i1^ iu8 iu8& i !#% (25)

represents the dispersion ofkm given by the last term on the righ
of ~17!, ~18!, and~19!, respectively. Interesting to point out is th
this term can be both of negative or positive sign.

The first term on the right of~24! represents the turbulent dif
fusion ofkm and is normally modeled via a diffusion-like expre
sion resulting for the transport equation~Antohe and Lage@10#,
Getachewa et al.@11#!,

r
]~fkm!

]t
1r¹•@f^ū& ikm#

5¹•Fm1
m tm

skm

¹~fkm!G1Pm2rfem2Dm (26)

where

Pm52rf^u8& i^u8& i :¹^ū& i (27)

is the production rate ofkm due to the gradients of the macro
scopic time-mean velocitŷū& i .

Lee and Howell@8#, Wang and Takle@9#, Antohe and Lage@10#,
and Getachewa et al.@11#, made use of the above equation forkm

considering forR8 ~11! the Darcy-Forchheimer extended mod
with macroscopic time-fluctuation velocitieŝu8& i . They have
also neglected all dispersion terms that were here grouped intoDm
~25!. Note also that the order of application of both volume- a
Journal of Fluids Engineering
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time-average operators in this case cannot be changed. The q
tity km is defined by applying first the volume operator to t
fluctuating velocity field.

Equation for Šk‹ iÄŠu8"u8‹ i Õ2. The other procedure for
composing the flow turbulent kinetic energy is to take the sca
product of ~9! by the microscopic fluctuating velocityu8. Then
applying both time and volume-operators for obtaining an eq
tion for ^k& i5^u8•u8& i /2. It is worth noting that in this case th
order of application of both operations is immaterial since
additional mathematical operation~the scalar product! is con-
ducted in between the averaging processes. Therefore, this i
same as applying the volume operator to an equation for the
croscopick.

The volumetric average of a transport equation fork has been
carried out in detail by de Lemos and Pedras@30#, and Pedras and
de Lemos@40#, and for that only the final resulting equation
here presented. It reads,

rF ]

]t
~f^k& i !1¹•~ ūD^k& i !G

5¹•F S m1
m tf

sk
D ¹~f^k& i !G1Pi1Gi2rf^e& i (28)

where

Pi52r^u8u8& i :¹ūD (29)

Gi5ckrf
^k& i uūDu

AK
(30)

are the production rate of^k& i due to mean gradients of the see
age velocity and the generation rate of intrinsick due to the pres-
ence of the porous matrix. As mentioned, Eq.~28! has been pro-
posed by Pedras and de Lemos@40#, where more details on its
derivation can be found. The constantck was numerically deter-
mined in Pedras and de Lemos@41,44# for different media and for
a wide range of porosity and Reynolds numbers. In spite of hav
distinct cases, a unique value of 0.28 was found to be suitable
most calculations.

Comparison of Macroscopic Transport Equations. A com-
parison between terms in the transport equation forkm and ^k& i

can now be conducted. Pedras and de Lemos@27# have already
shown the connection between these two quantities as being

^k& i5^u8•u8& i /25^u8& i
•^u8& i /21^ iu8• iu8& i /25km1^ iu8• iu8& i /2

(31)

Expanding the correlation forming the production termPi by
means of~2!, a connection between the two generation rates
also be written as,

Pi52r^u8u8& i :¹ūD52r~^u8& i^u8& i :¹ūD1^ iu8 iu8& i :¹ūD!

5Pm2r^ iu8 iu8& i :¹ūD (32)

One can note that all production rates ofkm due to the mean flow
constitutes only part of the general production rate responsible
maintaining the overall level of̂k& i .

The dissipation rates also carry a correspondence if
expands

^e& i5n^¹u8:~¹u8!T& i

5n^¹u8& i :@^¹u8& i #T1n^ i~¹u8!: i~¹u8!T& i

5
n

f2
¹~f^u8& i !:@¹~f^u8& i !#T1n^ i~¹u8!: i~¹u8!T& i

(33)

Considering further constant porosity,
DECEMBER 2001, Vol. 123 Õ 937



Table 1 Classification of turbulence models for porous media.
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^e& i5em1n^ i~¹u8!: i~¹u8!T& i (34)

Equation~34! indicates that an additional dissipation rate is ne
essary to fully account for the energy decay process inside
R.E.V. It is worth noting that~31!, ~32!, and~34! seems to sugges
that models considerinĝk& i are by far more complete than theo
ries based onkm .

General Classification of Turbulence Models for Porous
Media

Based on the derivations above, one can establish a ge
classification of the models presented so far in the literature~de
Lemos@38#!. Table 1 classifies all proposals into four major ca
egories. These classes are based on the sequence of applica
averaging operators, on the handling of surface integrals an
the application reported so far.

The A-L models make use of transport equations forkm

5^u8& i
•^u8& i /2 instead of^k& i5^u8•u8& i /2. Consequently, this

methodology applies only time-averaging procedure to already
tablished macroscopic equations~see for example Hsu and Chen
@45#, for macroscopic equations!. In this sense, the sequenc
space-timeintegration is employed and surface integrals are
manipulated since macroscopic quantities are the sole indepen
variables used. Application of this theory is found in Chan et
@46#.

N-K models constitute the second class of models here c
piled. It is interesting to mention that Masuoka and Takatsu@12#,
assumed a non-null value for the turbulent shear str
St52ru8u8, along the interfacial areaAi in their Eq.~11!. With
that, their surface integral*Ai

St•ndA was associated with the
Darcy flow resistance term. Yet, using the Boussinesq approxi
tion as in their Eq.~7!, St52m tD2(2/3)kI , one can also see tha
both m t andk will vanish at the surfaceAi , ultimately indicating
that the surface integral in question is actually equal to zero. S
larly, Takatsu and Masuoka@15#, assumed for their surface inte
gral in Eq. ~14!, *Ai

d•ndA, a non-null value whered5(m/r

1m t /skr)¹k. Here also it is worth noting that¹k5u8•(¹u8)T

and that, at the interfaceAi , ¹k50 due to the non-slip condition
Consequently, also in this case the surface integral ofd overAi is
of zero value. In regard to the average operators used, N-K m
els follow thetime-spaceintegration sequence. Calibration of th
model required microscopic computations on a period cell
Vol. 123, DECEMBER 2001
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square rods. Macroscopic results in a channel filled with a por
material was also a test case run by Nakayama and Kuwa
@16#.

The work developed in a series of papers using a morpholo
oriented theory is here group in the T-C model category shown
Table 1. In this morphology-based theory, surface integrals res
ing after application of volume-average operators depend on
media morphology. Governing equations set up for turbulent fl
although complicated at first sight, just follow usual volume in
gration technique applied to standardk-e and k-L turbulence
models. In this sense, time-space integration sequence is follo
No closure is proposed for the unknown surface integrals~and
morphology parameters! so that practical applications of such d
velopment in solvingreal-world engineering flows is still a chal-
lenge to be overcome. Nevertheless, the developed theory s
to be mathematically correct even though additionalad-hocinfor-
mation is still necessary to fully model the remaining unknow
and medium-dependent parameters.

Lastly, the model group named P-dL uses the recently de
oped double-decompositiontheory just reviewed above. In thi
development, all surface integrals involving null quantities at
terfaceAi are neglected. The connection between space-time
time-space theories is made possible due to the splitting of
dependent variables into four~rather than two! components, as
expressed by Eq.~8!. For the momentum and energy equation
the double-decomposition approach has proven that either t
space or space-time order of application of averaging operato
immaterial. For the turbulence kinetic energy equation, howe
the order of application of such mathematical operators will defi
different quantities being transported~Pedras and de Lemos@27#,
Rocamora and de Lemos@32#!. Microscopic computation on a
periodic cell of circular~Pedras and de Lemos@41#! and elliptic
~Pedras and de Lemos@47#! rods were used in order to calibrat
the proposed model. Pedras and de Lemos@40# further presented
macroscopic computations for flow in a channel filled with a p
rous material. Further results for hybrid domains~porous medium-
clear fluid! are found in de Lemos and Pedras@33# and Rocamora
and de Lemos@34–36#!.

Discussion and Conclusions
This paper presented the two views in the literature for char

terizing the turbulence kinetic energy for flow in porous med
The two transport equations where derived in light of the dou
Transactions of the ASME
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decomposition concept and a comparison between the produ
and dissipation terms are presented. A general classification o
models published so far was established. The discussion b
further compares the two views in the literature.

In the path followed by Lee and Howell@8#, Wang and Takle
@9# and Antohe and Lage@10#, the drag termR was represented by
a Darcy-Forchheimer extended model in its usual form,

R52Fmf

K
uD1

cFfruuDuuD

AK
G (35)

wherecF is a constant. Time decomposition was then applied
the Darcy velocity in~35! and the 4th, 5th, 6th, and 8th terms
the divergent of~12! were neglected. A few comments on th
methodology for setting up a transport equation for the flow
netic energy seems timely.

The Darcy-Forchheimer extended model is based on ave
values obtained after comparing bulk flow rates to bulk press
drops across beds of saturated media. It compares, accord
time-averaged quantities although a fluctuating component for
macroscopic velocity is defined and has been used throughou
development shown above. Applying then a time-decomposi
operation to~35! in order to represent extra turbulent kinetic e
ergy for the flow in a porous matrix seems to neglect the fact
such terms were proposed based on ‘‘time-independent’’ qua
ties. Accordingly, Eq.~35! seems to be a model for thetime-mean
drag rather than for theinstantaneousforce ~11!.

Also, one interesting point in the development of an equat
for km is the treatment given to the scalar product~23!. This term
represents the statistical value of the fluctuating mechanical
ergy associated with the fluctuating dragR8 given by ~11!. The
fluctuating dragR8, although different from zero, acts through th
solid-fluid interfaceAi and, as such, on fluid particles ‘‘at rest
As a consequence, this force should not contribute to produ
mechanical energy within the flow.

Accordingly, the work done by a force acting on a partic
moving along a certain distance is the scalar product of this fo
F, by the distance,dr , such as

dW5F•dr (36)

The work rate or power is then defined as,

Ẇ5
dW

dt
5F•

dr

dt
5F•u (37)

or say, in Eq.~37! u is the velocity of the particle on which th
force F is being applied.

Following Bird et al.@48#, the microscopic~local and instanta-
neous! mechanical energy equation is obtained starting with
momentum Cauchy equation,

r
Du

Dt
5¹•T1rg (38)

whereT is the stress tensor. All terms in~38! represent forces pe
unit volume acting on a fluid element having velocityu. Follow-
ing the concept embodied in~37!, the mechanical energy pro
duced by each one of these forces is given by the scalar produ
~38! and the local velocityu,

r
D

Dt S 1

2
u2D5u•¹•T1u•rg (39)

It is clear to see that all terms in~39! vanish due to the non-slip
condition at a solid stagnant wall. Text books in Fluid Mechan
~e.g., Bird et al.@48#, Fox and McDonald@49#! comment that in
the neighborhood of a fluid particle, stagnant solid walls can
promote mechanical energy. Or say, solid walls can only gene
mechanical energy within the flow if the wall itself is movin
~e.g., a rotating turbine blade!. By means of~37!, this mechanical
energy would be given by the scalar product of the force exe
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by the wall on the fluid and the fluid particle velocity~or the
velocity of the fluid particle in contact to the moving wall!.

It is also clear that boundary forces modify the fluid press
field, which, in turn, modifies fluid velocity and then the mecha
cal energy within the flow. However, the momentum equation
its differential form considers only the forces acting in the vicin
of a moving particle. At walls, there is no fluid movement exce
in the case of moving surfaces. Following this line of thought,
term derived from~35! could then contribute to either increase
decrease the overall value of the flow turbulent kinetic energy.
exception would be a moving~vibrating! porous structure and, in
this case, energy would be added to the fluid. It is recogniz
however, that additional terms in thek-equation due to the solid
structure are necessary~Nakayama and Kuwahara@16#!. Different
proposals are made in the literature and recent work in this are
expected to improve current model assumptions~Pedras and de
Lemos@27#!.

Also, for a homogeneous, fully-developed unidimensional fl
through a porous bed, all terms appearing in thekm-equation and
originated from the time decomposition of Darcy-Forchheimer
tended model will be negative~note that all drag forces in~35! are
‘‘negative’’ and will lead to ‘‘sink’’ terms in thekm-equation!. As
a consequence, the only possible solution for this case will
km50. This, in fact, was the conclusion reached by Antohe a
Lage @10#. However, Nakayama and Kuwahara@16#, points out
that for this same situation a certain level of turbulent kine
energy must stay as long as the presence of porous matrix k
generating it. This disagreement could be explained based on
fact that each work talks about a different quantity (km and^k& i).
For flow in such infinite medium, the only generating mechani
is given by termGi in ~28! causing a non-null value for^k& i . This
would be equivalent to considering the decay of turbulence beh
a grid and analyzing the porous structure as a sequence of clo
packed grids. Thus, mechanical energy continuously extra
from the mean flow, by gradients ofmicroscopicvelocity, feeds
the macroscopic turbulence field. This mechanism is modeled
the generating termGi . On the other hand, the productio
P-terms in~32!, for both k forms, will be zero due to null gradi-
ents of themacroscopicmean velocity.

Applying this same reasoning to the macroscopic momen
equation including body forces~Hsu and Cheng@45#!,

rF ]

]t
~f^u& i !1¹•~f^uu& i !G
52¹~f^p& i !1m¹2~f^u& i !1frg1R (40)

where

R5
m

DVEAi

n•~¹u!dS2
1

DVEAi

npdS (41)

one verifies that the five first terms represent forces acting on fl
particles whose macroscopic mean velocity is given by^u&n or
f^u& i . The last term,R, acts on particles that are located on t
interfacial areaAi , (R is a surface force divided by volume!. If
the interfacial areaAi , moves~vibrates! then the mechanical en
ergy produced will be the scalar product ofR and the velocity of
Ai , otherwiseR will not produce mechanical energy.

In several papers,~Vafai and Tien@7#, Hsu and Cheng@45#,
Antohe and Lage@10#, among others! R is modeled as a function
of the Darcy velocity,̂ u&n. However, that does not mean thatR
acts on particles having an average velocity^u&n. Consider, for
example,creeping flowaround a sphere where both viscous dra
Fm , and form drag,Fp , are obtained by integrating viscous an
pressure forces, respectively, over the sphere surface. The
drag is given by,

Fp1Fm56pmRù (42)

where R is the radius of the sphere andu` is the free stream
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velocity. In spite of having the total drag described as a funct
of u` , this force acts on stagnant particles and, as such, can
produce mechanical energy within the flow. Likewise, forcesR8
~11! andR ~41! that appear in the governing equations for poro
media cannot produce mechanical energy unless the porous s
ture itself is allowed to move or vibrate. In this case, mechan
energy is added to the fluid via the action of the porous struct
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