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Abstract

The literature presents two di�erent methodologies for developing turbulent models for ¯ow in a porous medium.

The ®rst one starts with the macroscopic equations using the extended Darcy±Forchheimer model. The second method

makes use, ®rst, of the Reynolds-averaged equations. These two methodologies lead to distinct set of equations for the

k±e model. The present work details a mathematical model for turbulent ¯ow in porous media following the second

path, or say, space-integrating the equations for turbulent ¯ow in clear ¯uid. In order to account for the porous

structure, an additional term is included in the sources for k and e. A methodology is followed for determining the

additional constant proposed. The equations for the microscopic ¯ow were numerically solved inside a periodic ele-

mentary cell. The porous structure was approximated by an in®nite array of circular rods. The method SIMPLE and a

non-orthogonal boundary-®tted coordinate system were employed. Integrated parameters where compared to the ex-

isting data for fully developed homogeneous ¯ow through porous media. Preliminary results are in agreement with

numerical experiments presented in the literature. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Engineering systems based on ¯uidized bed com-

bustion, enhanced oil reservoir recovery, combustion in

an inert porous matrix, underground spreading of

chemical waste and chemical catalytic reactors are just a

few examples of applications of the study of ¯ow

through porous media. Due to its broad range of ap-

plications in science and industry this interdisciplinary

®eld has gained extensive attention lately. In a broader

sense, the study of porous media embraces ¯uid and

thermal sciences, materials, chemical, geothermal,

petroleum and combustion engineering.

Based on the so-called pore Reynolds number Rep the

literature recognizes distinct ¯ow regimes, namely:

(a) Darcy or creeping ¯ow regime (Rep < 1); (b) Forch-

heimer ¯ow regime (1� 10<Rep < 150); (c) post-Forch-

heimer ¯ow regime (unsteady laminar ¯ow, 150<
Rep < 300); (d) fully turbulent ¯ow (Rep > 300). The

mathematical description of the last regime has given

rise to interesting discussions in the literature and

remains a controversial issue.

For Rep < 150, classical mathematical treatment of

¯ow in porous media [1±7] invokes the notion of a

representative elementary volume (REV) for which

balance equations governing momentum, energy and

mass transfer are written. Models based on this macro-

scopic (volume-averaged) point of view lose details on

the ¯ow pattern inside the REV and, together with ad-

hoc information, give results on global ¯ow character-

istics.

For high Reynolds number �Rep > 300�, however,

turbulence models presented in the literature follow two

di�erent approaches. In the ®rst one [8±10], governing

equations for the mean and turbulent ®elds are obtained

by time-averaging and the volume-averaged equations.

In the second method [11±16], a volume-average oper-

ator is applied to the local time-averaged equation. Or
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say, in the ®rst case, volume-average is taken ®rst and

then time averaging is applied. In the latter method, the

order of averaging is reversed. In the literature, these

two di�erent approaches lead to di�erent governing

equations and, ultimately, to contradicting overall con-

clusions.

Motivated by the foregoing controversy, the objec-

tive of this work is to present a two-equation turbulence

model for ¯ow through a rigid saturated medium. It is

shown that for the macroscopic momentum equation

the order of integration is immaterial in regard to the

®nal expression obtained. Also, the turbulence kinetic

energy (TKE) resulting from application of the two-

averaging operators, following both orders of integra-

tion, are di�erent. The connection between these two

quantities is here discussed upon. Calibration of the

proposed model includes solution of the ¯ow governing

equation within a periodic computational cell. Com-

parisons with similar numerical results in the literature

give support to the modeling ideas herein.

2. The averaging operators

2.1. Local volume-average

The macroscopic governing equation for ¯ow

through a porous substratum can be obtained by volume

averaging the corresponding microscopic equations over

a REV, DV [6, Fig. 1]. For a general ¯uid property, the

intrinsic and volumetric averages are related through the

porosity / as

huii � 1

DVf

Z
DVf

u dV ; huiv � /huii; / � DVf

DV
; �1�

where dVf is the volume of the ¯uid contained in DV .

The property u can then be de®ned as the sum of huii
and a term related to its spatial variation within the

REV, i/, as [5],

u � huii � iu: �2�
From (1) and (2), one derives hiuii � 0. Fig. 1 illus-

trates the idea underlined by Eq. (2) for the value of a

property of vectorial nature (e.g., velocity) in a position x.

The spatial deviation is the di�erence between the real

value (microscopic) and its intrinsic (¯uid-based average)

value.

For deriving the ¯ow governing equations, it is nec-

essary to know the relationship between the volumetric

average of derivatives and the derivatives of the volu-

metric average. These relationships are presented in a

number of works, namely Whitaker [5], Gray and Lee

[17], Slattery, 1967 [18], and others, being known as the

theorem of local volumetric average. They are written

as:

hruiv � r /huiiÿ �� 1

DV

Z
Ai

nu dS; �3�

hr � uiv � r � /huiiÿ �� 1

DV

Z
Ai

n � u dS �4�

and

ou
ot

� �v

� o
ot

/huiiÿ �ÿ 1

DV

Z
Ai

n � �uiu� dS; �5�

where Ai and ui are the interfacial area and velocity of

phase f and n is the unity vector normal to Ai.The area

Ai should not be confused with the surface area sur-

rounding volume DV in Fig. 1. To the interested reader

Nomenclature

ck constant in the extra production term for

k-equation

D rod diameter

H height of periodic cell

k turbulence kinetic energy (TKE), k � u0 � u0=2

hkii intrinsic (¯uid) average for k; hkii � hu0 � u0ii=2

km TKE based on the ¯uctuation of

h�uii; km � hu0ii � hu0ii=2

k/ fully developed value of hkii
K medium permeability

p pressure

Rep pore Reynolds number

ReH Reynolds number based on H
S length of periodic cell, S � 2H
u microscopic velocity vector
�uD Darcy velocity vector

h�uii intrinsic velocity vector

Greek symbols

e dissipation rate of k, e � lru0 : �ru0�T=q
heii intrinsic (¯uid) average for e
e/ fully developed value of heii
DV representative elementary volume (REV)

DVf volume of ¯uid inside DV
u general variable

/ porosity

huii intrinsic (¯uid) average of u
iu spatial deviation from intrinsic average of u
lt/ macroscopic coe�cient of exchange for

porous media

l ¯uid viscosity

rk turbulent Prandtl number for hkii
re turbulent Prandtl number for heii
q ¯uid density
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details on the theorem of local volumetric average can

be found in [5,17,18]. For single-phase ¯ow, phase f is

the ¯uid itself and ui � 0 if the porous substrate is as-

sumed to be ®xed. In developing Eqs. (3)±(5), the only

restriction applied is the independence of DV in relation

to time and space. If the medium is further assumed to

be rigid, then DVf is dependent only on space and also

not time-dependent [17].

2.2. Time-average

The need for considering time ¯uctuations occurs

when turbulence e�ects are of concern. The microscopic

time-averaged equations are obtained from the instan-

taneous microscopic equations. For that, the time-av-

erage value of property, u, associated with the ¯uid is

given as

�u � 1

Dt

Z t�Dt

t
u dt; �6�

where Dt is the integration time interval. The instanta-

neous property u can be de®ned as the sum of the time

average, �u , plus the ¯uctuating component, u0

u � �u� u0 �7�
being u0 � 0.

2.3. Commutative properties

From the de®nition of volume-average (1) and time-

average (6), one can conclude that the time-average of

the volume-average of property u is given by

huiv � 1

Dt

Z t�Dt

t

1

DV

Z
DVf

u dV
� �

dt: �8�

The volume-average of the time-average is

h�uiv � 1

DV

Z
DVf

1

Dt

Z t�Dt

t
u dt

� �
dV : �9�

As mentioned, for a rigid medium, the volume of ¯uid,

DVf , will be dependent only on space and not on time. If

the time interval chosen for temporal averaging, Dt, is

the same for all REV, then the volumetric average

commutes with time-average because both integration

domains in (8) and (9) are independent of each other. In

this case, the order of application of average operators is

immaterial so that Eqs. (8) and (9) will lead to

huiv � h�uiv or huii � h�uii: �10�

2.4. Double decomposition ± space and time ¯uctuations

Fig. 1 shows that for any point located at certain

position x, surrounded by a volume DV , a volume-av-

erage can be de®ned. This value will be di�erent de-

pending on the selected volume DV . Also, for this very

same entity (point x), a time-average can be set, ac-

cording to (6), being sole dependent on the time interval

Dt. Further, from de®nition (1) and (7) one arrives at

huii � 1

DVf

Z
DVf

u dV � 1

DVf

Z
DVf

�u
�
� u0

�
dV

� h�uii � hu0ii �11�

Fig. 1. REV, intrinsic average; space and time ¯uctuations.
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and combining Eqs. (2) and (6) one gets,

�u � 1

Dt

Z t�Dt

t
u dt � 1

Dt

Z t�Dt

t
�huii � iu� dt

� huii � iu: �12�
Further, the space-averaged value huii can also be de-

composed into a time mean and ¯uctuating component

as

huii � huii � huii 0 : �13�
Using now the fact that the averages commute (Eq.

(10)), a comparison of Eqs. (11) and (13) validates the

following relationship

hu0ii � huii 0 �14�
Eq. (14) means that the volume-average of the time

varying component is equal to the time ¯uctuation of the

volume-average. Similarly, if we consider the time-aver-

age component having also a spatial distribution, one

has,

�u � �u
D Ei

� i �u: �15�

Likewise, a comparison between (12) and (15), in light of

(10), gives,

i �u � iu �16�
or, say, the spatial deviation of the time-average quantity

is equal to the time average of the spatial deviation.

Further, since both time and space decompositions

are based on the same value for u, one can promptly

write,

u � huii � iu � �u� u0: �17�
Applying now full double decomposition to all terms on

(17), one gets for u,

u � h�uii � hu0ii|��������{z��������}
uh ii

� i �u� iu0
z����}|����{iu

� uh ii � iu|�����{z�����}
�u

� uh ii 0 � iu0
z�������}|�������{u0

: �18�

Here, it is interesting to note the meaning of the last

term on each side of (18). The ®rst term, iu0, is the time

¯uctuation of the spatial component whereas u0 means the

spatial component of the time varying term. If, however,

one make use of relationships (10), (14) and (16) to

simplify (18), one ®nally concludes,

iu0 � iu0 �19�
and, for simplicity of notation, one can write both su-

perscripts at the same level in the format: iu0.

Taking now the time-average of the ¯uctuating

component, written into the form

u0 � huii 0 � iu0 � hu0ii � iu0 �20�
gives further iu0 � 0. Likewise, volume averaging the

spatial component, written as

iu � i �u� iu0 � iu� iu0 �21�
will result in hiu0ii � 0.

With these ideas in mind, integration of local (mi-

croscopic) ¯ow governing equations applied to the do-

main in Fig. 1 can be more easily treated. In addition,

one can show that the order of integration (space and

time) of these equation is, in fact, immaterial.

3. Mean ¯ow equations

The development to follow assumes single-phase ¯ow

in a saturated, rigid porous medium (DVf independent of

time) for which, in accordance with (10), time-average

operation on variable u commutes with space average.

Application of the double decomposition idea in Eq. (18)

to the term inertia term in the momentum equation

lead to four di�erent terms. Not all these terms are

considered in the same analysis in the literature.

3.1. Continuity

The microscopic continuity equation for an incom-

pressible ¯uid ¯owing in a clean (non-porous) domain is

given by

r � u � 0: �22�
Expanding the velocity ®eld in (22) using the double

decomposition idea of (18) gives,

r � u � r � �h�uii � hu0ii � i�u� iu0� � 0: �23�

Applying both volume-average (4) and time-average (6)±

(23) gives

r � /h�uii
� �

� 0: �24�

For continuity equation, the averaging order is imma-

terial regarding the ®nal result.

3.2. Momentum ± one average operator

The microscopic momentum equation for a ¯uid with

constant properties is given by the Navier±Stokes

equation as

q
ou

ot

�
�r � �uu�

�
� ÿrp � lr2u� qg: �25�
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Its time-average using u � �u� u0 gives

q
o�u

ot

"
�r � ��u�u�

#
� ÿr�p � lr2�u�r � �ÿqu0u0� � qg;

�26�

where the stresses, ÿqu0u0 , are the well-known Reynolds

stresses. On the other hand, the volumetric average of

(25) using the theorem of local volumetric average (Eqs.

(3)±(5)), results in

q
o
ot

/huiiÿ ��
�r � /huuii� ��

� ÿr /hpiiÿ �� lr2 /huiiÿ �� /qg� R; �27�

where

R � l
DV

Z
Ai

n � �ru� dS ÿ 1

DV

Z
Ai

np dS �28�

represents the total drag force per unit volume due to the

presence of the porous matrix, being composed by both

viscous drag and form (pressure) drags. Further, using

(2) to write u � huii � iu in the inertia term,

q
o
ot

/huiiÿ ��
�r � �/huiihuii�

�
� ÿr /hpiiÿ �� lr2 /huiiÿ �ÿr � �/hiuiuii� � /qg� R:

�29�

Hsu and Cheng [19] points that the third term on the

right-hand side of (29), r � /hiuiuiiÿ �
, represents the

hydrodynamic dispersion due to spatial deviations. Note

that Eq. (29) models typical porous media ¯ow for

Rep < 150±200. When extending the analysis to turbu-

lent ¯ow, time varying quantities have to be considered.

3.3. Momentum equation ± two average operators

The set of equations (26) and (29) are used when

treating turbulent ¯ow in clear ¯uid or low Rep porous

media ¯ow, respectively. In each one of those equations

only one averaging operator was applied, either time or

volume, respectively. In this work, an investigation on

the use of both operators are now conducted with the

objective of modeling turbulent ¯ow in porous media.

The volume average of (26) gives for the time mean

¯ow in a porous medium, becomes

q
o
ot

/h�uii
� ��

�r � /h�u�uii
� ��

� ÿr /h�pii
� �

� lr2 /h�uii
� �

�r �
�
ÿ q/hu0u0ii

�
� /qg� �R; �30�

where

�R � l
DV

Z
Ai

n � �r�u� dS ÿ 1

DV

Z
Ai

n�p dS �31�

is the time-averaged total drag force per unit volume

(``body force''), due to solid particles, composed by both

viscous and form (pressure) drags.

Likewise, applying now the time-average operation

to (27), one gets

q
o
ot

/h�u� u0ii
� ��

�r � /h �u� u0
� �

�u� u0
� �

ii
� ��

� ÿr /h�p � p0ii
� �

� lr2 /h�u� u0ii
� �

� /qg� �R:

�32�
Dropping terms containing only one ¯uctuating quan-

tity results in

q
o
ot

/h�uii
� ��

�r � /h�u�uii
� ��

� ÿr /h�pii
� �

� lr2 /h�uii
� �

�r �
�
ÿ q/hu0u0ii

�
� /qg� �R; �33�

where

�R � l
DV

Z
Ai

n � �r��u� u0�� dS ÿ 1

DV

Z
Ai

n��p � p0� dS

� l
DV

Z
Ai

n � �r�u� dS ÿ 1

DV

Z
Ai

n�p dS: �34�

Comparing (30) and (33) one can see that also for the

momentum equation the order of the application of

both averaging operators is immaterial.

It is interesting to emphasize that both views in the

literature use the same ®nal form for the momentum

equation. The term R is modeled by the Darcy±Forch-

heimer (Dupuit) expression after either order of appli-

cation of the average operators. Since both orders of

integration lead to the same equation, namely expression

(31) or (34), there would be no reason for modeling them

in a di�erent form. Had the outcome of both integration

processes been distinct, the use of a di�erent model for

each case would have been consistent. In fact, it has been

pointed out by Pedras and de Lemos [20], that the major

di�erence between those two paths lies in the de®nition

of a suitable turbulent kinetic energy for the ¯ow. Ac-

cordingly, the source of controversies comes from the

inertia term, as seen below.

3.4. Inertia term ± space and time (double) decomposition

Applying the double decomposition idea seen before

for velocity (Eq. (18)), to the inertia term of (25) will

lead to di�erent sets of terms. In the literature, not all of

them are used in the same analysis.
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Starting with time decomposition and applying both

average operators (see Eq. (30)) gives

r � /huuiiÿ � � r � /h��u� u0���u� u0�ii
� �

� r � / h�u�uii
�h

� hu0u0ii
�i
: �35�

Using Eq. (15) to write �u � h�uii � i�u and plugging it into

(35) gives

r � / h�u�uii
�h

� hu0u0ii
�i

� r � f/�h�h�uii � i�u��h�uii � i�u�ii � hu0u0ii�g
� r � f/�h�uiih�uii � hi�ui�uii � hu0u0ii�g: �36�

Now, applying Eq. (20) to write u0 � hu0ii � iu0 and

substituting it into (36) gives

r� /�h�uiih�uii
n

�hi�ui�uii�hu0u0ii�
o

�r� /�h�uiih�uii
n

�hi�ui�uii�h�hu0ii� iu0��hu0ii� iu0�ii�
o

�r� /�h�uiih�uii
n

�hi�ui�uii

�h�hu0iihu0ii�hu0iiiu0 � iu0hu0ii� iu0 iu0�ii�
o

�r� /�h�uiih�uii
n

�hi�ui�uii�hu0iihu0ii

�hhu0ii iu0ii�hiu0hu0iiii�hiu0iu0ii�
o
: �37�

The fourth and ®fth terms on the right-hand side of (37)

contains only one space varying quantity and will vanish

under the application of volume integration. Eq. (37)

will then be reduced to

r � /huuiiÿ � � r � /�h�uiih�uii
n

� hu0iihu0ii

� hi�ui�uii � hiu0 iu0ii�
o
: �38�

Using the equivalence (10), (14) and (16), Eq. (38) can be

further rewritten as

r � /huuiiÿ � � r � /�huiihuii
�

� huii 0 huii 0

� hiuiuii � hiu0iu0ii�
�

�39�

with an interpretation of the terms in (38) given later.

Another route to follow to reach the same results is

to start out with the application of the space decom-

position in the inertia term, as usually done in classical

mathematical treatment of porous media ¯ow analysis.

Then one has [19]

r � /huuiiÿ � � r � �/h�huii � iu� huii � iu�iiÿ �
� r � �/ huiihuii � hiuiuiiÿ ��: �40�

The time-average of the right-hand side of (40), using

Eq. (11) to express huii � h�uii � hu0ii, becomes

r � �/ huiihuii � hiuiuiiÿ ��
� r � /� h�uii � hu0ii

� �
h�uii � hu0ii
� �

� hiuiuii�
� �

� r � /�h�uiih�uii
n

� hu0iihu0ii � hiuiuii�
o
: �41�

With the help of Eq. (21) one can write iu � i�u� iu0

which, inserted into (41), gives,

r � /�h�uiih�uii
n

� hu0iihu0ii � hiuiuii�
o

� r � /�h�uiih�uii
n

� hu0iihu0ii � h�i�u� iu0��i�u� iu0�ii�
o

� r � /�h�uiih�uii
n

� hu0iihu0ii

� hi�ui�u� i�uiu0 � iu0i�u� iu0 iu0ii�
o
: �42�

Application of the time-average operator to the fourth

and ®fth terms on the right-hand side of (42), containing

only one ¯uctuating component, vanishes it. In addition,

remembering that with (14) there is the equivalence

hu0ii � huii 0 , with (10) one can write huii � h�uii and using

(16) one has i�u � iu , Eq. (42) becomes

r� �/ huiihuii�hiuiuiiÿ ��
�r� /�h�uiih�uii|���{z���}

I

8<: �hu0iihu0ii|�����{z�����}
II

�hi�ui�uii|��{z��}
III

�hiu0 iu0ii|���{z���}
IV

�
9=;; �43�

which is the same result of (38).

A physical signi®cance of all four terms on the right-

hand side of (43) can be discussed as: (I) Convective

term of macroscopic mean velocity. (II) Turbulent

(Reynolds) stresses divided by density q due to the

¯uctuating component of the macroscopic velocity. (III)

Dispersion associated with spatial ¯uctuations of mi-

croscopic time mean velocity. Note that this term is also

present in laminar ¯ow, or say, when Rep < 150. (IV)

Turbulent dispersion in a porous medium due to both

time and spatial ¯uctuations of the microscopic velocity.

4. Macroscopic Reynolds stress tensor

For clear ¯uid, the use of the eddy-di�usivity concept

for expressing the stress-rate of strain relationship for

the Reynolds stress appearing in (26) gives,

ÿqu0u0 � lt2
�Dÿ 2

3
qkI; �44�

where �D � �r�u� �r�u�T�=2 is the mean deformation

tensor, k � u0 � u0=2 is the turbulent kinetic energy per
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unit mass and I is the unity tensor. Applying (44) to (26)

gives further

q
o�u

ot

"
�r � �u�u

� �#
� ÿr �p

�
� 2

3
qk
�

� lr2�u�r � lt2
�D

� �
� qg: �45�

In order to obtain an equivalent expression for the

macroscopic Reynolds stress tensor, the volume-aver-

aging operator with respect to DV will be carried out in

both Eqs. (26) and (45). Making use of the theorem of

local volumetric average (Eqs. (3)±(5)), the several terms

in Eqs. (26) and (45) become

o�u

ot

* +v

� o
ot

/h�uii
� �

; �46�

r � �u�u
� �D Ev

� r � /h�u�uii
� �

� 1

DV

Z
Ai

n � �u�u
� �

dS;

�47�

hr�piv � r /h�pii
� �

� 1

DV

Z
Ai

n�p dS; �48�

hr � r�uiv � r � hr�uiv � 1

DV

Z
Ai

n � �r�u� dS � r2 /h�uii
� �

�r � 1

DV

Z
Ai

n�u dS
� �

� 1

DV

Z
Ai

n � �r�u� dS; �49�

hqgiv � /qg: �50�

Eq. (26) has further

hr � u0u0iv � r � /hu0u0ii
� �

� 1

DV

Z
Ai

n � u0u0 dS �51�

and Eq. (45),

r 2

3
qk

� �� �v

� r 2

3
q/hkii

� �
� 2

3

q
DV

Z
Ai

nk dS; �52�

r � lt2
�D

� �D Ev
�r � lt/ 2h�Div

� �
� 1

DV

Z
Ai

n � lt2
�D

� �
dS;

�53�
where

lt/h�Div � hlt
�Div �54�

and

h�Div � 1

2
hr�u� �r�u�Tiv

� 1

2
r /h�uii
� �h�

� �r /h�uii
� �

�T
i

� 1

DV

Z
Ai

�n�u� �n�u�T� dS
�
: �55�

Noting that at the interface, Ai; �u � u0u0 � lt � k � 0 an

equation for the macroscopic momentum equation for

turbulent ¯ow in porous media based on (26) is,

q
o
ot

/h�uii
� ��

�r � /h�u�uii
� ��

� ÿr /h�pii
� �

� lr2 /h�uii
� �

�r �
�
ÿ q/hu0u0ii

�
� /qg� �R �56�

and based on (45),

q
o
ot

/h�uii
� ��

�r � /h�u�uii
� ��

� ÿr /h�pii
�

� 2

3
/qhkii

�
� lr2 /h�uii

� �
�r � �lt/ 2h�Div� � /qg� �R; �57�

where �R is given by (31). Further, the term ÿq/hu0u0ii in

(56) is the macroscopic Reynolds stress tensor and the

deformation tensor in (57) reads,

h�Div � 1

2
r /h�uii
� ��

� r /h�uii
� �h iT

�
: �58�

Comparing now Eqs. (56) and (57), a proposal for the

macroscopic Reynolds stress tensor can be made as

ÿq/hu0u0ii � lt/ 2h�Div ÿ 2

3
/qhkiiI �59�

which is similar to the eddy-di�usivity for microscopic

¯ow embodied in Eq. (44). Note, however, that the co-

e�cient lt/ appearing in (59) is de®ned according to (54)

and is not necessarily the same coe�cient appearing for

clear ¯uid ¯ow used in (44). In this work, for simplicity,

an expression of the type lt/ � qclhkii
2

=heii was made

use of.

The macroscopic Reynolds stresses tensor of Eq. (30),

modeled herein by (59), can be further expanded with

the help of u0 � hu0ii � iu0 as

ÿq/hu0u0ii � ÿq/ hu0iihu0ii
h

� hiu0 iu0ii
i
: �60�

The ®rst term on the right-hand side is associated

with time ¯uctuations of the macroscopic mean velocity

whereas the second one represents the turbulent dis-

persion in porous medium due to both time and spatial

¯uctuations of the microscopic velocity (see term (IV) in

(43)). Recent turbulence models presented in literature

[8±10] do not consider the second term on the right-hand

side of (60).

Also interesting to note is the intrinsic (¯uid) average

for k given here as hkii and appearing for the ®rst time in

(52). The kinetic energy used in [8±10] di�ers from hkii
and is given by km � hu0iihu0ii=2 . Recently, Pedras and

M.H.J. Pedras, M.J.S. de Lemos / International Journal of Heat and Mass Transfer 44 (2001) 1081±1093 1087



de Lemos [21] have shown the relationship between

these two quantities as being

hkii � hu0 � u0ii=2 � hu0ii � hu0ii=2� hiu0 � iu0ii=2

� km � hiu0 � iu0ii=2: �61�
The last term on the right-hand side of (61) is the

extra turbulent kinetic energy obtained by adding up

elements of the main diagonal of term (IV) in Eq. (43).

As seen, models based on km do not account for all of the

turbulent kinetic energy associated with the ¯ow.

5. The ke equations for porous media

5.1. Model equation for hkii

An equation for the intrinsic average for the TKE,

hkii, is obtained by applying the volume-average oper-

ator (1) to the transport equation for k. An equation for

k, in turn, can be readily obtained in a number of works

in the literature (e.g., [22]) as

q
ok
ot

�
�r � ��uk�

�
� ÿqr � u0

p0

q
� k

� �� �
� lr2k ÿ qu0u0 : r�uÿ qe; �62�

where e � lru0 : �ru0�T=q is the dissipation rate of k
(this interpretation given to e being strictly correct only

for isotropic turbulence). Noting that the Laplacian of k
in Eq. (62) can be rewritten as

r � rk � 1

2
r � r�u0 � u0� � r � u0 � �ru0�T

h i
: �63�

and taking the volumetric average of (62) with respect to

DV , one has for individual terms:

ok
ot

� �v

� o
ot

/hkiiÿ �
; �64�

hr � ��uk�iv � r � /h�ukii
� �

� 1

DV

Z
Ai

n � ��uk� dS; �65�

r � u0
p 0

q
� k

� �� �* +v

�r� / u0
p 0

q
� k

� �* +i( )

� 1

DV

Z
Ai

n � u0
p 0

q
� k

� �� �
dS; �66�

hr2kiv� r��u0 ��ru0�T�
D Ev

�r� �u0 ��ru0�T�
D Ev

� 1

DV

Z
Ai

n��u0 ��ru0�T�dS

�r�hrkiv� 1

DV

Z
Ai

n��u0 ��ru0�T�dS

�r2 /hkiiÿ ��r � 1

DV

Z
Ai

nk dS
� �

� 1

DV

Z
Ai

n � �u0 � �ru0�T� dS; �67�

qhu0u0 : r�uiv � q/hu0u0 : r�uii; �68�

qheiv � q/heii: �69�

Noting further that at interface Ai; �u � u0 � k � 0, a

transport hkii equation for becomes

q
o
ot

/hkiiÿ ��
�r � /h�ukii

� ��
� ÿqr � / u0

p0

q
� k

� �* +i( )
� lr2 /hkiiÿ �

ÿ q/hu0u0 : r�uii ÿ q/heii: �70�

5.1.1. Turbulent di�usion

The ®rst term on the right-hand side of (70) repre-

sents the turbulent di�usion of /hkii due to pressure

¯uctuations. This term is usually modeled in the litera-

ture by a gradient di�usion like expression as

ÿqr � / u0
p0

q
� k

� �* +i( )
� qr � lt/

qrk
r /hkiiÿ �� �

:

�71�

5.1.2. Dispersion and production

The second term on the right-hand side of (70) can be

expanded as

r � /h�ukii
� �

� r � / h�uiihkii
�h

� hi�uikii
�i
: �72�

The ®rst term on the right-hand side of (72) is the con-

vection of hkii due to the macroscopic velocity whereas

the second one is the convective transport due to spatial

deviations of both k and u. Likewise, the produc-

tion term on the right-hand side of (70) can be expanded

as

ÿq/hu0u0 :r�uii �ÿq/�hu0u0ii : hr�uii� hi�u0u0� : i�r�u�ii�:
�73�

Similarly, the ®rst term on the right-hand side of (73) is

the production of hkii due to the mean macroscopic ¯ow

and the second one is the hkii production associated with

spatial deviations of ¯ow quantities k and u.

The extra terms appearing in Eqs. (72) and (73), re-

spectively, represent extra transport/production of hkii
due to the presence of solid material inside the integra-

tion volume. They should be null for the limiting case of

clear ¯uid ¯ow, or say, when /! 1) K !1 . Also,
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they should be proportional to the macroscopic velocity

and to hkii itself.

In this work, a proposal for those two extra trans-

port/production rates of hkii is given as

r � /hi�uikii
� �

ÿ q/hi�u0u0� : i�r�u�ii � ckq/
hkiij�uDj����

K
p ;

�74�

where ck is a non-dimensional constant. Using further

the Dupuit±Forchheimer relationship uD � /huii and

the model in Eq. (74), the transport equation for hkii
becomes

q
o
ot

/hkiiÿ ��
�r � �uDhkii

� ��
� r � l

��
� lt/

rk

�
r /hkiiÿ ��ÿ q/hu0u0ii : r�uD

� ckq/
hkiij�uDj����

K
p ÿ q/heii; �75�

where qhu0u0ii is given by (59) and rk is an empirical

constant.

As seen, in the present work the in¯uence of the

porous matrix on the level of hkii is considered by

Eq. (74). As also mentioned, in the limiting case of clear

¯ow (/! 1) K !1) this extra generation rate

added to (75) should vanish. Under this condition, hkii
should resemble k and the transport equation for the

turbulent kinetic energy in clear ¯uid should be recov-

ered. Also, the extra term included in Eq. (75) deter-

mines the rate of production of hkii due to the presence

of a porous matrix. For a ®xed value of the Darcy

velocity uD through a porous bed, the amount of me-

chanical energy converted into turbulence should de-

pend on the medium properties. For the limiting case of

high porosity and permeability media (/! 1)
K !1), and for one-dimensional, fully developed ¯ow

with a ¯at velocity pro®le, no fraction of this available

mechanical energy is expected to generate turbulence.

The ¯ow, in this situation, behaves like clear ¯uid ¯ow.

Consequently, no turbulence is generated and hkii, if

existing at inlet, decays to zero along the ¯ow. As the

¯ow resistance increases, by increasing /=
����
K
p

, gradients

of local u within the pore will contribute to increasing

hkii. The proposed form for this extra production term,

given here by (74), is consistent with this expected be-

havior for hkii.

5.2. Model equation for heii

In a similar manner, a transport equation for hkii is

obtained by applying the volume-average operator (1),

to a transport equation of the form [23]

q
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oxk
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oxl
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� l

o2e
oxloxl

: �76�

The volumetric average of (76) with respect to DV gives

for each term:
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l
o2e

oxloxl

� �v

� / l
o2e

oxloxl

� �i

: �83�

Again, noting that at the interface, Ai; u � 0, an equa-

tion for can be expressed as
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Eq. (84) is composed by terms considering local rate

of change, convection, dispersion, di�usion (molecular

plus turbulent) and generation/destruction rates of heii.
Making use of the Dupuit±Forchheimer relationship,

uD � /huii , a model for it can be proposed as

q
o
ot

/heiiÿ ��
�r � �uDheii

� ��
� r � l

��
� lt/

re

�
r /heiiÿ ��� c1e�ÿqhu0u0ii

: r�uD� hei
i

hkii � c2eq/ ck
heiij�uDj����

K
p

(
ÿ hei

i2

hkii
)
; �85�

where re; c1e and c2e are constants. As with the case of

hkii, the overall dissipation rate of heii, the last term on

the right-hand side of (85), contains an additional factor

that is dependent on the porous substrate. This ad-

ditional term vanishes for the limiting case of clear ¯uid

(/! 1 �> K !1). In addition, for macroscopic fully

developed uni-dimensional ¯ow in isotropic and homo-

geneous media, the production rate of heii will be solely

due to spatial deviations within the REV and will be

totally dissipated within the same domain. These ideas

are used below when determining a numerical value for

the introduced constant ck .

6. Results and discussion

6.1. Microscopic computations

The equations for the microscopic ¯ow were nu-

merically solved inside the elementary cell of Fig. 2 using

the computational grid presented in Fig. 2. This geom-

etry was used in order to represent the porous matrix as

an in®nite periodic array. The Reynolds number ReH

based on the cell height H was varied from nearly 0.35

(creeping ¯ow) to 1:2� 106 (fully turbulent regime). A

version of the k±e model for low Re ¯ow was also in-

corporated in the code developed, following the

damping functions presented by Abe et al. [24]. The non-

orthogonal grid was based on a generalized coordinate

system, leading to irregular control-volumes in a total of

150� 100 for the high Re model and 300� 200 for the

low Re cases. For ReH � 1:2� 105, both k±e models were

calculated for comparison.

The numerical method SIMPLE was employed for

relaxing the mean and turbulence equations within the

domain [25]. The dimensions of the periodic cell for the

cases considered in this work were H � 0:1 m; S � 2H ;
D � 0:03 m �/ � 0:8�; 0:05 m �/ � 0:6� and 0:06 m

�/ � 0:4�. The solutions were grid-independent and all

normalized residuals were brought down to 10ÿ5. Also,

relaxation parameters for all variables (u; p; k; e) were

kept equal to 0.8. A summary of all relevant parameters

is presented in Table 1. Overall pressure drop for a large

range of ReH compared with results of Kuwahara et al.

[12] is presented in Fig. 3. Results obtained for laminar

¯ow and for both turbulence models used (low and high

Re forms) agreed well with published numerical data.

Slight lower pressure drop values shown in Fig. 3 for

large values of ReH could be due to the fact that in

Kuwahara et al. [12] the porous structure was simulated

by an in®nite array of square rods instead of cylinders as

here analyzed. Flow past cylinders presents smother ¯ow

pattern, eventually implying in lower pressure drag for

larger Reynolds numbers.

7. Constant ck for the macroscopic model

The constant ck introduced in Eq. (74) must be de-

termined for closure of the macroscopic mathematical

model proposed. In this work, a methodology was de-

vised in order to obtain such value. Accordingly, the

need of computing the ®ne ¯ow properties in order to

Fig. 2. Model of REV periodic cell and elliptically generated

grid.
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obtain the volume-integrated quantities has motivated

the development of adequate numerical tools. As men-

tioned, those calculations were needed for adjusting the

model and considered either the high Re k±e closure [26]

as well as the low Reynolds version of it [27]. Heat

transfer analysis was also the subject of additional re-

search [28]. One of the outcomes of this development

was the ability to treat hybrid computational domains

with a single numerical tool [29,30]. Major results from

such methodology are presented below.

For macroscopic fully developed uni-dimensional

¯ow in isotropic and homogeneous media the limiting

values for hkii and heii in the additional terms introduced

in equations and are given the values k/ and e/, re-

spectively. In this limiting condition, Eqs. (75) and (85)

will reduce to

heii � ck
hkiij�uDj����

K
p and

heii2

hkii � ck
heiij�uDj����

K
p : �86�

Using then the limiting cases k/ and e/, both Eqs. (86)

can be combined into the non-dimensional form,

e/

����
K
p

�uD

��� ���3 � ck
k/

�uD

��� ���2 : �87�

The permeability used in Eq. (87) was calculated by

solving the ¯ow equations inside the grid of Fig. 2, for

the Darcy regime (creeping ¯ow, ReH < 1), and also by

using the expression proposed in [12] of the form

K � /3

144 1ÿ /� �2 D2: �88�

The ®rst value was given the name Kcalc and was ob-

tained by calculating the macroscopic pressure gradient

across the periodic cell and applying it to the standard

Darcy law of ¯ow. For di�erent porosity /, a compar-

ison with values from Eq. (88) is presented in Table 2.

In order to obtain ck , the microscopic computations

described above for di�erent porosity and ReH were used

to calculate the corresponding limiting values k/ and e/

(see Table 1). Once these intrinsic values were obtained,

they were plugged into Eq. (87) with the permeability

calculated by (88) (see Table 2). The value of ck equal to

0.28 was found by noting the collapse of all data into the

straight line shown in Fig. 4.

8. Macroscopic model results

Once the constant ck is determined, calculation using

the macroscopic turbulence model here presented can be

achieved. A test case consisting in calculating a domain

of length 10H starting with a pre-selected initial con-

ditions greater than the ®nal asymptotic values is now

carried out. Similar test results were reported by Na-

kayama and Kuwahara [15] being the values at entrance

hkii � 10k/ and heii � 30e/. Figs. 5 and 6 show results of

Table 2

Permeability for periodic cell of Fig. 2

/ �uD (m/s) ReH K (Eq. (88), m2) Kcalc �m2�
0.80 5.76Eÿ06 3.88Eÿ01 2.34Eÿ04 1.97Eÿ04

0.60 5.54Eÿ06 3.70Eÿ01 4.84Eÿ05 4.45Eÿ05

0.40 5.30Eÿ06 3.54Eÿ01 9.44Eÿ06 5.22Eÿ06

Table 1

Parameters for microscopic computations (velocities in m/s)

/ � 0:4 / � 0:6 / � 0:8 Turbulence

ReH uD huii uD huii uD huii model

1.20E�01 1.80Eÿ04 4.50Eÿ04 1.79Eÿ04 2.99Eÿ04 1.79Eÿ04 2.24Eÿ04 Laminar

1.20E�04 1.80Eÿ01 4.50Eÿ01 1.79Eÿ01 2.99Eÿ01 1.79Eÿ01 2.24Eÿ01 Low Re

1.20E�05 1.80E�00 4.50E�00 1.79E�00 2.99E�00 1.79E�00 2.24E�00 Low Re

1.20E�05 1.80E�00 4.50E�00 1.79E�00 2.99E�00 1.79E�00 2.24E�00 High Re

1.20E�06 1.80E�01 4.50E�01 1.79E�01 2.99E�01 1.79E�01 2.24E�01 High Re

Fig. 3. Overall pressure drop as a function of ReH for the cell of

Fig. 2.
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the macroscopic model for hkii and heii along the ¯ow

development. Results are compared with computation

presented in [15]. It is interesting to observe that in [15]

the medium was modeled as an array of square rods

which could account for the larger values for hkii during

¯ow development in contrast with the somewhat

``smoother'' ¯ow around circular cylinder. In this former

case, generation of turbulence past sharp corners along

the ¯ow would tend to increase overall levels of turbu-

lent kinetic energy. Nevertheless, axial decay is nearly

the same in both cases giving support to the model here

presented.

9. Conclusions

The two point of views presented in the literature

with proposals for turbulence models in porous media

were observed. It was proved that for the mean ¯ow

®eld, the order of application of both time and volume

averaging operators is immaterial in regard to the ®nal

set of equations obtained.

A proposal for a macroscopic turbulence model

based on volume integration of clear ¯uid equations was

carried out. Additional terms accounting for the pres-

ence of the solid matrix were introduced along with an

additional constant to be determined.

The methodology followed for determining the in-

troduced constant ck consisted in solving the clear ¯uid

equations within a periodic cell. Integrated parameters

considering di�erent porosity and Reynolds number

were used to establish the value of the proposed con-

stant. Simulation of the ¯ow in the entrance region of

homogeneous isotropic porous medium was compared

with numerical results in the recent literature and agreed

well with published numerical data.
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