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This work shows numerical results for a turbulent jet impinging against a flat plane covered

with a layer of permeable material, which is kept at a higher temperature than that of the

incoming fluid. Parameters such as porosity, permeability, thickness, and thermal conduc-

tivity of the porous layer are varied in order to analyze their effects on the local distribution

of Nu. The macroscopic equations for mass, momentum, and energy are obtained based on

volume-average concept. The numerical technique employed for discretizing the governing

equations was the control volume method with a boundary-fitted nonorthogonal coordinate

system. The SIMPLE algorithm was used to handle the pressure–velocity coupling. Results

indicate that inclusion of a porous layer decreases the peak in Nu avoiding excessive heating

or cooling at the stagnation point. Also found, was that the integral heat flux from the wall

is enhanced for certain ranges of values of porosity, layer thickness, and thermal conduc-

tivity ratio.

1. INTRODUCTION

Turbulent impinging jets are mainly used in industrial applications with the
objective of obtaining effective heating, cooling, or drying processes. The main
advantage of using impinging jets is the possibility to obtain highly localized mass
and heat transfer rates due to thin boundary layers inside of the stagnation region.
Applications of such systems include electronics cooling, glass tempering, metals
cooling, drying of textiles products and paper, to mention a few.

Published results are mainly concentrated on impinging jets under high mass
flow conditions, which reaches an uncovered surface. Pioneering studies considering
two-dimensional impinging jets with low Reynolds number, also onto uncovered flat
walls, are presented in Gardon and Akfirat [1], who experimentally obtained local
and averaged heat transfer coefficients. Sparrow and Wong [2] made use of the
well-known heat and mass transfer analogy and took experimental data on local
mass transfer for a two-dimensional impinging jet. Results were then converted to
heat transfer using the mentioned technique. Chen et al. [3] experimentally and
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numerically analyzed mass and heat transfer induced by a two-dimensional laminar
jet. Chiriac and Ortega [4] performed numerical simulations in steady and transitory
regime for a two-dimensional jet impinging against a plate with constant tem-
perature. In addition, in recent years a number of research papers covered a wide
range of studies in porous media [5–18], including flows parallel to a layer of porous
material [19] and across permeable baffles [20, 21] and porous inserts [22]. Investi-
gation on configurations concerning perpendicular jets into a porous core is much
needed for optimization of heat sinks attached to solid surfaces. However, studies
of porous medium under impinging jets are, unfortunately, yet scarce in the litera-
ture. An example found are those given by numerical simulations of Kim and
Kuznetsov [23], who investigated optimal characteristics of impinging jets into heat
sinks. Other innovative applications of impinging jets, such as fiber hydroentalgle-
ment, can also be found in recent literature [24, 25].

As mentioned, for the specific case here investigated, i.e., an impinging jet over
a covered plate, there are not too many results in the open literature. One example is
the work of Prakash et al. [26, 27], who obtained a flow visualization of turbulent jets
impinging against a porous medium. Also, Fu and Huang [28] evaluated the thermal
performance of different porous layers under an impinging jet, and Jeng and Tzeng
[29] studied the hydrodynamic and thermal performance of a jet impinging on a
metallic foam. Recently, Graminho and de Lemos [30] investigated the flow structure
of a turbulent jet impinging on a layer of porous material. In reference [30], the
macroscopic mathematical model described in detail by de Lemos [31] was applied.
Previously, Rocamora and de Lemos [32] had added thermal modeling for the treat-
ment of a permeable medium. Later, the work on isothermal impinging jets was
extended to involve thermal analysis [33], but therein only laminar heat transfer
was investigated.

The objective of the present contribution is to extend the thermal analysis of
laminar regime presented in reference [33] to turbulent flows in order to evaluate

NOMENCLATURE

Ai macroscopic interface area between the

porous region and the clear flow

B jet width

cF Forchheimer coefficient

Da Darcy number, Da¼K=H2

H channel height

h porous layer thickness, film coefficient

K permeability

keff effective thermal conductivity

k thermal conductivity

L channel length

Nu Nusselt number

p thermodynamic pressure

qw integral wall heat flux

q/w integral wall heat flux will porous layer

hpii intrinsic (fluid) average of pressure p

Re Reynolds number based on the jet width,

Re¼qn0B=m
Su source term

T temperature

huii intrinsic (fluid) average of u

uD Darcy velocity vector (volume average

over u)¼/huii
x, y Cartesian coordinates

m dynamic viscosity

q density

n kinematic viscosity

/ related to porous medium

Subscripts

s,f solid, fluid

w wall

o inlet conditions
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under which circumstances the addition of a porous layer made of thermal conduct-
ing material can enhance or damp the overall heat transferred from a flat surface
under a turbulent impinging jet.

2. PROBLEM INVESTIGATED

The cases considered here are detailed in Figure 1a. A laminar jet with uniform
velocity vo and constant temperature To enters through a gap into a channel with
height H and length 2L. Fluid impinges normally against the bottom plate, yielding
a two-dimensional confined impinging jet configurarion. The width of the inlet
nozzle is B and the bottom plate temperature T1 is maintained constant and 10K
above the temperature of the incoming jet, To. In a different configuration, the
bottom surface is covered with a porous layer of height h (Figure 1b). In both cases,
the flow is assumed to be two-dimensional, turbulent incompressible, and steady.
Also, the porous medium is taken to be homogeneous, rigid, and inert. Fluid proper-
ties are constant and gravity effects are neglegted.

The boundary conditions for the problem are: (1) constant velocity and tem-
perature profiles of the entering jet, (2) no slip condition on the walls, (3) symmetry
condition in x¼ 0, and (4) fully developed flow at channel exit (x¼L). At the bottom
plate (y¼H), a constant temperature condition is assumed whereas along the upper
wall, for B=2< x�L, null heat flux condition prevails.

Figure 1. Cases investigated: (a) Confined impinging jet on a flat plate—clear medium case and (b)

confined impinging jet on a plate covered with a layer of porous material—porous case.
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3. MATHEMATICAL MODELING

As mentioned, the flow model employed here is described in Graminho and
de Lemos [30], whereas thermal modeling is detailed in reference [32], including
the energy equation for heat transfer calculations. Therein, details can be found.
As most of the theoretical development is readily available in the open literature,
the governing equations will just be presented, and details about their derivations
can be obtained in the mentioned papers. Essentially, local instantaneous equations
are volume-averaged using appropriate mathematical tools [34, 35].

Local Instantaneous Transport Equations

The governing equations for the flow and energy for an incompressible fluid
are given by

Continuity

r � u ¼ 0 ð1Þ

Momentum

q
qu
qt

þr � uuð Þ
� �

¼ �rpþ mr2u ð2Þ

Energy–fluid phase

qcp
� �

f

qTf

qt
þr � uTf

� �� �
¼ r � kfrTf

� �
þ Sf ð3Þ

Energy–solid phase (porous matrix)

qcp
� �

s

qTs

qt
¼ r � ksrTsð Þ þ Ss ð4Þ

where the subscripts f and s refer to fluid and solid phases, respectively. Here, T is the
temperature, kf and ks are the fluid and solid thermal conductivities, respectively, cp
is the specific heat, and S is the heat generation term. If there is no heat generation
either in the solid or in the fluid, one has Sf ¼ Ss ¼ 0.

Double-Decomposition of Variables

Macroscopic transport equations for turbulent flow in a porous medium are
obtained through the simultaneous application of time and volume average opera-
tors over a generic fluid property u. Such concepts are defined as follows.

�uu ¼ 1

Dt

Z tþDt

t

u dt, with u ¼ �uuþ u0 ð5Þ
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huii ¼ 1

DVf

Z
DVf

u dV ; huiv ¼ /huii; / ¼ DVf

DV
; with u ¼ huii þ iu ð6Þ

where DVf is the volume of the fluid contained in a representative elementary volume
(REV) DV, and intrinsic average and volume average are represented, respectively,
by h ii and h iv. The double decomposition idea, introduced and fully described in
reference [31], combines Eqs. (5) and (6) and can be summarized as

huii ¼ h�uuii; i �uu ¼ iu; hu0ii ¼ huii
0

ð7Þ

and

u0 ¼ hu0ii þ iu0
iu ¼ iuþ iu0

�
where iu0 ¼ u0 � hu0ii ¼ iu� iu ð8Þ

Therefore, the quantity u can be expressed by either

u ¼ huii þ huii
0
þ iuþ iu0 ð9Þ

or

u ¼ h�uuii þ i�uuþ hu0ii þ iu0 ð10Þ

The term iu0 can be viewed as either the temporal fluctuation of the spatial
deviation or the spatial deviation of the temporal fluctuation of the quantity u.

Macroscopic Flow Equations

When the average operators (5) and (6) are simultaneously applied over Eqs. (1)
and (2), macroscopic equations for turbulent flow are obtained. Volume integration
is performed over a representative elementary volume (REV) [34], resulting in

Continuity

r � �uuD ¼ 0 ð11Þ

where �uuD ¼ /h�uuii and h�uuii identifies the intrinsic (liquid) average of the time-
averaged velocity vector �uu.

Momentum

q
q�uuD
qt

þr � �uuD�uuD
/

� �� �
¼ �rð/h�ppiiÞ þ mr2�uuD �r � ðq/hu0u0iiÞ

� m/
K

�uuD þ cF/qj�uuDj�uuDffiffiffiffi
K

p
� �

ð12Þ

where the last two terms in Eq. (12) represent the Darcy and Forchheimer or form
drags. The symbol K is the porous medium permeability, cF is the form drag or
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Forchheimer coefficient, h�ppii is the intrinsic average pressure of the fluid, and / is the
porosity of the porous medium.

The macroscopic Reynolds stress, �q/hu0u0ii, appearing in Eq. (12) is given as

�q/hu0u0ii ¼ mt/2hDDiv � 2

3
/qhkiiI ð13Þ

where

hDDiv ¼ 1

2
rð/h�uuiiÞ þ ½rð/h�uuiiÞ�T
h i

ð14Þ

is the macroscopic deformation tensor, hkii ¼ hu0 � u0ii=2 is the intrinsic turbulent
kinetic energy, and mt/ is the turbulent viscosity, which is modeled similarly to the
case of clear flow, in the form

mt/ ¼ qfmcm
hkii

2

heii
ð15Þ

The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are
governed by the following equations.

q
q
qt

/hkii

 �

þr � �uuDhkii

 �� �

¼ r � mþ
mt/
rk

� �
r /hkii

 �� �

� qhu0u0ii:r�uuD

þ ckq
/hkiij�uuDjffiffiffiffi

K
p � q/heii ð16Þ

q
q
qt

/heii

 �

þr� �uuDheii

 �� �

¼r� mþ
mt/
re

� �
r /heii

 �� �

þ c1 �qhu0u0ii:r�uuD


 � heii
hkii

þ c2ckq
/heiij�uuDjffiffiffiffi

K
p � c2 fmq/

heii
2

hkii
ð17Þ

where rk¼ 1.4, re¼ 1.3, c1¼ 1.50, c2¼ 1.90, cm¼ 0.09, and ck¼ 0.28 are nondimen-
sional constants tuned for the low Reynolds number k-emodel, whereas f2 and fm are
damping functions, given by [36]

f2 ¼ 1� exp �ðneÞ0:25n
3:1n

" #( )2

� 1� 0:3exp � ðk2 ne= Þ
6:5

� �2
" #( )

ð18Þ

fm ¼ 1� exp �ðneÞ0:25n
14n

" #( )2

� 1þ 5

ðk2 ne= Þ0:75
exp � ðk2 ne= Þ

200

� �2
" #( )

ð19Þ

where n is the coordinate normal to the wall.
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Macroscopic Energy Equation

Similarly, macroscopic energy equations are obtained for both fluid and solid
phases by applying time and volume average operators to Eqs. (3) and (4). As in the
flow case, volume integration is performed over a representative elementary volume
(REV), resulting in

qcp
� �

f

q/hTf ii

qt
þr � / h�uuiihTf ii þ hi�uuiTf ii|fflfflfflffl{zfflfflfflffl}

thermal dispersion

þhu0iihT 0
f i

i|fflfflfflfflffl{zfflfflfflfflffl}
turbulent heat
flux

þ hiu0iT 0
f i

i|fflfflfflffl{zfflfflfflffl}
turbulent thermal
dispersion

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775

¼ r � kfr /hTf ii

 �

þ 1

DV

Z
Ai

nikf Tf dA

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction

þ 1

DV

Z
Ai

ni � kfrTf dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð20Þ

where the expansion

hu0
f i

i ¼ hðhu0ii þ iu0ÞðhT 0
f i

i þ iT 0Þii ¼ hu0iihT 0
f i

i þ hiu0iT 0
f i

i ð21Þ

has been used in light of the double decomposition concept given by Eqs. (7)–(10)
[32]. For the solid phase, one has

qcp
� �

s

q 1� /ð ÞhTsii

qt

( )
¼ r � ksr 1� /ð ÞhTsii

h i
� 1

DV

Z
Ai

niksTs dA

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

conduction

� 1

DV

Z
Ai

ni � ksrTs dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð22Þ

An interfacial heat transfer coefficient is needed when corresponding terms in
Eqs. (20) and (22) are modeled following the local thermal nonequilibrium assumption
[37]. Here, however, we assume local thermal equilibrium between the fluid and solid
phases, i.e., we add Eqs. (20) and (22) and consider hTf ii ¼ hTsii ¼ hTii, giving further

qcp
� �

f
/þ qcp

� �
s
1� /ð Þ

n o qhTii

qt
þ qcp
� �

f
r � uDhTii

 �

¼ r � kf/þ ks 1� /ð Þ

 �

rhTii
n o

þr � 1

DV

Z
Ai

n kf Tf � ksTs

� �
dS

� �
� qcp
� �

f
r � / hi�uuiTf ii þ hu0T 0

f i
i


 �h i
ð23Þ

The boundary conditions at Ai are given by

Tf ¼ Ts

n � kfrTf

� �
¼ n � ksrTsð Þ

�
in Ai ð24Þ
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Equation (23) expresses the one-equation model for heat transport in porous
media. Further, in view of Eq. (21), Eq. (23) can be rewritten as

qcp
� �

f
/þ qcp

� �
s
1� /ð Þ

n o qhTii

qt
þ qcp
� �

f
r � uDhTii

 �

¼ r � kf/þ ks 1� /ð Þ

 �

rhTii
n o

þr � 1

DV

Z
Ai

n kf Tf � ksTs

� �
dS

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

� qcp
� �

f
r � / hu0iihT 0

f i
i|fflfflfflfflffl{zfflfflfflfflffl}

II

þ hi�uuiTf ii|fflfflfflffl{zfflfflfflffl}
III

þ hiu0iT 0
f i

i|fflfflfflffl{zfflfflfflffl}
IV

0
B@

1
CA

2
64

3
75 ð25Þ

where to the underscored terms in Eq. (25), the following physical significance can
be attributed.

1. Tortuosity based on microscopic time-average temperature.
2. Turbulent heat flux due to the fluctuating components of macroscopic velocity

and temperature (hu0iihT 0
f i

i ¼ huii0 hTf ii
0
).

3. Thermal dispersion associated with deviations of microscopic time-average velo-
city and temperature. Note, that this term is also present when analyzing laminar
convective heat transfer in porous media.

4. Turbulent thermal dispersion in a porous medium due to both time fluctuations
and spatial deviations of both microscopic velocity and temperature.

In order to apply Eq. (25) to obtain the temperature field for turbulent flow in
porous media, the underscored terms have to be modeled in some way as a function
of the surface average temperature, hTii. To accomplish this, a gradient type dif-
fusion model is used for all the terms, i.e., tortuosity (1), turbulent heat flux due
to temporal fluctuations (2), thermal dispersion due to spatial deviations (3), and
turbulent thermal dispersion due to temporal fluctuations and spatial deviations (4).

Using these gradient type diffusion models, we can write
Tortuosity

1

DV

Z
Ai

n kf Tf � ksTs

� �
dS

� �
¼ Ktor � rhTii ð26Þ

Turbulent heat flux

� qcp
� �

f
/hu0iihT 0

f i
i


 �
¼ Kt � rhTii ð27Þ

Thermal dispersion

� qcp
� �

f
/hi�uuiTf ii

 �

¼ Kdisp � rhTii ð28Þ
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Turbulent thermal dispersion

� qcp
� �

f
/hiu0iT 0

f i
i


 �
¼ Kdisp;t � rhTii ð29Þ

For the above shown expressions, Eq. (25) can be rewritten as

qcp
� �

f
/þ qcp

� �
s
1� /ð Þ

n o qhTii

qt
þ qcp
� �

f
r � uDhTii

 �

¼ r � Keff � rhTii
n o

ð30Þ

where Keff given by

Keff ¼ ½/kf þ ð1� /Þks�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
keff

I þ Ktor þ Kt þ Kdisp þ Kdisp;t ð31Þ

is the effective overall conductivity tensor.
In order to be able to apply Eq. (30), it is necessary to determine the conduc-

tivity tensors in Eq. (31), i.e., Ktor, Kt, Kdisp, and Kdisp,t. Following Kuwahara and
Nakayama [38], this can be accomplished for the tortuosity and thermal dispersion
conductivity tensors Ktor and Kdisp by making use of a unit cell subjected to periodic
boundary conditions for the flow and a linear temperature gradient imposed over the
domain. The conductivity tensors are then obtained directly from the microscopic
results (see reference [39] for detail). Nevertheless, for simplicity, the tortuosity
and dispersion mechanisms are neglected here.

The turbulent heat flux and turbulent thermal dispersion terms Kt and Kdisp,t,
which cannot be determined from such a microscopic calculation, are modeled
through the eddy diffusivity concept, similarly to Nakayama and Kuwahara [39].
It should be noticed that these terms arise only if the flow is turbulent, whereas
the tortuosity and the thermal dispersion terms exist for both laminar and turbulent
flow regimes.

The macroscopic version of the turbulent heat flux is given by

� qcp
� �

f
hu0T 0

f i
i ¼ qcp

� �
f

nt/
rT

rhTf ii ð32Þ

where nt/ is the macroscopic kinematic eddy viscosity whcih is related to the dynamic
eddy viscosity given by Eq. (15) as mt/ ¼ qnt/ and rT is the turbulent Prandtl number.

According to Eqs. (21) and (32), the macroscopic heat flux due to turbulence is
taken as the sum of the turbulent heat flux and the turbulent thermal dispersion
found by Rocamora and de Lemos [32]. In view of the arguments given above,
the sum of the conductivity tensors Kt and Kdisp,t is expressed as

Kt þ Kdisp;t ¼ /ðqcpÞf
nt/
rT

I ð33Þ

4. NUMERICS

Equations (11), (12), and (30) subject to interface and boundary conditions
were discretized in a two-dimensional control volume involving both clear and
porous media. The finite-volume method was used in the discretization, and the
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SIMPLE algorithm [40] was applied to handle the pressure-velocity coupling. The
discretized form of the two-dimensional conservation equation for a generic pro-
perty u in steady-state regime reads,

Ie þ Iw þ In þ Is ¼ Su ð34Þ

where Ie, Iw, In, and Is represent, respectively, the fluxes of u in the east, west, north,
and south faces of the control volume and Su is term source.

Standard source term linearization is accomplished by using,

Su � S��
u huiip þ S�

u ð35Þ

Discretization in the x-direction momentum equation gives,

S�x ¼ S�x
e

� �
P
� S�x

w

� �
P
þ S�x

n

� �
P
� S�x

s

� �
P
þS�

P ð36Þ

S��x ¼ S��
/ ð37Þ

where S�x is the diffusive part, here treated in an explicit form. The second term,
S��x, entails the additional drag forces due to the porous matrix, the last two terms
in Eq. (12), which are treated here explicitly.

5. RESULTS AND DISCUSSION

Input Parameters

For an impinging jet, the flow is considered to be turbulent for Reynolds
number Re> 1000, which is given by

Re ¼ qv0Dh

m
ð38Þ

where v0 is the incoming jet velocity and Dh¼B when calculating Re for adequate
comparisons with similar simulations in the literature (see Figure 1).

The low Re turbulence model presented earlier was used in all simulation to
follow. Also, in order to guarantee that grid nodes be positioned within the laminar
sublayer, the closest grid node to the wall had a value for its wall coordinate yþ less
than unity (yþ� 1). Further, inlet value for the turbulent kinetic energy k at the jet
entrance was estimated using

k0 ¼
3

2
v0Ið Þ2 ð39Þ

where I is the turbulence intensity assumed to prevail in the incoming flow. For the
dissipation rate of k, e, the inlet value was calculated according to

e0 ¼ c3=4m
k3=2

‘
ð40Þ
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where ‘ is a length scale associated with the energy containing eddies. Table 1
summarizes the parameters used as input.

Grid Independence Studies

Grid validation was conducted with the conditions Re¼ 10,400 andH=B¼ 2.6.
At the jet entrance, values in Table 1 were employed. For grid independence studies,
the overall heat power at the impinged wall, given by

Qw ¼
Z x¼L

x¼o

�q00jy¼Hw dx; q00jy¼H ¼ �kf
qhTii

qy

!
y¼H

ð41Þ

was calculated for several grids and compared in Table 2. In Eq. (41) w¼ 1m is the
transverse plate width.

Also, local Nu number along that wall was evaluated by

Nu ¼ hH

kf
¼ qhTii

qy

 !
y¼H

H

T1 � T0
ð42Þ

and h is a film coefficient. Figure 2a shows local Nu distribution calculated according
to Eq. (42), alsoas a function of grid size. One can note in Table 2 that for grids
greater than 80� 216, the deviation for Qw in relation to the finest grid is less than
0.5%. As such, all simulation for turbulent flow herein were carried out on a grid of
size 80� 216 which was refined close to the wall and about the jet entrance, where
the steepest temperature gradients are expected to occur.

Clear Channel

The first set of results is related to the configuration shown in Figure 1a, where
no porous material is attached to the bottom wall. Once an appropriate grid was
chosen, code validation was carried out by comparing Nu numbers calculated at
the bottom wall compared with results by Wang and Mujumdar [41], for two
cases: namely, for H=B¼ 6 and Re¼ 5200 (Figure 2b), and for H=B¼ 2.6 and
Re¼ 10,400 (Figure 2c). The figure indicates that for H=B¼ 6 a good agreement is

Table 1. Input parameters for turbulent flow simulations

Fluid Density q Viscosity m B L T0 T1

Length

scale, ‘

Turbulence

intensity, I

Air 1.225 kg=m3 1.789� 10�5N � s=m2 14.23mm 500mm 309.1K 347.6K 0.07B 2%

Table 2. Influence of grid size on integral wall heat flux

Grid size 40� 216 80� 216 80� 400 100� 400

Wall heat power Qw, Eq. (39) 772.75W 818.87W 825.68W 820.05W

Deviation in relation to grid 100� 400 6.12% 0.14% 0.68% 0.00%
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obtained, whereas for H=B¼ 2.6 results do not match experimental values very well.
This might be due to the fact that such flow entails a high degree of complexity,
particularly for turbulent flow regime, as discussed by Wang and Mujumdar [41]
and Heyerichs and Pollard [42]. Nevertheless, as the main purpose of this work is

Figure 2. Validation for distribution of Nu along the lower plate for clear channel, Re¼ 10,400,

H=B¼ 2.6. (a) Effect of grid size, (b) Re¼ 5200, H=B¼ 6, and (c) CHC¼Chang et al., LS¼Lauder

and Sharma, see reference [41] for details.
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to investigate the influence of a porous layer on heat transfer and not the turbulence
model employed, and considering further the fact that a reasonable agreement with
experimental data was achieved, the computer code and the grid size were assumed
to be sufficiently accurate for the investigation here conducted.

Figure 3a shows streamlines for H=B¼ 2.6 as a function of Re, where one can
note that the flow pattern is not substantially affected by Re, indicating that the
fully turbulent regime is achieved. Further, the flow is characterized by a large

Figure 3. Effect of Re forH=B¼ 2.6. (a) Streamlines, (b) Turbulent kinetic energy k, and (c) TemperatureT.
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recirculation zone attached to the jet entrance, named primary vortex. Correspond-
ing statistical field is presented in Figure 3b. In the figure one can note similarity
among the maps and an increase on turbulence intensity as Re increases. Next,
the temperature filed is presented in Figure 3c. Like the hydrodynamic field, no sub-
stantial changes are detected as Re increases. It is also observed that isolines are close
to each other in the stagnation region, which characterizes a thin thermal boundary
layer with high temperature gradients in that region.

For a performance analysis on heat transfer due to the jet velocity variation,
Figure 4 shows the local Nu close to the target plate for various Reynolds numbers.
According to Figure 4, as the Reynolds number increases, the curves for Nusselt shift
toward higher values, increasing the peak at the stagnation region (x¼ 0). In
addition, it can be seen that a second Nusselt peak appears for Re> 10,400 and at
about x=B¼ 12, becoming more pronounced as Re increases [33].

Channel with Porous Layer

When a layer of porous material is added to the bottom of the channel, the
resulting configuration is shown in Figure 1b. The material is assumed to be rigid,
with porosity /, nondimensional thickness h=H, Darcy number Da¼K=H2, and
thermal conductivity ratio ks=kf. Results below are obtained using distinct values
for such four parameters.

Effect of porosity, /. In this section, the results were obtained using
H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400, Da¼ 8.95� 10�5, and h=H¼ 0.50.

Figure 5a shows streamlines and indicates that porosity variation does not
strongly influences the flow behavior, as also confirmed by Graminho and de Lemos
[30] and de Lemos and Fischer [33].

One can note that the presence of the porous layer reduces de size of the pri-
mary vortex, and that the strength of convection fluxes is smaller inside the porous
material than in the clear passage, as expected. After the stagnation region, in the

Figure 4. Effect of Re on Nu number for clear channel.
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accelerating length (0.06< x< 0.10) the flow tends to detach from the porous layer,
reattaching further downstream. This trend is more pronounced as porosity
increases, which is expected since within low porosity media the flow tends towards
a plug-flow configuration, as it appears to be the case with /¼ 0.50.

Figure 5. Effect of porosity / for H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400, Da¼ 8.95� 10�5, and h=H¼ 0.50.

(a) Streamlines, (b) turbulent field k, and (c) temperature field T.
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Figure 5b shows corresponding results for the turbulent field. Note that as porosity
decreases, k levels increase.High values of k are also encountered around the jet entrance
where steep velocity gradients occur. Around the interface, levels of k are also high. This
scenario contrasts with the clear channel distribution where most of the turbulence
energy is generated in the recirculation zone corresponding to the primary vortex.

Porosity effects on T are presented in Figure 5c. In the figure, one can see
that isolines present a coherent behavior with the flow pattern and, in the region
0.06< x< 0.10, such lines bulge away from the bottom wall. Further, it becomes
evident that for low porosities the temperature is more homogenized and the ther-
mal boundary layer becomes thicker, resulting in lower temperature gradients at
the wall.

Nusselt numbers at wall are presented next in Figure 6, showing a peak in the
stagnation region and a minimum value in the range x=B¼ 5.0� 10.0, which is
related to the above seen flow structure within 0.06< x< 0.10, where velocities are
low and the boundary layer thick. Also, one can observe that porosity does not affect
Nu in the stagnation region, but increases the Nusselt number for a higher / as the
flow downstream resembles a wall jet. For low porosities, the value for Nu down-
stream the flow is reduced and a minimum value for its longitudinal distribution
tends to disappear, indicating that under such circumstances the temperature is more
uniform, as already seen in Figure 5.

Effect of channel blockage, h/H. A study of the influence of the porous
layer thickness in the heat transfer is now presented. The streamlines for a simulation
with various porous layer thicknesses, with H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400,
Da¼ 8.95� 10�5, and /¼ 0.90, are presented in Figure 7a. The figure indicates that
the value of h=H has a great influence on the flow pattern. As the blockage ratio
increases, the primary vortex is reduced, being nearly extinguished for h=H¼ 0.75.

Figure 6. Local Nusselt distribution for various porosities with H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400,

Da¼ 8.95� 10�5, and h=H¼ 0.50.
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Specifically for h=H¼ 0.40, a new recirculation region seems to appear close to the
bottom wall, whose vortex is named secondary. Also, as h=H increases, streamlines
tend to become more uniform within the channel.

The corresponding statistical field behavior is presented in Figure 7b, where
maps for k are shown. For h=H from 0.25 to 0.50, levels of k are reduced as the
porous layer gets thicker. On the other hand for h=H higher than 0.60, steep velocity
gradients in the fluid layer increases k since the fluid is pushed towards the free gap,

Figure 7. Effect of blockage ratio h=H for H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400, Da¼ 8.95� 10�5, and

/¼ 0,90. (a) Streamlines, (b) turbulent field k, and (c) temperature field T.
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causing large velocity gradients in that regions. In addition, the temperature field in
Figure 7c is also influenced by the porous layer thickness variation. The thermal field
becomes more homogenized for thicker layers, as a consequence of the more uniform
flow field observed in Figure 7a.

To complete the analysis, the local Nusselt number is presented in Figure 8
for various porous layer thicknesses. The stagnation Nusselt peak diminishes with
the insertion of the porous layer, and for thicknesses less than h¼ 0.40H the
second peak in Nu is still present, as shown in Figure 8. The presence of the
second peak is connected with the secondary vortices appearing in Figure 7. Also,
it can be seen that variation of h=H does not influence the value of stagnation Nus-
selt peak as strongly as the variation of porosity, as can be concluded by compar-
ing Figures 6 and 8. The main influence of the thickness of the porous layer is in
the shape of the curve of Nusselt distribution along the stagnation region, chan-
ging from a double humped profile for clear channel to a single peak distribution
for h=H¼ 0.75.

Effect of Darcy number, Da. Contrary to what was observed in the analysis
of the effects of porosity, permeability strongly influences the hydrodynamic field,
as can be seen in Figure 9a, which was calculated with H=B¼ 2.6, ks=kf¼ 10,
Re¼ 10,400, /¼ 0.50, and h=H¼ 0.50. The size of the primary vortex decreases
with a decrease in permeability, as well as the fluid velocity inside the porous
medium leading to a lower mass flow rate inside the layer covering the wall. For
Da¼ 2.89� 10�6 and Da¼ 4.86� 10�7, from x¼ 0.05m to x¼ 0.10m, the flow
nearly vanishes in the porous material, as can be seen by the streamlines in
Figure 9a and in the plots shown in Figure 10 for the velocity profiles along the
axial channel position.

Back to the analysis of the previous figure, Figure 9b presents two-
dimensional fields for the turbulence kinetic energy k. For Da¼ 7.30� 10�3 and

Figure 8. Local Nusselt distribution for various blockage ratios h=H with H=B¼ 2.6, ks=kf¼ 10,

Re¼ 10,400, Da¼ 8.95� 10�5, and /¼ 0.90.
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Figure 9. Effect of Da for H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400, /¼ 0.50 e h=H¼ 0.50. (a) Streamlines,

(b) turbulent field k, and (c) temperature field T.
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Da¼ 3.68� 10�4, generation of k is enhanced and is even grater than for the clear
channel case. Again, the region of highest turbulence corresponds to the jet
entrance region, where steep velocity gradients produce high generation rates of
k. For vey low permeabilities, Da¼ 4.86� 10�7, and due to the fact that within
the porous matrix velocities attain very low values, corresponding k values are also
low. On the other hand, as fluid is pushed to flow thought the clear gap, higher
values of k are found in that region.

Figure 9c shows temperature distributions for distinct values of Da¼K=H2. In
this figure, one can see that as permeability decreases, isothermal lines, referent to
the highest temperatures, bulge from the hot wall thickening the thermal boundary
layer at the surface. In accordance with the flow pattern (Figure 9a), cases with
Da¼ 2.89� 10�6 and Da¼ 4.86� 10�7 present temperature peaks from x¼ 0.05m
to x¼ 0.10m, due to flow blockage in that region.

Figure 11 shows Nusselt numbers along the wall as a function of Da, where
one can see that in such cases Nu at the stagnation region is most influenced,
being reduced as Da is reduced. In the wall jet region, local Nu is also reduced,
but less intensively when compared with its variation as a function of porosity
(Figure 5).

Effect of thermal conductivity ration ks/kf. In this section the effect of
varying ks=kf is investigated. Used parameters are H=B¼ 2.6, Re¼ 10,400,
Da¼ 8.95� 10�5, /¼ 0.90, h=H¼ 0.50, and several values of ks=kf. Evidently, since

Figure 10. Velocity profiles at several axial stations for H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400, h=H¼ 0.50.

(a) Da¼ 7.30� 10�3, (b) Da¼ 8.95� 10�5, and (c) Da¼ 4.86� 10�7.
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we are running only decoupled solutions, the flow filed is not impacted by the
thermal conductivity ratio.

Figure 12 shows that, as expected, the thermal field is highly influenced by the
ratio ks=kf. Fore high thermal conductivity ratios, isotherms depart from the hot wall
indicating a reduction of temperature gradients and a thickening of the thermal
boundary layer. Such observation is endorsed by Figure 13, which shows Nusselt
at the hot wall. One can note that, in both the stagnation and along the wall regions,
there is a substantial reduction of Nu as ks=kf increases. It is important to emphasize
that tortuosity and dispersion are mechanisms neglected here, and that they might
play a certain role when computing the temperature field. This is particularly impor-
tant if one inspects Eq. (26) and sees that tortuosity is proportional to the difference
between thermal conductivities.

Integral Wall Heat Flux

As pointed out by de Lemos and Fischer [33], another important parameter to
evaluate the effectiveness in using porous layers is to calculate the integrated heat
transferred from the bottom wall. Such overall heat transferred from the lower
surface to the flowing fluid can be calculated for both configurations presented in
Figure 1, as

qw ¼ 1

L

Z L

o

qwx
ðxÞdx; qwx ¼ �keff

qhTii

qy

�����
y¼H

;

keff ¼
/kf þ ð1� /Þks with a porous layer

kf for clear channel

� ð43Þ

Figure 11. Local Nusselt distribution for various Da with H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400, /¼ 0.50,

and h=H¼ 0.50.
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For the cases where the a porous layer is considered, the wall hat flux is given a
superscript / in the form q/w. The ratio q� ¼ q/w=qw can then be seen as a measure of
the effectiveness of using a porous layer for enhancing or damping the amount of
heat transferred through the wall.

Figure 14 compares the ratio q� ¼ q/w=qw as a function of / for several Re, Da,
and h=H, with ks=kf¼ 10. The figures suggest that for cases where there is more solid
material per unit volume (low /) and high permeabilities (high Da), there is a net

Figure 12. Effect of ks=kf on T, H=B¼ 2.6, Re¼ 10,400, Da¼ 8.95� 10�5, /¼ 0.90, and h=H¼ 0.50.
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Figure 14. Integral heat flux ratio at the lower wall for varying porosity /, H=B¼ 2.6, and ks=kf¼ 10.

(a) Effect of Re, (b) effect of Da, and (c) effect of h=H.

Figure 13. Local Nusselt distribution for various ratios ks=kf with H=B¼ 2.6, Re¼ 10,400,

Da¼ 8.95� 10�5, /¼ 0.90, and h=H¼ 0.50.
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gain when using a porous substrate covering the cooled wall (q/w=qw > 1). This is
more apparent as the layer gets ticker (Figure 14c). On the other hand, for high por-
osities (/> 0.6) and turbulent flow (Re> 10,000), disruption of the thermal bound-
ary layer close to the surface, due to the presence of a porous material, damps the
overall heat transferred from the wall.

Figure 15 presents results for q� ¼ q/w=qw as a function of h=H for distinct /
and Da. Note that for low h=H or high Da, the use of a porous material is beneficial
to heat transfer. Figure 16 further indicates that for less permeable materials, only
cases with high porosity (Figure 16a) or thick layers (Figure 16b) give q/w=qw greater
than unity. For more permeable media, a low porosity matrix gives better results,
regardless of its thickness.

Finally, Figure 17 compiles results for q/w=qw when the conductivity ratio ks=kf
is varied. Here, it is important to emphasize that results in the figure were obtained
with the local thermal equilibrium (LTE) assumption (hTii¼hTfii¼ hTsii). Such

Figure 15. Integral heat flux ratio at the lower wall for varying blockage ratio h=H with H=B¼ 2.6,

ks=kf¼ 10, Re¼ 10,400 (a) Da¼ 8.95� 10�5, and (b) /¼ 0.50.
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Figure 16. Integral heat flux ratio at the lower wall for various Da, H=B¼ 2.6, ks=kf¼ 10, Re¼ 10,400.

(a) Effect of porosity /, h=H¼ 0.50 and (b) effect of blockage ratio h=H, /¼ 0.50.

Figure 17. Integral heat flux ratio at the lower wall for various ratios ks=kf and porosities with

Re¼ 10,400, h=H¼ 0.5, H=B¼ 2.6, and Da¼ 8.95� 10�5.
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hypotheses might not be valid when the conductivity of the two media differs from
each other by a large amount.

In Figure 17, one can note that increasing the conductivity ratio past ks=kf> 10,
it is always possible to enhance the heat extracted from the bottom wall. The results
herein might be useful to the design and analysis of energy efficient equipment.

6. CONCLUSION

The presence of a porous layer covering a surface where a jet collides eliminates
the second peak in Nu and allows for controlling heat transfer from the wall. It was
observed that porosity strongly influences the stagnation Nusselt value, while the
porous layer thickness affects more intensely the distribution of Nu along the plate.
Low porosity material tends to yield better heat absorption=release rates when
compared with media that are more permeable. Increasing the thermal conductivity
ratio is always beneficial to heat transfer enhancement form the hot wall. Ultimately,
results in this work might be useful to engineers designing systems that make use of
impinging jets over thermally-conducting porous materials, which possess a large
interfacial air-to-solid contact area and are used advantageously for cooling or
heating purposes.
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