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Abstract

The present work investigates the efficiency of the multigrid numerical method when

used to solve two-dimensional laminar velocity and temperature fields inside a rectan-

gular domain. Numerical analysis is based on the finite volume discretization scheme

applied to structured orthogonal regular meshes. Performance of the correction storage

(CS) multigrid algorithm is compared for different inlet Reynolds number ðReinÞ and

number of grids. Up to four grids were used for both V - and W -cycles. Simultaneous

and uncoupled temperature–velocity solution schemes were investigated. Advantages in

using more than one grid are discussed. For simultaneous solution, results further in-

dicate an increase in the computational effort for higher inlet Reynolds number Rein.
Optimal number of intermediate relaxation sweeps for within both V - and W -cycles is

discussed upon.
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1. Introduction

Generally speaking, convergence rates of single-grid numerical solutions are

greatest in the beginning of calculations, slowing sensibly as the iterative
process goes on. Such effect gets more pronounced as the mesh becomes
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Nomenclature

Ly domain height

Lx domain length

M maximum number of grids

P pressure

Pr Prandtl number

Rij residue for continuity equation

RT residue for energy equation
Re Reynolds number

S/ source term for variable /, / ¼ U ; V ; T
T temperature

U velocity component in x-direction
V velocity component in y-direction
x streamwise coordinate

y transverse coordinate

Subscripts

i, j nodal indices for volume centered variables

in inlet value

k grid level

nb neighbor

T temperature

Greeks

l fluid dynamic viscosity

q fluid density

/ general dependent variable, / ¼ U ; V ; T
mcg number of domain sweeps in the coarsest grid

mpre number of domain sweeps before restriction

mpost number of domain sweeps after prolongation
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refined. Large grid sizes, however, are often needed when capturing thin

boundary layer properties, resolving small recirculating regions or detecting

high heat transfer spots.

The reason for that hard-to-converge behavior is that iterative methods can
efficiently smooth out only those Fourier error components of wavelengths

smaller than or comparable to the grid size. In contrast, the multigrid method

aims to cover a broader range of wavelengths through relaxation on more than

one grid.

The number of iterations and convergence criterion in each step along

consecutive grid levels visited by the algorithm determines the so-called V - and
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W -cycles. Within each cycle, the intermediate solution is relaxed before (pre-)

and after (post-smoothing) the transportation of values to coarser (restriction)
or to finer (prolongation) grids [1,2,13].

Accordingly, multigrid methods have been used in an ever greater number of

calculations presented in the literature and can be roughly classified into two

major categories. In the CS formulation, algebraic equations are solved for the

corrections of the variables whereas, in the full approximation storage (FAS)

scheme, the variables themselves are handled in all grid levels. It has been

pointed out in the literature that the application of the CS formulation is

recommended for the solution of linear problems being the FAS formulation
more suitable to non-linear cases [1,2,13]. An exception to this rule seems to be

the work of Jiang et al. [5], who reported predictions for the Navier–Stokes

equations successfully applying the multigrid CS formulation. In the literature,

however, not too many attempts in solving non-linear problems with multigrid

linear operators are found.

Acknowledging the advantages in using multiple grids, Rabi and de Lemos

[8], presented numerical computations applying this technique to recirculating

flows in several geometries of engineering interest. There, the correction storage

(CS) formulation, motivated by the previous attempt of Jiang et al. [5] , was

applied to non-linear problems. Later, Rabi and de Lemos [9], analyzed the

effect of Peclet number and the use of different solution cycles when solving the

temperature field within flows with a given velocity distribution. In all those

cases, the advantages in using more than one grid in iterative solutions were

confirmed. More recently, Rabi and de Lemos [10,11] presented a study on

optimal convergence characteristics in solution of conductive–convective

problems with a given velocity field [10] and in isothermal flow simulations [11].
The present contribution extends the early work on optimization of con-

vergence acceleration of multigrid solutions, considering now the energy

equation. More specifically, a heated steady-state flow in a symmetric tank is

analyzed with up to four grids. Also presented are solutions for a backward

facing step flow. A schematic of such configurations is shown in Fig. 1. The

numerical method includes finite volume discretization, the SIMPLE pressure–

velocity coupling [6] and the Three-Diagonal Matrix Algorithm (TDMA). The

overall algorithm performance is discussed in light of computational effort
required.
2. Mathematical model and numerics

2.1. Governing equations

The continuity, Navier–Stokes and energy equations describe fluid flow

and heat transfer. They express mass, momentum and energy conservation



Fig. 1. Geometries and boundary conditions for (a) heated flow in a tank, (b) back step heated

flow.

728 M.S. Mesquita, M.J.S. de Lemos / Appl. Math. Comput. 152 (2004) 725–742
principles respectively and, for a steady state condition in a two-dimension

Cartesian coordinate frame, they are written as:
o
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where q is the fluid density, U and V are the x and y velocity components,

respectively, T is the temperature, l is the dynamic viscosity and Pr is the
Prandtl number. In addition, in this work all fluid properties are held constant.

2.2. Numerical model

The solution domain is divided into a number of rectangular control vol-

umes (CV), resulting in a structured orthogonal non-uniform mesh. Grid
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points are located according to a cell-centered scheme and velocities are stored

in a collocated arrangement [6]. A typical CV with its main dimensions and
internodal distances is sketched in Fig. 2. Writing Eqs. (1)–(4) in terms of a

general variable / ¼ f1;U ; V ; Tg with C/ ¼ f0; l; l; l=Prg and S/ ¼ f0;�oP=
ox;�oP=oy; 0g one gets, after integrating it over the CV of Fig. 2,
Z
dv

o

ox
ðqU/Þ

�
þ o

oy
ðqV /Þ

�
dv

¼
Z
dv

o

ox
C/

o/
ox

� ��
þ o

oy
C/

o/
oy

� ��
dvþ

Z
dv
S/ dv: ð5Þ
Integration of the three terms in (5), namely: convection, diffusion and source,

lead to a set of algebraic equations. These practices are described elsewhere

(e.g. [6]) and for this reason they are not repeated here. In summary, convective

terms are discretized using the upwind differencing scheme, diffusive fluxes
make use of the central differencing scheme and pressures, needed at cell faces,

are approximated by a linear interpolation of neighboring point values.

Substitution of all approximate expressions for interface values and gradi-

ents into the integrated transport equation (5), gives the final discretization

equation for grid node P
aP/P ¼ aE/E þ aW/W þ aN/N þ aS/S þ b ð6Þ
with the east face coefficient, for example, being defined as
aE ¼ max½�Ce; 0� þ De: ð7Þ
Fig. 2. Control volume for discretization.
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In (7) De ¼ ledy=Dxe and Ce ¼ ðqUÞedy are the diffusive and convective fluxes

at the CV east face, respectively, and, as usual, the operator max½a; b� returns
the greater of a and b.

2.3. Multigrid technique

Assembling equation (6) for each control volume of Fig. 2 in the domain of

Fig. 1 defines a linear algebraic equation system of the form,
AkTk ¼ bk; ð8Þ
where Ak is the matrix of coefficients, Tk is the vector of unknowns and bk is the

vector accommodating source and extra terms. Subscript ‘‘k’’ refers to the grid
level, with k ¼ 1 corresponding to the coarsest grid and k ¼ M to the finest

mesh.

As mentioned, multigrid is here implemented in a CS formulation in which

one seeks coarse grid approximations for the correction defined as dk ¼ Tk � T�
k

where T�
k is an intermediate value resulting from a small number of iterations

applied to (8). For a linear problem, one shows that dk is the solution of

[1,2,13],
Akdk ¼ rk; ð9Þ
where the residue is defined as
rk ¼ bk � AkT
�
k : ð10Þ
Eq. (9) can be approximated by means of a coarse-grid equation,
Ak�1dk�1 ¼ rk�1 ð11Þ
with the restriction operator Ik�1
k used to obtain
rk�1 ¼ Ik�1
k rk: ð12Þ
The residue restriction is accomplished by summing up the residues corre-

sponding to the four fine grid control volumes that compose the coarse grid

cell. Thus, Eq. (12) can be rewritten with the help of Fig. 3 as,
rIJk�1 ¼ rijk þ rijþ1
k þ riþ1j

k þ riþ1jþ1
k : ð13Þ
Diffusive and convection coefficients in matrix Ak need also to be evaluated

when changing grid level. Diffusive terms are recalculated since they depend

upon neighbor grid node distances whereas coarse grid mass fluxes (convective

terms) are simply added up at control volume faces. A schematic of this op-
eration, commonly found in the literature [3,7], is shown in Fig. 3.

Once the coarse grid approximation for the correction dk�1 has been cal-

culated, the prolongation operator Ikk�1 takes it back to the fine grid as



Fig. 3. Mass flux and residue restriction summation.

M.S. Mesquita, M.J.S. de Lemos / Appl. Math. Comput. 152 (2004) 725–742 731
dk ¼ Ikk�1dk�1 ð14Þ
in order to update the intermediate value
Tk ¼ T�
k þ dk: ð15Þ
Fig. 4 illustrates a 4-grid iteration scheme for both the V - and W -cycles

where the different operations are: s¼ smoothing, r¼ restriction, cg¼ coarsest

grid iteration and p¼ prolongation. Also, the number of domain sweeps before

and after grid change is denoted by mpre and mpost, respectively. In addition, at
the coarsest k level ðk ¼ 1Þ, the grid is swept mcg times by the error smoothing

operator.
Fig. 4. Sequence of operations in a 4-grid iteration (a) V -cycle; (b) W -cycle.
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3. Results and discussion

3.1. Computational details

The computer code developed was run on a IBM PC machine with a Pen-

tium 166 MHz processor. Grid independence studies were conducted such that

the solutions presented herein are essentially grid independent. For both V -
and W -cycles, pre- and post-smoothing iterations were accomplished via the

Gauss–Seidel algorithm while, at the coarsest-grid, the TDMA method has

been applied [6]. Also, cases (a) and (b) in Fig. 1 were run with the finest grid
having sizes 66 · 66 and 144 · 48, respectively.

Results below are focused on the behavior of the energy equation subjected

to multigrid numerical methods. Analysis of velocity and pressure convergence

characteristics have already been reported [8,11] and for that they are here not

discussed.

3.2. Numerical accuracy

This work has been mostly concerned with the performance of the multigrid

method in heated recirculating flows, rather than obtaining the absolute tem-

perature distribution. Nevertheless, care was taken when discretizing the
governing equations and applying the algorithm selected. In addition to grid

independence tests mentioned above, tests were conducted in order to assure

the correctness of the computer code developed and the accuracy of the so-

lution obtained. For this purpose, the heat tank geometry in Fig. 1(a) was

chosen. The inlet opening on the left and the exit on the right are centered half

way between the top and bottom walls, besides being of the same size. In

addition, boundary conditions for temperature were also symmetric in relation

to the mid plane located at height Ly=2. With that, calculated velocity and
temperature fields, if successfully converged, had to exhibit symmetry along y.

Numerical values for U , V , P and T were symmetric up to the fifth decimal

figure the least, and the residue of Eq. (6) was brought down to 1 · 10�16.

Although no direct comparison with experiments are included herein, residue

levels essentially ‘‘touching’’ the double precision limit of the machine used,

and perfectly symmetric values, have given the authors confidence on results

here shown.

3.3. Temperature field

Fig. 5 show non-dimensional temperature distribution patterns for flow in
the tank of Fig. 1(a). All walls are kept at the same temperature, higher than

the incoming flow temperature. The figure indicates the effect of increasing the

inlet Reynolds number, Rein ¼ qUinLin=l, where the subscript ‘‘in’’ refers to



0.00 0.10 0.20 0.30 0.60
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00

0.10

0.20

0.30

0.40

0.50

0.60

 

0.40 0.50

0.00 0.10 0.20 0.30 0.600.40 0.50

0.00 0.10 0.20 0.30 0.600.40 0.50

Fig. 5. Effect of Rein on temperature pattern inside the heated tank of Fig. 1. From top to bottom:

Rein ¼ 75, 150, 300.

M.S. Mesquita, M.J.S. de Lemos / Appl. Math. Comput. 152 (2004) 725–742 733



734 M.S. Mesquita, M.J.S. de Lemos / Appl. Math. Comput. 152 (2004) 725–742
inlet values. One can clearly see the cooling of the outlet flow as Rein increases.
Also interesting to note is the higher temperature gradients at the right wall,
indicating a higher heat load to the solid material.

Similar results for the backward facing step are also shown in Fig. 6 where

non-dimensional temperature distribution for the sudden expansion flow of

Fig. 1(b) is presented. All walls are kept at the same temperature, higher than

the incoming flow temperature. Here again the figure indicates the effect of

increasing the inlet Reynolds number. One can also clearly see the penetration

of the cooler fluid as Rein increases. Deformation of the isotherms close to the

step, at the upper left region, indicates the increase of the recirculation bubble
after the expansion. When designing heat transfer equipment, engineers may

use such information for improving product reliability and performance.
3.4. Residues

The residue is normalized and calculated according to
Fig. 6

bottom
RT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

ðR2
ijÞ

s
with Rij ¼ APTP �

X
nb

AnbTnb

 !
; ð16Þ
where subscript ij identifies a given control volume on the finest grid and nb

refers to its neighboring control volumes.

Fig. 7 shows residue history for the backward facing step case following the
two cycles picture on Fig. 4, namely the V - and W -cycles. The solution follows

a simultaneous approach in the sense that the temperature is always relaxed

after the flow field, within the multigrid cycle. One can readily notice for both
. Effect of Rein on temperature pattern for backward facing step of Fig. 1. From top to

: Rein ¼ 100, 400.
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Fig. 7. Residue history for different number of grids and Rein (a) V -cycle, (b) W -cycle.
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cycles that for a lower Rein, regardless of the number of grids used, faster so-

lutions are obtained. In this case, relative importance of diffusion terms favors
the stability of the system of equations. Increasing the number of grids for the

same Reynolds number is also advantageous. This feature is what makes

multigrid methods attractive, justifying their growing usage. Also interesting to

note is that for the V -cycle and for Rein ¼ 400 (Fig. 7(a)), the computational

effort related to value transfers among too many grids became relevant. Using

a W -cycle (Fig. 7(b)) for this Reynolds seems to bring more savings to the

iterative simultaneous solution procedure. When recalling the nature of the

W -cycle in comparison with the V strategy (Fig. 4), one can see that the num-
ber of grid transfers per cycle is less in the former algorithm. In addition, the

more work done in the lower frequency range of the error spectrum with the

W -cycle contributes for a faster overall solution. As will be seen later, this will

not be the case when the solution considers only the temperature field, given a

known flow distribution. Fig. 7 also indicates the advantage in using more

grids, in both cycles.

Recognizing that the situation here investigated embraces physical uncou-

pling between momentum and heat transfer, i.e., heat transfer depends on flow,
not the other way around, an ‘‘uncoupled’’ algorithm has been devised. In this

case, the flow field is obtained first and is recorded. Subsequently, the multigrid

method is applied to the energy equation only, having the convection strength

calculated with the stored flow field. Also, noting that the computational time

may not be a universal parameter when comparing calculations in a variety of

machines, the following residue history was monitored considering the number

of iterations (full cycle in Fig. 4), rather than computational time. Fig. 8 pre-

sents residue history for the energy equation for the two situations considered,
namely the simultaneous multigrid solution for velocity and temperature and

the sole solution of the energy equation, given the flow field. As expected, the

number of iterations needed in the latter case is lower, being nearly one order

of magnitude less than in the former. Consequently, the advantage in using

multiple grids is felt stronger in simultaneous solutions where overall com-

puting time is greater.

3.5. Optimal relaxation parameters

In the work of Rabi and de Lemos [10,11], a study was carried out to in-

vestigate optimal values for the parameters mpre, mpost and mcg. Since the inter-

mediate solutions, before and after grid changes, are not fully solved but are

rather relaxed mpre and mpost times, a question about their optimal values for

increasing overall algorithm performance arises. Or say, as restriction and

prolongation operations may also introduce imprecision to values being
transferred, one should expect the computational effort to be sensitive to the

number of smoothing sweeps. In other words, once the intermediate numerical



Fig. 8. Effect of field decoupling on residue history for energy equation.

M.S. Mesquita, M.J.S. de Lemos / Appl. Math. Comput. 152 (2004) 725–742 737
solution has been relaxed a number of times removing errors introduced by the

transfer operators and further reducing the residue, it is of no use to keep it-

erating at a certain grid level. The next figures help to analyze the existence of
such optimal intermediate smoothing.

For a fixed number of sweeps at the coarse grid Fig. 9 reproduces the

necessary time to convergence when the number of pre- and post-smoothing

iterations was allowed to vary, keeping mpre ¼ mpost. Fig. 9(a) show results for

the heated tank case with mcg ¼ 7 and 10, whereas Fig. 9(b) presents similar

results for backward facing step.

In Fig. 9(a) one can see that more than one sweep for relaxing the inter-

mediate solution, before and after grid change, brings no advantage to the
algorithm performance and, consequently, further relaxation past this limit

unnecessarily increases the computational effort. The advantage in using W -

cycles is also apparent. In addition, for the two values of mcg used (6 and 10), no

detectable savings in computational time, for both cycles, are seen.

On the other hand for the backward step case and for a fixed number of

sweeps at the coarse grid ðmcg ¼ 15Þ, Fig. 9(b) clearly shows optimal values for

those relaxation parameters. Additional sweeps past those values consume

extra computing time. Also, too few pre- and post-relaxation passes will de-
mand also a higher computational effort. Comparing with the previous case (a)

in this figure, the use of the V -cycle shows advantages for the backward facing



Fig. 9. Influence of the number of pre/post-smoothing iterations on the computational effort,

(a) heated flow in a tank, (b) back step heated flow.
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step case. This might be an indication of a dependence of the optimal cycling

strategy on the flow geometry and boundary conditions. It is also important to
emphasize that the case in Fig. 9(b) is different from that of Fig. 7 where a



Fig. 10. Influence of the number of pre/post-smoothing iterations (a) mcg ¼ 3, (b) mcg ¼ 6,

(c) mcg ¼ 9.
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‘‘simultaneous’’ solution was used. To investigate the sensitivity of the optimal

value to the flow Reynolds number, Fig. 10 presents the necessary convergence
times for different Re and mcg. In all decoupled solutions for the back step flow,

relaxation along a V -cycle was more efficient. The dependence with Re is also

similar to that of Fig. 7. Also, for the range of mcg used in this figure, no detectable
Fig. 11. Influence of the number of coarsest-grid iterations, mcg, on the computational effort.
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differences on computational effort were found. All of these results raises the

question of how the value of mcg affects convergence performance as well.
In Fig. 11 the number of pre- and post-smoothing iterations was fixed at

mpre ¼ mpost ¼ 2 whereas the number of coarsest-grid sweeps mcg was free to vary.

For flow in the heated tank (Fig. 11(a)), an optimum situation can be clearly

identified for both cycles and further relaxation past this limit brings no time

savings. Here again the superiority of the W -cycle for the tank case is apparent,

but only for a short range of mcg. In Fig. 11(b) no minimum value for the

number of sweeps at the coarsest grid was detected. Only one pass through the

domain is enough for obtaining best results. Here again the two flow consid-
ered behave differently as far as optimal values for mcg is of concern.

Ultimately, both Figs. 9–11 suggest a delicate balance between all parame-

ters involved when minimum CPU consumption is sought. Most often, optimal

parameters can not be easily determined a priori and adaptive strategies have

been proposed in the literature. Generally, the ratio of residues after two

successive sweeps is monitored and used as a criterion for switching grids.

Hortmann et al. [3] points out that this practice is preferred for single equation

systems but, when solving the full equation set as done here, such practice is
not easy to implement. In this case, most works in the literature specify a fixed

number of sweeps, as in the cases here reported [4,12].
4. Concluding remarks

The multigrid method has been implemented in a CS manner to numerically
solve a two-dimensional steady-state conduction–convection problem. Struc-

tured, orthogonal and regular meshes were used and discretized equations were

obtained through a finite volume formulation. The overall algorithm perfor-

mance was compared for different inlet Reynolds numbers, for distinct cycles, for

different number of intermediate solution sweeps and coarsest-grid iterations.

Results proved the superiority of the multigrid method against single grid

calculations. For the cases here studied, they indicated that increasing the value

of Rein tends to increase the required computational effort. As far as the cycling
strategy is concerned, results herein further suggested the existence of optimum

numbers of coarsest-grid sweeps and of pre-/post-smoothing iterations. These

numbers, however, cannot be easily determined a priori and may depend on

specific characteristics of the flow in question.
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