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Abstract

The present work investigates the dficiency of the multigrid method when applied to
solve laminar flow in a two-dimensional tank filled with a porous material. The
numerical method includes finite volume discretization with the upwind scheme on
structure orthogonal regular meshes. Linearization o the source term, which consists of
viscous and form drags, increases the stiffness of the algebraic equation set. Performance
of the rrection storage (CS) multigrid algorithm is compared for different numbers of
swegs in each grid lewvel. Up to four grids, for both multigrid V- and W- cycles, are
considered. Effects of medium permeability and paosity on converged rates are
presented. Results indicate that V-cydes perform dightly better in reducing the required
computational effort and that the higher the permeability and the lower the porosity,
faster solutions are obtained.

1. Introduction

Due to the growing applicability of porous media in many fields of engineeaing and
science, such as petroleum extraction and processing, heat exchangers, filtration,
combustionin paous matrices, electronic devices coding, to mention orly afew, a good
understanding of transport processes in such mediais desirable.

Recently, turbulent flow [Pedras & de Lemos (200Q 2001a-c, 2003), Silva & de Lemos
(2003), de Lemos (2005], heat [Rocamora & de Lemos (2000, Braga & de Lemos
(2009, de Lemos & Braga (2003] and mass transfer [de Lemos & Mesqguita (2003), de
Lemos & Tofandi (2004)] in porous media has received much attention in the recent
literature so that a growing demand for efficient computational schemes for flows trough
permeable structures is under way. In addition, laminar flow [Silva & de Lemos (20030]
and heat transfer [Saito & de Lemos (2005)] in such media have also been considered. As
such, a systematic evaluation d the efficiency of single-grid couded numerical schemes
[de Lemos (2000, 2003-b)] and multigrid segregated solutions [Rabi & de Lemos (2001,
2003, Mesguita & de Lemos (2004] have been oltained with aim of providing
recommendations concerning the performance of such convergence acceleration methodks.
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These two numerical artifices for solution speed-up, namely block-solvers and multigrid
methods, have been used simultaneously in Vanka (1986. The research effort here is
being conducted with the purpose of evaluating them in separate. More specifically, in
this work the multigrid methodis under focus.

In regard to the use of multigrid schemes, the focus of the present work, is advantages
are based onthe following arguments. In most iterative numerical solutions, convergence
rates of single-grid calculations are gredest in the beginning of the process, slowing down
as the iterative process goes on. Effects like those get more pronourced as the grid
becomes finer. Large grid sizes, however, are often needed when resolving small
recirculating regions or detecting high heat transfer spots. The reason for this hard-to-
converge behavior is that iterative methods can efficiently smooth ou only thase Fourier
error comporents of wavelengths snaller than or comparable to the grid size. In contrast,
Multigrid methods aim to cover a broader range of wavelengths through relaxation on
more than ore grid. The number of iterations and convergence criterion in each step along
consecutive grid levels visited by the algorithm determines the gycling strategy, usually a
V- or W-cycle. Within each cycle, the intermediate solution is relaxed before (pre-) and
after (post-smoothing) the transportation o values to coarser (restriction) or to finer
(prolongation) grids [Brandt (1977), Stuben & Trottenberg (1982), Hackbusch (1985),
Sathyamurthy & Patankar (1994, Thompson & Ferziger (1989)].

Accordingly, Multigrid methods can be rougHy classified into two major categories. In
the CS formulation algebraic equations are solved for the rrections of the variables
whereas, in the full approximation storage (FAS) scheme, the variables themselves are
handed in all grid levels. It has been pdnted ou in the literature that the application o
the CS formulation is recommended for the solution d linear problems being the FAS
formulation more suitable to nonlinear cases [Brandt (1977, Stiben & Trottenberg
(1982, Hackbusch (1985]. An exception to this rule seems to be the work of Jiang, et a
(2991, who reported predictions for the Navier-Stokes equations successfully applying
the Multigrid CS formulation. In the literature, however, not too many attempts in solving
nortlinear problems with Multigrid linear operators are found

Acknowledging the alvantages of using multiple grids, Rabi & de Lemos (1998&)
presented numerical computations applying this technique to recirculating flows in
several geometries of engineering interest. There, the correction storage (CS) formulation
was applied to nonlinear problems. Later, Rabi & de Lemos (19981, anayzed the effed
of Peclet number and the use of different solution cycles when solving the temperature
field within flows with a given velocity distribution. In all those cases, the advantages in
using more than ore grid in iterative solution was confirmed, furthermore, de Lemos &
Mesqguita (1999, introduced the solution d the energy equation in their Multigrid
algorithm. Temperature distribution was caculated solving the whole equation set
together with the flow field as well as uncouding the momentum and energy equations. A
study on opimal relaxation parameters was there reported. More recently Mesguita & de
Lemos (2000-b) analyzed the influence of the increase of paints of the mesh and ogimal
values of the parameters of the Multigrid cycle for different geometries. Additionaly,
Rabi & de Lemos (2001, 2003, presented a study on optimal convergence characteristics
in solution d conductive-convective problems.

Justification for the present contribution lies on the fact that most works on multigrid
methodology deals with unolstructed flows rather than flow through permeable matrices.
There seans then to be alack in the literature of pulished material covering how a
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multigrid solution kehaves as a function d porous media properties such as permeability
and porosity. As such, the present contribution extends the early work on CS Multigrid
methods for clear (unobstructed) domains to the solution d flow in paous media. More
specificdly, steady-state laminar flow in a tank totally filled with paous materia is
calculated with up to 4 grids. A schematic of such configurationsis iow in Figure 1.
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Figure 1. Geometry and bourdary condtions

2. Governing Equations and Numerics

A maaoscopic form of the governing equations is obtained by taking the volumetric
average of the entire equation set. In this development, the porous medium is considered
to be rigid, undeformable and saturated by an incompressble fluid.

The microscopic continuity equation for the fluid phase is given by:

Omw=0 1

Applying the volume-average operator to equation (1), one has (see Pedras & de
Lemos (2007) for details),

O, =0 )

The Dupuit-Forchheimer relationship, u, = ¢ WL, has been used were the operator “ <
> identifies the intrinsic (liquid volume based) average of u, [Bear (1972, Gray & Lee

(1977]. Equation (2) represents the macroscopic oontinuity equation for an
incompressblefluid in arigid paous medium.

The microscopic Navier-Stokes equation for an incompressible fluid with constant
properties can be written as,

p0(uu) =-Op+ ud2u (©)
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Hsu & Cheng (1990 have applied the volume averaging procedure to equation (3)
obtaining,

O(pemull) = ~O(pp0) + u0?(eul) + R (4)
where
R=-H (n(0mw)dS-—1 (npds (5)
AV ! AV !

The term R represents the total drag per unit volume acting on the fluid by the action d
the porous dructure. A common model for it is known as the Darcy-Forchheimer
extended model andis given by:

aﬁo CF (PP|UD|UD
——F— C (6)
VK¢

where the @nstant ¢ is known in the literature as the nonlinear Forchheimer
coefficient, taken as 0.55in al simulations for flow in paous media shown below. Is also
important to clarify that c- is a model constant and that it was not the objective of this
work to investigate its influence on multigrid performance.

Then, making use of the expression u, = @ [0, equation (4) can be rewritten as,

g sty o

C

3. Numerical Model

The solution damain is divide into a number of rectangular control volumes (CV),
resulting in a structure orthogoral non-uniform mesh. Grid points are locate according to
a cél-centered scheme and velocities are store in a collocated arrangement (see Patankar
& Spalding (1972 and Patankar (1980) for details on the CV method). A typical CV with
itsmain dmensions and internodal distances is sketched in Figure 2

Writing equations (2) and (7) in terms of ageneral variable ¢

%@Mb_ BJrc?yéo 0Ty Oy ?

where ¢ stands for U and V (see details in Rabi & de Lemos (2001, 2003)). Integrating
the equation (8) over the mntrol volume of Figure 2,

J;EF (pUg)+ pv¢ E}Iv J;EED"’ axm GyE ‘x v [Sv 9)
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Figure 2: Control Volume for discretization

Integration d the threetermsin (9), namely: convection, diffusion and source, lead to a
set of algebraic equations. These practices are described elsewhere (e.g. Patankar (1980))
and for this reason they not repeated here. In summary, convective terms are discretized
using the upwind dfferencing scheme (UDYS), diffusive fluxes make use of the central
diff erencing scheme.

Substitution d all approximate expressions for interface values and gradients into the
integrated transport equation (9), gives the final discretization equation for grid node P

a'P¢P =aE¢’E +aW¢W +aN¢N +aS¢S+b (10)
with the east face efficient, for example, being define &
ag = ma>{— Ce,0]+ D, (11

In (11), D, = pd,/Ax, and C, =(pU),d, are the diffusive and convective fluxes at

the CV east face, respectively, and, as usua, the operator max[a,b] returns the greater
betweena and b

4. Multigrid Technique

Assembling equation (10) for each control volume of Figure 2 in the domain of Figure 1
defines alinear algebraic equation system of the form,

AT, =b, (12
where Ay is the matrix of coefficients, Tk is the vector of unknowns and by is the vector

accommodating source and extra terms. Subscript “k” refers to the grid level, with k=1
correspondng to the aarsest grid and k=M to the finest mesh.
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It is important to emphasize that the dgebraic eguation system (12) is nonlinear in
nature and that the most appropriated multigrid method for solving it, according to the
literature, is the so called full approximation storage (FAS) formulation. However, the
correction storage (CS) method can aso be used to relax al variables if appropriate
linearizetion d the entire equation set is applied (see Jiang, et a (1991), Rabi & de
Lemos (2001, 2003), Mesquita & de Lemos (2004 for details).

As mentioned, Multigrid is here implemented in a correction storage formulation (CS)

in which ore seeks coarse grid approximations for the wrrection defined as 3, =T, - T,
where T, is an intermediate value resulting from a small number of iterations applied to

(12). For alinea problem, one shows that ok is the solution d [Brandt (1977), Stilben &
Trottenberg (1982), Hackbusch (1985)],

Ad, =1, (13
where the residue is defined as

ro =b. — AT, (14)
Eq. (10) can be goproximated by means of a warse-grid equation,

A =Ty (15

with the restriction ogerator | ™ used to obtain
Mea = LT (16)

The residue restriction is accomplished by summing up the residues correspondng to
the four fine grid control volumes that compose the coarse grid cell. Thus, equation (16)
can be rewritten as,

0o 4L, i+ i+1j+1
N =ho o +no +1 (17)

Diffusive and convection coefficients in matrix Ax need aso to be evaluated when
changing gid level. Diffusive terms are recalculated since they depend upon eighbar
grid nock distances whereas coarse grid massfluxes (convective terms) are simply added
up at control volume faces. This operation is commonly found in the literature (Peric et
al. (198%), Peric, et d (19891, Hortmann et al (1990).

Once the marse grid approximation for the correction J,_, has been calculated, the

prolongation operator 1/, takesit back to the fine grid as

O = 10y (18)
In order to update the intermediate value
T, =T, +J, (19

Figure 3 illustrates a 4-grid iteration scheme for both the V- and W-cycles where the
different operations are: s=smocthing, r=restriction, cg=coarsest grid iteration and
p=prolongation. Also, the number of domain sweeps before and after grid change is
denoted by v and v ™, respectively. In addition, at the coarsest k level (k=1), the grid
is swept v times by the eror smoothing operator.
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Figure 3: Sequence of operations in a4-grid iteration scheme: a) V-cycle, b) W-cycle.

4. Results and Discussion

The computer code developed was run ona IBM PC madiine with a processor AMD
Athlon 1.3GHz. Grid independence studies were @ndwcted such that the solutions
presented herein are essentially grid independent. For both cycles, pre- and post-
smoathing iterations were accomplished via the Gauss-Seidel algorithm while, at the
coarsest-grid, the TDMA method es been applied (Patankar (1980). Also, the geometry
of Figure 1 was run with the finest grid having sizes of 66x66 grid padnts.

At a certain grid level, error smoothing operations were applied to all variables before
the grid was changed. Relaxation parameters equal to 0.8, 0.8 e 0.6 were gplied to the U,
V and P equations, respectively. The sweeping strategy through all variables in the V- and
W-cycles considered v =y =2 sweeps for both pre-, and post-smoathing iterations.
At the coarsest grid, three iterations were gplied, or say, v=3. Studies identifying
optima numbers for the pre- and post-sweeps can be fourd in Rabi & de Lemos (2001)
and, Mesguita & de Lemos (2004).

With the aim of checking the accuracy of the numerical solution, after implementation
of porous media model, the limiting case of flow in clear fluid was smulated by setting ¢
=0.998 K = 1 x10° m? and c¢ = 0. Figure 4 shows velocity profiles at the exit of the
tank. The figure indicates that the solution with the porous model reproduces the clear
flow situation when appropriate parameters are used.

The residue of equation (9) is normalized and calculated according to

R, = \/275? (20)
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with R, =a.U, - (Z a,U,,) where subscript ij identifies a given control volume on the

finest grid and nb refers to its neighboring control volumes.

0.08
Flow in a Tank Filled with Porous Material
i —}— Clear Fluid
—— Porous Medium
0.06 —
Up (m/s) 0.04 —
0.02 —
o b B4
0 0.1 0.6

Figure 4: Velocity profiles at the exit of atank for porous medium with c- =0.0, ¢=0.998
and K=1x10" m?

Figure 5, shows the residue history for velocity comporent U, for Rein = 300 upto 4
grids, for the V- and W-cycles. Reduction d the necessary computational time for solving
the governing equations for flow in paous mediais seen in the figures. For four grids, a
slight advantage in using the V-cycle is observed in Fig. 5. For recirculating flows, the
better performance of W-cycles over other sweeping strategies is documented in the
literature [Jiang, et a (1991), Rabi & de Lemos (2001, 2003, Mesguita & de Lemos
(2004)]. There, spending more time per cycle in coarser grids (see Figure 3) helps in
smocthing aut low frequency errors, which could be a<ciated with the numerical
resolution d recirculatory fluid motion. However, for flow in paous media and for the
conditions here analyzed, cycling in between the grids with equal time spending per grid
(V-cycle) seems to be dightly more econamical, supposedly due to the fad that strong
recirculating motionis usually absent due to the damping action d the porous matrix.
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Figure5: Residue history of U velocity comporent, Re,, = 300 @) V-cycle; b) W-cycle.
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Figures 6, 7, and 8 and show the effect of permeability K on convergence rates for
Rein = 300, 600 and 900, respectively. The lower the permeability, more sowly the
solution converges. A possible explanation for this behavior is based on numerical
reasons, as follows.

Flow in a Tank Filled with Porous Material
Porosity = 0.6, M =4, V-Cycle, Re,, = 300
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Figure 6: Effect of permeability K onresidue history for 4-grids, Re, =300, ¢ =0.6

Inspecting equation (7) one Gan note that the two drag terms are dependent on the
Darcy velocity u, and, as such, one could take advantage, during the discretization

process of a linearization of the source term (see Patankar (1980). One @an also nde
that asthe value of K deaeases, the relative importance of the two drag terms in equation
7 becomes greater. The Darcy-Forchheimer extended model in equation (5) is a
representation d the viscous and form drags of equation (6), which are associated with
the alditional forces exerted by the porous matrix on the fluid phese (see Pedras & de
Lemos (2001) for details). In the discretizaion process here followed, which originated
equation (10), linearization d the source term was accomplished in the form

.
(211
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Flow in a Tank Filled with Porous Material
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Figure 7: Effect of permeability K onresidue history for 4-grids, Re, = 600, ¢ = 0.6

giving rise to the main coefficient,

%=%%-& (22)

For eadh grid level k, coefficient a» composes the main diagoral of A¢ on the right of
equation (12). Excessvely lower values of K cause larger values of ap leading to a matrix
A« with main dagonal dominance. The “stiffness’ of the algebraic system is then largely
increased leading eventualy to dfficulties in adieving convergence In this work,
equation (21) was applied and incluson d R (equation (5)) in the main coefficient ap
reduced the cnvergence rates for lower K values, as observed in Figures 6 to 8.

The effect of the medium porosity ¢ onthe residue reduction rate, for Re, = 300 is
presented in Figure 9 for multigrid methodologies. For larger values of the porosity the
stiffnessof the algebraic system is also enhanced, as can be observed in equation (21). An
increase in ¢ will yield a larger negative value for S,, aso increasing the main diagonal
of Ax and, ultimately, implyingin slower convergence rates.
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Flow in a Tank Filled with Porous Material
Porosity = 0.6, V-Cycle,M =4, Re,, =900
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Figure 8: Effect of permeability K onresidue history for 4-grids, Re, =900, ¢ = 0.6

5. Conclusions

This work has numerically solved the flow governing equation for the geometry of atank
completely field with a porous material. The multigrid technique has been used for
increasing convergence rates. Linearization d the source term composed by the Darcy-
Forcheimer extended model promoted the stability of the algebraic equation system. The
results have shown that aso for the porous medium model the use of more than ore
numericd grid is beneficia for reducing the computing time. Also, an increase in the
permeability of the medium makes the system of equations less stiff and closer to the
modeling of clear flow. Increasing the porosity of the medium, while keeping all other
variables fixed, aso reflected the enhancement of the numerical stability of the equation
set. As a consequence, numerical solutions required more cmputational time.
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Figure 9: Effect porosity g onresidue history for 4 grids, Re,, = 300, K =8.00 x 10°> m?.
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Ly Domain height

M Maximum grid number

p  Thermodynamic pressure

Pe  Peclet Number

Pr  Prandtl Number

R  Tota drag per unit volume

Re Reyndds Number

R; Residue

S Sourcetermfor ¢, ¢ = UV, p

u  Microscopic (local) velocity vector

u, Darcy velocity vedor (volume averageover u ), Uy = @ w0
@O Intrinsic (fluid) average of u

pC Intrinsic (fluid) average of pressure p

U  Comporent of velocity along x

V  Comporent of velocity along y

X,y Cartesian coordinates

Subscrit
i,j  Noda index

in  input values

k  Gridleve

nb Neighbaing
Greeks

y  Dynamic viscosity
p  Density

@  Porosity

¢  Genera variable

by

Diffusion coefficient for ¢ , ¢ = U,V,P
v Number of Coarsest-grid iterations
vP® Number of pre—~smoacthingiterations

v P Number of post-smoathingiterations
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