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a b s t r a c t

Thermal dispersion in porous media is an import phenomenon in combustion and in steam injection sys-
tems for Enhanced Oil Recovery methods, among several others engineering applications. In this work,
thermal dispersion tensors were calculated within an infinite porous medium formed by a spatially peri-
odic array of longitudinally-displaced elliptic rods. Two different thermal conductivity ratios between the
solid and fluid phases were used for analyzing their effect on the thermal dispersion tensor, following a
systematic analysis of several porous media modeled by different unit-cell geometry. As such, just one
unit-cell, together with periodic boundary conditions for mass, momentum and energy equations, was
used to represent the medium. The numerical methodology herein employed is based on the control-vol-
ume approach. Turbulence was assumed to exist within the fluid phase and a low Reynolds k–e closure
was used to model it. The flow equations at the pore-scale were numerically solved using the SIMPLE
method on a non-orthogonal boundary-fitted coordinate system. Cell-integrated results for the longitu-
dinal dispersion coefficient showed little sensitiveness on porosity, boundary condition type, medium
morphology and solid–fluid conductivity ratio, whereas for the transversal direction, all of these param-
eters modified the numerical value obtained for the dispersion coefficient.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Customarily, investigation of thermal dispersion in porous med-
ia makes use of the notion of representative elementary volume
(REV) over which the transport equations are integrated [1–4].
These models, based on the macroscopic point of view, lose details
on the flow pattern inside the REV and, together with ad-hoc infor-
mation, provide global flow properties such as average velocities
and temperatures. Recently, a number of papers can be found in
the literature, which uses detailed macroscopic models for disper-
sion in porous media [5–8]. A REV is schematically represented in
Fig. 1a.

On the other hand, flow in porous media can also be analyzed
by modeling the topology of the medium and resolving the flow
equations at the pore-scale. This treatment reveals the flow struc-
ture at the pore level an was used by [9–12] to determine the ther-
mal dispersion tensors with periodic boundary conditions for
mass, momentum and energy equations. Fig. 1b illustrates differ-
ent model arrangements for a REV.

Following this second methodology, a systematic analysis on
thermal dispersion in porous media has been carry out in Refs.
[13–15] in order to contribute for the developing of a macroscopic
ll rights reserved.
transport equations based on the double-decomposition concept
[16–22]. This systematic development has numerically investi-
gated the thermal dispersion in beds modeled as arrays of cylindri-
cal rods [13], longitudinally-displaced [14] and transversally-
displaced [15] elliptic rods. In all of these investigations the ther-
mal conductivity ratio between the solid and fluid phases was
the same and their results were compared with several different
geometries. The long term objective of such research effort is to
investigate the effect of the thermal conductivity ratio between
the solid and fluid phases on dispersive transport in highly perme-
able media.

The aim of the present contribution is to present thermal dis-
persion coefficients obtained in a medium modeled as an infinity
array of longitudinally-displaced elliptic rods with two different
thermal conductivity ratios between the solid and fluid phases,
ks/kf = 2 and ks/kf = 10. Fig. 1c details the geometry under analysis
and respective computational grid. Results for ks/kf = 2 were al-
ready presented by Ref. [14] whereas the results for ks/kf = 10
and the comparison between them will be presented in this work.
2. Microscopic equations

The thermal dispersion modeling and the macroscopic and
microscopic equations herein utilized can be found in [13–15],

mailto:delemos@ita.br
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

cpf, cps specific heat at constant pressure of fluid and solid
c1, c2, cl dimensionless constants
f2, fl damping functions
H characteristic length (Fig. 2)
k turbulence kinetic energy
kf, ks thermal conductivity of fluid and solid
Keff effective conductivity
Ktor tortuosity tensor
Kdisp dispersion tensor
n coordinate normal to the wall
nf, ns coordinate normal to the interface (Fig. 1)
PeH Peclet number ðjh�uijH=af Þ
Tf,Ts temperature of fluid and solid
u local instantaneous (microscopic) velocity
u, v components of u

Greek symbols
e dissipation of k
c phase indicator (fluid f or solid s)

l dynamic viscosity
lt turbulent viscosity
m kinematic viscosity
mt turbulence (eddy) viscosity
mt/ macroscopic turbulence (eddy) viscosity
qf, qs density
rk, re, rt effective Prandtl number
/f porosity or volume fraction of the fluid
/s 1 � /f volume fraction of the solid

Special characters
�uc time average of uc
huci volume average of uc
hucic intrinsic average of uc in the c phase
u0c time fluctuation of uc
iuc space deviation of uc
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however for the sake of comprehensiveness some of those equa-
tions will be here presented once more.
Fig. 1. (a) Representative elementary volume (REV), (b) square and staggered models fo
with a/b = 5/3 and computational grid.
The following microscopic transport equations describe the
flow field and the heat transfer process within a porous medium,
r the REV and (c) unit-cell based on an infinite square arrangement of elliptic rods
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Fig. 2. Unit-cell and boundary conditions: (a) macroscopic velocity and tempera-
ture gradients; given temperature difference at East–West boundaries, (b) longitu-
dinal gradient, Eq. (24), (c) transversal gradient, Eq. (25); Given heat fluxes at North–
South boundaries, (d) longitudinal gradient and (e) transversal gradient.
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where barred quantities represent time-averaged components and
primes indicate turbulent fluctuations:

Fluid phase (incompressible fluid)

r � �u ¼ 0 ð1Þ

qf
o�u
ot
þr � ð�u�uÞ

� �
¼ �r�pþr � fl½r�uþ ðr�uÞT� � qf u0u0g ð2Þ

qf cpf
oT f

ot
þr � ð�uT f Þ

" #
¼ r � ½kfrT f � qf cpf u0T

0
f � ð3Þ

qf
ok
ot
þr � ð�ukÞ

� �
¼ r � lþ lt

rk

� �
rk

� �
� qf u0u0 : r�u� qf e ð4Þ

qf
oe
ot
þr � ð�ueÞ

� �
¼ r � ðlþ lt

re
Þre

� �
þ ½c1ð�qf u0u0 : r�uÞ � c2f2qf e�

e
k

ð5Þ

� qf u0u0 ¼ lt½r�uþ ðr�uÞT� � 2
3
qf kI ð6Þ

� qf cpf u0T
0
f ¼ qf cpf

mt

rt
rT f ð7Þ

lt ¼ qfmt ¼ qf clfl
k2

e
ð8Þ

Solid phase

qscps
oTs

ot
¼ r � ½ksrTs� ð9Þ

where u is the microscopic velocity, qf and qs the fluid and solid
densities, p the thermodynamic pressure, l and lt the dynamic
and turbulent viscosities, Tf and Ts the fluid and solid temperatures,
cpf and cps the fluid and solid specific heat at constant pressure, kf

and ks the fluid and solid thermal conductivities, k the turbulent ki-
netic energy and e the dissipation of k. In the equations rk, re and rt

are effective Prandtl numbers, c1, c2 and cl are dimensionless con-
stants and f2 and fl damping functions.

To account for turbulence the low Reynolds k–e closure was ap-
plied, utilizing the damping functions and model constants of [23].

For the unit-cell represented in Fig. 1c, and with the assumption
of macroscopic fully developed uni-dimensional flow, the interfa-
cial (fluid/solid) conditions at the walls are,

�u ¼ 0; T f ¼ Ts; nf � ðkfrT f Þ ¼ �ns � ðksrTsÞ;

k ¼ 0 and e ¼ m
o2k
on2

; ð10Þ

Unit-cell boundary conditions for the hydrodynamic field fol-
low a periodic condition as follow:

on x = 0 and x = H,
�ujx¼0 ¼ �ujx¼H; �vjx¼0 ¼ �vjx¼H; kjx¼0 ¼ kjx¼H

and ejx¼0 ¼ ejx¼H ð11Þ
on y = 0 and y = H,

o�u
oy
¼ o�v

oy
¼ ok

oy
¼ oe

oy
¼ 0 ð12Þ

where nf and ns are the coordinates normal to the interface (Fig. 1a)
and u and v the components of u. Temperature boundary conditions
will be presented in the next section.

3. Thermal dispersion modeling

The thermal dispersion modeling utilized in this work follows
the same procedure of [13–15]. The macroscopic energy equation
is obtained by volume averaging the microscopic energy equations
(3) and (9) over the REV of Fig. 1a assuming local thermal equilib-
rium assumption, i.e., hT fif ¼ hTsis ¼ hTi. The result is

½/fqf cpf þ /sqscps�
ohTi
ot
þ qf cpfr � ðh�uihTiÞ ¼ r � Keff � rhTi ð13Þ
where hTi is the volume average of the time averaged temperature,
hTcic the intrinsic average of the time-averaged temperature in the
c phase, /f the volume fraction of fluid and /s = 1 � /f the volume
fraction of solid. The effective conductivity, Keff, the tortuosity ten-
sor, Ktor, and the dispersion tensor, Kdisp, are defined as

Keff ¼ ð/f

qf cpfmt/

rt
þ /f kf þ /sksÞIþ Ktor þ Kdis ð14Þ

Ktor � rhTi ¼
ðkf � ksÞ

DV

Z
Ai

nf
iT f dS ð15Þ

Kdisp � rhTi ¼ �qf cpf/f hi �uiT f if ¼ �
qf cpf

DV

Z
DV f

i �uiT f dV ð16Þ

where iu is the space deviation of u
According to Fig. 2a, the macroscopic velocity and temperature

gradients are given by

h�uiv ¼ jh�uivjðcos h~iþ sin h~jÞ ð17Þ

rhTi ¼ DT
H
ð� sin h~iþ cos h~jÞ � transversal component ð18Þ

rhTi ¼ DT
H
ðcos h~iþ sin h~jÞ � longitudinal component ð19Þ

If the gradient of the average temperature is in the same direc-
tion of the macroscopic flow or transverse to it, only diagonal com-
ponents of Kdis remain non-zero components. In these conditions,
Eq. (16) renders, respectively, for the diagonal components of Kdis,
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ðKdisÞxx � �
qf cpf
DV

DhTix
H

Z
DV f

i�uiT f dV ð20Þ

or

ðKdisÞxx � �
qf cpf
DV

DhTix
H

Z H

0

Z H

0

�u� h�uii
� �

T � hTi
� 	

dxdy � ðcos h~iþ sin h~jÞ

ð21Þ

and

ðKdisÞyy � �
qf cpf
DV

DhTiy
H

Z
DV f

i�viT f dV ð22Þ

or

ðKdisÞyy � �
qf cpf
DV

DhTiy
H

Z H

0

Z H

0
ð�u� h�uiiÞðT � hTiÞdxdy � ð� sin h~iþ cos h~jÞ

ð23Þ

Solution of the flow and energy equations inside the unit-cell
provides the velocity and temperature distributions necessary for
the integrands of (20) and (22). These values are needed in order
to calculate the dispersion components. Further, in (20) and (22)
the gradients DhTix and DhTiy can be calculated in two ways, as
presented next.

4. Imposed boundary temperature difference

In the first method, a temperature difference or Dirichlet
boundary conditions are imposed for the energy equation at the
faces of the computational cell [10,12] as shown below.

As mentioned, two distinct macroscopic temperature gradients
are considered to obtain the transverse and longitudinal dispersion
coefficients (20) and (22), respectively.

Following [10], we impose a macroscopically linear tempera-
ture gradient along with the macroscopic flow for obtaining (Kdis)xx

so that (see Fig. 2b),

Tx¼0 ¼ Tx¼H � DhTix and Ty¼0 ¼ Ty¼H ð24Þ

For the (Kdis)yy calculation, one has (Fig. 2c),

Tx¼0 ¼ Tx¼H and Ty¼0 ¼ Ty¼H � DhTiy ð25Þ

In both Eqs. (24) and (25), DhTix and DhTiy are given constants. All
temperatures at the four boundaries are iteratively modified, along
the relaxation process, subjected to the constraints given by Eqs.
(24) and (25). With such imposed temperature at the boundaries,
energy Eqs. (3) and (9) are numerically solved and residues are
brought down below a pre-selected tolerance.

5. Imposed boundary heat flux

The other possibility for getting a macroscopic temperature dif-
ference across the cell, in either the longitudinal direction for hav-
ing DhTix to be used in (20), or for calculating DhTiy for applying it
in (22), is to impose heat fluxes at the north and south boundaries
of the unit-cell shown in Fig. 2a. When the two fluxes ‘‘enter” the
cell (Fig. 2d), DhTix is obtained. For heat entering from above and
leaving at the south surface, the situation is analogous of having
a uniform transverse temperature difference DhTiy across the y-
direction (Fig. 2e).

In those cases, DhTix and DhTiy are no longer given values, but
rather a consequence of the imposed heat fluxes (Newman condi-
tions) at the north and south boundaries. Their values are then cal-
culated as,
DhTix ¼
1
H

Z y¼H

y¼0
½Tx¼H � Tx¼0�dy ð26Þ

DhTiy ¼
1
H

Z x¼H

x¼0
½Ty¼H � Ty¼0�dx ð27Þ

It is important to highlight the equivalence of the pairs of Eqs.
(24)–(26) and (25)–(27). One should emphasize that distributed
temperatures are computed first within the cell in Fig. 2, which
are therefore obtained at the pore level, without resorting to any
macroscopic view. Accordingly, at the pore level, one identifies
only diffusion (laminar/turbulent) and convection as the existing
mechanisms for transporting heat to and out of the unit-cell of
Fig. 2. Mechanisms such as dispersion and tortuosity entail oper-
ations over the entire REV and, as such, they are not defined at the
pore level, and are rather the outcome of macroscopic models,
which are identified by Eqs. (15) and (16), respectively. At the pore
level, or say within the domain in Fig. 2, only diffusion and convec-
tion heat transport are present.

Accordingly, when imposing Eq. (24) (Fig. 2b), temperature val-
ues at the north and south face are iteratively adjusted, subjected
to condition Ty¼0 ¼ Ty¼H for 0 < x < H, so that their gradients at both
boundaries will be such that corresponding heat fluxes entering
the unit-cell will satisfy the energy balance and will match the
convected energy leaving at the east face. Therefore, after achiev-
ing the numerical solution of Eqs. (3) and (9), the sum of heat
fluxes at east, north and south boundaries match that leaving the
cell at east.

Local heat fluxes at north and south faces present a longitudinal
distribution along the x-direction and are given, at the north face
for the gap between rods (y = H, D/2 < x < H � D/2), as follows,

qcalc
y¼H ¼ � ðkf þ

cpflt

rt
ÞoT
oy







y¼H|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction and turbulent diffusion

þqf cpf ðvTÞy¼H|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
convection

ð28Þ

Across the solid phase at the same north-boundary, lt = 0 and v = 0
and the calculated north-boundary heat flux becomes,

qcalc
y¼H ¼ �ks

oT
oy







y¼H|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

conduction

ð29Þ

On the other hand, by imposing a given value for qy=H, instead of
calculating it via Eq. (28) (see Fig. 2d), temperatures at the north
cell face Ty¼H will be adjusted such that,

qgiven
y¼H ¼ �ðkf þ

cpflt

rt
ÞðTy¼H � TBÞ

dy







y¼H

þ qf cpf ðvTÞy¼H ð30Þ

where TB represents the temperature at the computational node
closest to the boundary, which is located at a distance dy from it.
An explicit equation for Ty¼H can then be obtained as

Ty¼H ¼
qgiven

y¼H � ðkf þ
cpf lt
rt
ÞTB
dy





y¼H

�ðkf þ
cpf lt
rt
Þ 1

dyþ qf cpf v
h i

y¼H

ð31Þ

For the south face one has

Ty¼0 ¼
qgiven

y¼0 þ ðkf þ
cpf lt
rt
ÞTB
dy





y¼0

ðkf þ
cpflt
rt
Þ 1

dyþ qf cpf v
h i

y¼0

ð32Þ

Invoking symmetry condition about the plane y = H/2, as shown in
Fig. 2d, one gets qgiven

y¼0 ¼ �qgiven
y¼H and vy=0 = �vy=H, which, in turn, re-

sult in Eq. (24) ðTy¼0 ¼ Ty¼HÞ, after comparing Eqs. (31) and (32).
Further, once temperatures at all four faces are updated at each

iteration, a convenient longitudinal temperature drop is calculated
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by Eq. (26), instead of being imposed as schematically shown in
Fig. 2b. Similar arguments can be said about the equivalence of
conditions (25) (Fig. 2c) and (27) (Fig. 2e). Additional comments
on the relaxation procedure are shown next.

6. Numerical model

The transport equations at the pore-scale were numerically
solved using the SIMPLE method on a non-orthogonal boundary-
fitted coordinate system. The equations were discretized using
the finite volume procedure of [24]. The relaxation process starts
with the solution of the two momentum equations and the velocity
fields is adjusted in order to satisfy the continuity principle. This
adjustment is attained by solving the pressure correction equation.
The turbulence model and the energy equations are relaxed to up-
date the k, e and temperature fields. Details on the numerical dis-
cretization can be found in [18].

In this work just one unit-cell, together with periodic boundary
conditions for mass, momentum and Neumann and Dirichlet con-
ditions for the energy equation, was used to represent the porous
medium. In all runs, flow was always in the horizontal direction
and from left to right. For given DhTix and DhTiy in Fig. 2b and c,
respectively, all boundary temperatures were varied during the
relaxation process until all equations converged. For the Neumann
temperature conditions (Fig. 2d and e), the thermal dispersion ten-
sors were calculated after a sequence of converged loops on the
same run. This sequence of loops followed the same procedure de-
tailed in [17]. After convergence with initial profiles at the west
faces, outlet profiles at x=H were plugged back at the inlet in
x = 0. Although the volume average temperature hTiv changed after
increasing the inlet temperature profile in each run, the spatial
Fig. 3. Temperature field with imposed longitudinal temperature gradient, /f = 0.60: Gi
PeH = 4 � 103; Given heat fluxes at North–South boundaries (see Fig. 2d), (c) PeH = 10 and
deviation temperature field vT ¼ T � hTiv within the cell becomes
established as the flow develops along the x-direction. In this situ-
ation, the flow is considered to have a macroscopically developed
thermal field.

Also, in the low Re model, the node adjacent to the wall requires
that usn/m 6 1. To accomplish this requirement, the grid needs
points close to the wall leading to computational meshes of
40 � 54 nodes. A highly non-uniform grid arrangement was em-
ployed with concentration of nodes close to the wall. Values for
(Kdis)xx and (Kdis)yy were obtained varying the PeH ¼ jh�uijH=af from
100 to 4 � 103 and the /f = 1 � abp/H2, from 0.60 to 0.90 [25,26].

7. Results and discussion

A total of 27 runs were carried out being 23 for laminar flow and
four for turbulent flow with the low Re model theory. In all runs it
was used for the fluid phase a Prandtl number of 0.72 and a ther-
mal conductivity ratio between the solid and fluid phase of ks/
kf = 10.

Temperature fields calculated with given boundary tempera-
tures conditions sketched in Fig. 2b (see Eq. (24)) are presented
in the Fig. 3a and b, for PeH = 10 and 4 � 103, respectively. On the
other hand, results for the same cases but using the given flux
boundary type of Fig. 2d are shown in Fig. 3c and d for the same
PeH numbers. In all Fig. 3, the macroscopic temperature gradient
rhTiv is in the same horizontal direction as the macroscopic flow
h�uiv. As will be shown further, in spite of the differences in temper-
ature fields, obtained mainly in the solid phase, the values of the
longitudinal component of Kdis were very similar. This behavior
can be explained by recalling the definition of the Kdis (Eq. (16)),
i.e., the determination of Kdis is dependent on the deviation fields
ven temperature difference at East–West boundaries (see Eq. (24)), (a) PeH = 10, (b)
(d) PeH = 4 � 103.
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of velocity and temperature within the fluid phase. As such,
inspecting Fig. 3a and c for small Peclet and Fig. 3b and d for
PeH = 4 � 103, one can see that velocity and temperature fields
within the fluid phase, regardless of the boundary type used,
resembles fairly well each other.

Temperature fields calculated with boundary conditions
sketched in Fig. 2c (Eq. (25)) and in Fig. 2d are presented, respec-
tively, in the Fig. 4a and c for PeH = 10 and in Fig. 4b and d for
PeH = 4 � 103. In Fig. 4 rhTiv is transversal to h�uiv. Also here the
temperature files obtained with the two methodologies, namely gi-
ven boundary T values or heat fluxes, are close to each other. As be-
fore, here also the transverse component of Kdis calculated with
these two boundary conditions will be very close to one another,
as will be seen below. Furthermore, as PeH increases, Fig. 4a–d
shows the same behavior of Fig. 3a–d, i.e., as the flow rate in-
creases, the fluid temperature becomes more homogeneous due
to enhancement of the convection strength.

Fig. 5 shows the longitudinal component of the thermal disper-
sion tensor as a function of the Peclet number (Fig. 5a) and for dif-
ferent porosities (Fig. 5b). Results in Fig. 5a show good agreement
when compared with the data of [10,12], for square and cylindrical
rods, respectively, and for the same porosity. Also, a mentioned be-
fore, the use of different boundary conditions (Fig. 2b and d) yields
very little differences in the longitudinal component of (Kdis)xx. Fig
5a also shows that for different medium morphologies (longitudi-
nal-displaced elliptic, square and cylindrical rods), (Kdis)xx is little
sensitive. For the same fluid, PeH and porosity, the mass flow rate
through the bed will be the same. Thus, the overall convection
strength and temperatures along the x-direction will vary little,
which, in turn, will yield similar values for (Kdis)xx.
Fig. 4. Temperature field with imposed transversal temperature gradient, /f = 0.60: Give
PeH = 4 � 103; Given heat fluxes at North–South boundaries (see Fig. 2e), (c) PeH = 10 and
Fig. 5b presents longitudinal dispersion coefficients for porosi-
ties covering the range 0.6–0.9. For lower Peclet number, applica-
tions of both boundary conditions result in nearly the same
values for (Kdis)xx. Also for higher PeH, dependency of (Kdis)xx with
/ is small. On the overall, for all porosities here considered, a gen-
eral equation indicating the dependence of longitudinal thermal
dispersion on Peclet can be inferred as

ðKdisÞxx=kf ¼ 3:45� 10�2Pe1:65
H ð33Þ

showing, as expected, the usual behavior of ðKdisÞxx=kf � Pen
H .

The longitudinal components calculated with ks/kf = 2 was gi-
ven in [14] as

ðKdisÞxx=kf ¼ 3:52� 10�2Pe1:65
H ð34Þ

These results are plotted in Fig. 6a with those calculated with ks/
kf = 10. On can see that the conductivity ratio ks/kf has little influ-
ence on the behavior of the ðKdisÞxx � Pe1:65

H curve. Temperatures in-
side the solid will be mostly affected by increasing the solid thermal
conductivity and, as seen before, (Kdis)xx values are basically depen-
dent on the fluid phase temperature (see Eq. (20)).

The transverse component of the thermal dispersion, (Kdis)yy, is
shown next in Fig. 7. As already mentioned, the use of different
boundary conditions (Fig. 2c and e) yields very little differences
in the transverse component of the dispersion tensor Kdis. How-
ever, in Fig. 7a one can also see that different medium morpholo-
gies, such as longitudinal-displaced elliptic rods (present results),
as well as square [10] and cylindrical rods [12], yield substantially
different values for (Kdis)yy. Results for square rods by [10] were
greater than for circular rods [12], which were further greater than
the present results. If one recall that (Kdis)yy is associated with
n temperature difference at North–South boundaries (see Eq. (25)), (a) PeH = 10, (b)
(d) PeH = 4 � 103.
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Fig. 6. Longitudinal thermal dispersion comparing between ks/kf = 2 and ks/kf = 10:
(a) Neumann boundary conditions, Fig. 2d; (b) temperature boundary conditions,
Fig. 2b; Eq. (24).
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dispersive transport in the y-direction, one can infer that the easier
the fluid flows in the longitudinal x-direction, due to a streamwise
optimized geometric shape, for example (longitudinally-displayed
elliptic rods), less exchange in the transversal direction will take
place. Also, for the same porosity or void-to-cell volume ratio,
square, cylindrical and elliptical rods will have a reducing opening
area in the north and south faces of the unit-cell (see Fig. 2a),
reducing them the exchange of energy in the transverse y-direc-
tion. It is also interesting to point out that (Kdis)yy is several order
of magnitude smaller than (Kdis)xx due to the fact that for a macro-
scopically horizontal flow most dispersive transport will be along
the main flow direction. The overall dependence of the transverse
component on the Peclet number was found to be

ðKdisÞyy=kf ¼ 1:55� 10�4Pe0:94
H ð35Þ

Fig. 7b further shows the dependence of (Kdis)yy with the poros-
ity / for the case here investigated, namely the longitudinally-dis-
placed elliptic rods. Results confirm the already observed
insensitivity of the results on the type of boundary condition used.
Dependency on the porosity of the cell is more difficult to access
due to the spread of the results. Nevertheless, a general observa-
tion can be made that by reducing/, via increasing the size of the
ellipses, lower values for (Kdis)yy are obtained, at least for low
PeH. This observation is in line with an argument already used that
the more obstructed the passages are in between cells along y, the
lower the values of (Kdis)yy will be.

Fig. 8 finally shows comparisons between the transverse com-
ponents calculated with ks/kf = 2 [14], where

ðKdisÞyy=kf ¼ 2:29� 10�4Pe0:88
H ð36Þ

with the cases having ks/kf = 10. The comparison shows that the
transverse component is more sensible to the variation of the con-
ductivity ratio than the longitudinal component, In general, for
higher ks/kf ratios, lower (Kdis)yy/kf coefficients were obtained. Such
difference mainly occur for Peclet about 102. In this range of PeH, lit-
tle recirculation was observed behind the rods (not shown here). A
possible explanation for this behavior might be associated with the
temperature deviation values iT existing in the fluid, in each case.
For ks/kf = 2, temperature gradients in the recirculating zones (be-
hind the rods in the x-direction) was larger that those for ks/
kf = 10, which, in turn, were almost negligible. This almost zero
temperature gradient along with the recirculating zone for ks/
kf = 10 reduced the temperature deviations iT, which, from Eq.
(22), reduced the transverse dispersion.
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Fig. 7. Transverse thermal dispersion: (a) /f = 0.60 and (b) overall results.
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Fig. 8. Transverse thermal dispersion comparing between ks/kf = 2 and ks/kf = 10: (a)
Neumann boundary conditions, Fig. 2e; (b) temperature boundary conditions, Fi-
g. 2c, Eq. (25).
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8. Conclusions

Results of thermal dispersion components ðKdisÞxx and (Kdis)yy,
calculated for a periodic porous medium modeled as an infinite ar-
ray of longitudinally-displaced elliptic rods, where presented for
porosity in the range 0.6 < / < 0.9 and thermal conductivity ratio
ks/kf varying from 2 to 10. Two types of boundary conditions were
employed to numerically determine the dispersion coefficients,
namely given temperatures and given heat fluxes. The main find-
ings of this work are

(1) The type of boundary condition has little influence on the
values of (Kdis)xx and only a slight effect on (Kdis)yy because
temperature fields, within the fluid phase, are nearly equal
when the two conditions are applied.

(2) Results of (Kdis)xx are less sensitive to variations on porosity,
/, conductivity ratio, ks/kf, and medium morphology.

(3) Values of (Kdis)yy, instead, showed great sensitivity to med-
ium morphology and the easier the fluid flows through the
bed, permeating in a more streamlined structure (longitudi-
nally-displaced elliptic rods), the lesser the dispersive mech-
anism for exchanging energy along the transversal y-
direction.
(4) Porosity also affects (Kdis)yy by obstructing the opening areas
in the unit cells along the transversal direction, as /
decreases.

(5) Depending on /, a higher conductivity ratio ks/kf reduces
(Kdis)yy for a certain PeH range and in situations where values
of the spatial deviation iT are small, which occurs mainly
within the recirculation regions behind the rods.
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