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This work presents numerical prediction for the turbulent flow field confined in a circular

duct past a segment of gradually varying cross section. Both expanding and contracting

sections are investigated. Equations of boundary-layer type are used and the linear k–e
model, in its high Reynolds form, is applied. A new correlation for treating the grid point

closest to the wall is proposed. A marching-forward method is employed for sweeping the

computational domain. Computations are first performed for developing and fully developed

constant-area ducts in order to assess the reliability of the code. Results are then presented

for contractions and diffusers, where comparisons with experimental data for air and water

are carried out. Turbulence damping in contractions and its enhancement in diffusers are

calculated correctly. Further, for contractions with angles of up to 21�, the use of a

parabolic solver shows good agreement with experimental values for the mean and statis-

tical quantities. For diffusers, adverse pressure gradient along the flow limits the quality of

the predictions as the angle and length of diffuser increase past 5� and 10 duct radii,

respectively.

INTRODUCTION

Passages with gradual contractions and enlargements are found in a number of
types of engineering equipment. Turbulent flows within such ducts can be en-
countered in industrial piping, jetpumps, gas turbines, and air conditioning ducts, for
example. Accurate determination of flow mixing and heat transfer rates in such
devices contributes to efficiency increase, optimal design parameters, and, ultimately,
reduction of the cost–benefit relationship.

Accordingly, the use of simple numerical tools for initial engineering estimates,
instead of using memory-demanding, large computational fluid dynamics (CFD)
codes, can benefit the overall design process if repetitive calculations are mandatory.
If no back flow is in order, marching-forward techniques, implemented along with
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isotropic turbulence models, provide an economical means for conceptual design
using cheaper PC-based workstations.

Today, advanced CFD codes such as CFX, FLUENT, ANSYS, and STAR-
CD, among many other available fluid solvers, are able to handle structured as well
as unstructured grids using a number of different turbulence models. Accordingly,
for simulating a complex geometry, the block-structure approach can be applied, in
which the flow equations are solved in each block, exchanging boundary information
repetitively in order to bring down the residue in each region. In some cases, the
overall numerical solution may suffer from long computing times and, on blocks
where the flow presents a clear preferential direction, with no recirculating regions,
then within that particular region the procedure discussed herein could be applied.
Ultimately, in complex flow analyses, one can use different flow models (parabolic or

NOMENCLATURE

cp pressure recovery coefficient,

Eq. (20)

cm constant in Prandtl-Kolmogorov

expression

c1 k–e model constant

c2 k–e model constant

D duct diameter

E wall law constant

f friction factor

f1 friction factor for fully developed flow

f=fm friction factor ratio

k turbulent kinetic energy per unit mass

(uiui=2)

m00
E external surface mass flux in boundary

layer

m00
I internal surface mass flux in boundary

layer

N number of grid points in transverse

direction

p static pressure

P production rate of k ½¼ mt=r qu=qyð Þ2�,
Eq. (6)

r radial coordinate

rE external radius of boundary layer

rI internal radius of boundary layer

R duct radius

Re Reynolds number

Sf source term for f (¼ u, k, e)
u axial velocity

u=Um nondimensional mean velocity

Um mean velocity

U� friction velocity

Uþ nondimensional velocity in wall

coordinates, Eq. (12).

v transverse velocity

x axial coordinate

y0 wall distance (¼R7 y)

y transverse coordinate for boundary

layer (r¼ y for internal flow)

k=U2
m nondimensional turbulence kinetic

energy

yþN nondimensional wall distance for first

grid point, Eq. (12)

a parameter for radial grid distribution,

Eq. (16)

b parameter for axial integration step,

Eq. (15)

Gk
eff effective transport coefficient for k,

ð¼ mþ mt=skÞ
Ge
eff effective transport coefficient for e,

ð¼ mþ mt=sEÞ
Gf
eff effective transport coefficient for

general variable f (¼ u, k, e)
e Dissipation rate of k

y angle of duct wall with horizontal

K von Kármán constant

m fluid dynamic viscosity

meff effective transport coefficient for u

ð¼ mþ mtÞ Eq. (3)
mt turbulent momentum transport

coefficient ð¼ rcûuk2=eÞ, Eq. (4)
r fluid density

sk turbulent Prandtl=Schmidt number

for k

se turbulent Prandtl=Schmidt number

for e
tw wall shear stress

f general dependent variable (¼ u, k, e)
C stream function

CE value of C at external surface of

boundary layer

CEI CE7CI

CI value of C at internal surface of

boundary layer
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elliptic) for handling different blocks, contributing to the overall robustness of the
entire solution process.

For code validation, the compilation work of Spencer et al. 1995 [1] seems to be
the only available experimental data bank for turbulent flow within gradual con-
tractions and diffusers. Therein, experimental data from 11 institutions around the
world, taken for flow of air and water in a contraction and in a diffuser, were
compared with each other and with computational results using commercial CFD
codes. To the best of the authors’ knowledge, other than the experiments in [1], most
data published on turbulent ducted flows deal with jets undergoing a sudden ex-
pansion. When validating flow simulations using simpler parabolic codes, mea-
surements involving abrupt flow expansions can no longer be used for comparison,
at least in the near-field region.

Examples of recirculating flow past an abrupt expansion are jets flowing into a
stagnant surrounding [2] or within a confining duct [3]. Measurements in two-phase
systems [4,5] and computational studies applying large–eddy simulation to coaxial
jets are also found in the literature [6]. Yule and Damou [7] presented results for
confined coaxial turbulent jets with velocity ratio U1=U2 up to 30, U1 being the
central jet velocity. Both streams flowed into a convergent-divergent channel. The
report was limited to mean axial velocity and axial turbulent intensity, yet their
overall duct length was of a relative short size (x=D¼ 4).

Acknowledging the advantages of ‘‘fast’’ parabolic solvers, Matsumoto and
de Lemos [8] presented results for the developing time-averaged and turbulent fields
in a coaxial jet along a circular duct of constant area. Later, de Lemos and Milan [9]
extended their calculations to flow in long ducts through varying cross sections.
De Lemos and Braga [10] further considered coaxial jets with higher and lower
annular velocities in diverging and converging ducts of sinusoidal shape. Similar
results for ducts with plane walls have also been documented [11]. Experimentally
observed turbulence damping in contractions and corresponding enhancement in
diffusers, reported in detail by Spencer et al. [1], was correctly simulated by de Lemos
and Braga [12]. In that report, direct comparisons with experimental data showed
that for contractions up to 21� and for diffusers up to 5�, the model and numerical
scheme employed reproduced the basic features of the flow. Beyond those values, as
expected, deterioration of the prediction quality was observed, since parabolic
equations were considered.

Heat transfer analysis followed with the work of de Lemos and Braga [13], who
reported Nusselt numbers and turbulent kinetic energy in planar diffusers and
contractions. Therein, flow and heat transfer properties of coaxial jets with higher
inner velocity (Ui>Ue) and temperature (Ti>Te) were predicted. That work made
use of the standard k–e model, wall log laws for velocity and temperature, and the
assumption of constant turbulent Prandtl number. Interesting dissimilarity between
heat transport and turbulence was calculated and discussed. While turbulence was
damped along accelerating flows (contractions), heat transfer was increased by a fair
amount.

The objective of this article is to show that for contractions with angles of up to
21�, the use of a parabolic solver can capture the basic features of the flow if care is
taken in the discretization process, if proper grid layout is used, and if an adequate
integration step size is employed due to boundary-layer growth along the flow.
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For diffusers, adverse pressure gradient along the flow limits the quality of the
predictions as the angle and length of diffuser increase past 5� and 10 duct radii,
respectively.

MATHEMATICAL MODEL

Geometry

The flow analyzed here consists of a confined stream inside a circular duct of
varying cross section. Only situations of gradual area variation are considered here
because of the parabolic character of the system of equations comprising the
mathematical model. A schematic of the geometry considered is shown in Figure 1a.
The configuration under study consists of diffusers and contractions of a conical
wall. It should be pointed out that in ducts with varying cross section, ‘‘recirculating
zones’’ are observed experimentally close to the walls whenever the value of angle y
in an expansion is high. In contractions, the ‘‘vena contracta’’ effect is also observed
downstream as an abrupt area reduction. In those cases, as already pointed out,
boundary-layer treatment of the flow is no longer valid. This work does not consider
cases involving any kind of recirculating zone.

Boundary-Layer Equations for Turbulent Flow

For generality, the equations below are written embracing planar and axi-
symmetric cases. The equations are also presented in a simplified form, making use
of the concept of turbulent viscosity, mt. In this concept, the time-averaged Reynolds
stresses are taken as proportional to the rate of the deformation tensor. Models that
fall into this category are called isotropic turbulence models.

Accordingly, the equations of conservation of mass and x momentum for a
two-dimensional, source-free, low-speed, planar=axisymmetric turbulent boundary
(mixing) layer can be written as

qðrZruÞ
qx

þ qðrZrvÞ
qy

¼ 0 ð1Þ

ru
qu
qx

þ rv
qu
qy

¼ � qk
qx

þ 1

rZ
q
qy

rZ meff
qu
qy

� �
ð2Þ

In Eqs. (1)–(2) u, v are the velocity components in the axial and transverse
directions, respectively, r is the fluid density, p is the static pressure, and meff is the
effective (turbulentþ laminar) coefficient of exchange, given as

meff ¼ mþ mt ð3Þ

Also, in Eq. (3), m is the molecular viscosity. As mentioned before, Eqs. (1)–(2) are
written in a compact notation embracing planar (Z¼ 0) and axisymmetric (Z¼ 1)
cases.
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Figure 1. General notation. (a) Conical duct: y> 0, diffuser, y< 0, contraction, (b) Control volume. (c)

Wall layer model.
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The standard k–e turbulence model [14] has been extensively used in the
literature for its characteristics of robustness and numerical stability. Recent
extensions of its applicability to a wide variety of flows include the so-called RNG
and nonlinear approaches [15]. In fact, the basic advantage of such nonlinear
closures over more complex models, e.g., the algebraic stress model (ASM) [16–18],
lies in the achieved computational savings (roughly 25–50% less computing time).
Basically, the standard k–e model embodies the early idea of Prandtl=Kolmogorov
that, in a turbulent flow, the apparent viscosity mt can be considered as proportional
to the product of a characteristic velocity scale, V0, and a characteristic length scale,
L0. In the k–e model, the characteristic velocity scale is given by V0 ¼ k1=2, and the
characteristic length scale is written as L0 ¼ k3=2=e, implying, for the turbulent
viscosity,

mt ¼ rcmk2=e ð4Þ

where cm is a constant. Here, only the case involving flow regions of high local
Reynolds numbers, or say, regions with Kolmogorov and macroscopic scales
adequately separated, is considered [19]. With this, transport equations for k and e
can be written as

ru
qk
qx

þ rv
qk
qy

¼ 1

rZ
q
qy

rZGk
eff

qk
qy

� �
þ Sk

ru
qe
qx

þ rv
qe
qy

¼ 1

rZ
q
qy

rZGe
eff

qe
qy

� �
þ Se

ð5Þ

In Eq. (5), Gk
eff and Ge

eff are given by Gk
eff ¼ mþ m1=sk and Ge

eff ¼ mþ mt=se, where
the g’s are the effective coefficients of exchange (laminar þ turbulent) and the
s’s are turbulent Prandtl=Schmidt numbers for k and e. The last terms in Eq. (5)
are known as ‘‘source’’ terms and are given by Sk ¼ rðP� eÞ and
Sc ¼ rðe=kÞðc1P� c2eÞ, where c1¼ 1.47, c2¼ 1.92, and cm ¼ 0.09. The production
term reads

P ¼ mt
r

qU
qy

� �2
ð6Þ

NUMERICAL METHOD

The numerical solution of Eqs. (1), (2), and (5) follows the boundary-layer
methodology fully explained by Patankar and Spalding [20, 21], where more details
can be found. Essentially, a nondimensional coordinate system based on the stream
function is used to lay down grid points along the radial coordinate. An example of
the control volume for parabolic flows is illustrated in Figure 1b. Inlet flow is given a
uniform distribution and the values of k and e at the entrance were assumed as

kin ¼ CU2
m ð7Þ
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and

ein ¼ k
3=2
in

Ky
0 ð8Þ

where C is a constant, Um is the overall mean velocity, K is the von Kármán constant
(K¼ 0.4), and y0 is the distance to the wall. The constant C in Eq. (7) depends on the
level of turbulence intensity that is assumed at the inlet. If the turbulence intensity is
defined as

Tu ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3ðu0

iÞ
2

q
Um

ð9Þ

where u
0
i is the fluctuating component in the axial direction and the average velocity

Um is the reference velocity, an inlet value for k can be given for isotropic
turbulence as

kin ¼ 3

2
ðu 0

i Þ
2 ¼ 1

2
Tu2

� �
U2

m ð10Þ

For the centerline (y¼ 0), the symmetry condition is implemented for all dependent
variables f¼ u, k, e, as

qf
qy

����
y¼0

¼ 0

Wall treatment. The mathematical model seen above is not valid inside the
layers very close to the wall, where viscous effects are predominant. Velocity at
the grid point closest to the wall is handled by the usual wall function approach
described by Launder and Spalding [19, 22]. Even though it is recognized that
standard wall function treatment may be influenced by variations in the pressure
gradient due to flow in enlarging and contracting sections, its use is adopted here
for the sake of simplicity. The notation below refers to Figure 1c where the location
of the first grid point close to the wall, N is identified. the wall function gives for the
wall shear stress at node N,

tw ¼ UNrc1=4m k
1=2
N

� �, 1

K
ln EyN

rðc1=2m kNÞ1=2

m

" #
ð11Þ

where E a constant. In Eq. (11) the subscript N identifies the grid point closest to the
wall. In that region, the use of the wall function, characterized by the expressions

Uþ
N ¼ 1

K
ln yþNE
	 


Uþ
N ¼ uN

U� yþN ¼ myNU�

r
U� ¼

ffiffiffiffiffi
tw
r

r
ð12Þ

and associated with the assumption of ‘‘local equilibrium’’ for turbulence (P¼ e),
gives for point N,
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kN ¼ tw
ðrcmÞ1=2

eN ¼ k
3=2
N

Ky0N
ð13Þ

Rewriting Eq. (11) in the form tw ¼ lmðqU=qyÞ gives

l ¼

1 for laminar flow

KyN
rðc1=2m kNÞ1=2

m

h i
ln EyN

rðc1=2m kNÞ1=2

m

h in o for turbulent flow

8>>><
>>>:

ð14Þ

Numerical Algorithm And Computational Details

Treatment of unknown pressure gradient. To obtain a velocity profile at
the downstream position xp, it is necessary to know the pressure gradient dp=dx. For
internal flows, however, the pressure gradient is not known a priori and must be
determined during the calculation. Determination of the unknown pressure gradient
is handled here as in Patankar, 1988 [21]. With these restrictions applied, the axial
momentum equation can be solved with well-known marching-forward numerical
techniques for computation of parabolic and partially parabolic flows.

Solution of system of algebraic equations. For the solution of the alge-
braic system of equations is adopted here the well-known method known as the
tri-diagonal matrix algorithm (TDMA) also referred to as the Thomas algorithm.
This method takes advantage of the high sparcity degree presented by the coefficient
matrix, having only three diagonals and being easily inverted.

Numerical treatment of integration step (xP7 xA). For the numerical
solution of the algebraic system at axial station xP, the integration step size
(xP7 xA) determines the rate at which the longitudinal coordinate x is swept along
the duct. In the vicinity of the boundary-layer leading edge (x� 0), the dependent
variable f (f¼ u, k, e,) varies more rapidly with x, if one considers the initial growth
rate of the boundary layer. Therefore, the use of a small but constant value for
(xP7 xA) could be appropriate for the rapid changes of f in the developing region
but would imply an excessive number of integration steps at the subsequent devel-
oped region. Likewise, a large value for (xP7 xA) in the beginning of the sweep
could, at the inlet region, cause numerical instability due to the large variation of
all dependent variables within the initial boundary-layer development.

In this work, the integration step size is adopted as proportional to the distance
from the point in question to the beginning of the calculation as

xP � xÂA
R

¼ x� xI
xL � x1

� �b

ð15Þ

where indexes I and L correspond to the initial and final x positions, respectively,
and R is the duct radius at x¼L. In Eq. (15) the parameter b gives great flexibility in
the choice of the integration step. For b> 1, the integration step varies more slowly
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in the inlet region. Within an area varying duct section, limits I and L in Eq. (15) are
reset to diffuser=contraction limits.

Radial distribution of nodal points. In the boundary layer close to the tube
wall, the discretization of the production term for k, Eq. (6), is rather sensitive to the
radial grid layout. A flexible grid-point distribution is obtained by the use of a co-
ordinate transformation of the type f¼ ra, giving for discrete positions along the
radial position r,

ri ¼
Ra

N
� ri�1

� �1=a

ð16Þ

where i is the index of the nodal point in question and a a parameter for grid control.
Note that, for the same number of computational nodes N, an increase of a will
concentrate points close to the wall. The location of the first grid point closest to the
wall is discussed in some more detail below.

RESULTS AND DISCUSSION

Code Validation

Results for turbulent flow in developing and fully developed tubes were com-
puted with the methodology described herein and were compared with experimental
data. This first set of calculations aimed at the validation of the code developed and
were presented in detail in [8–10]. Grid independence studies showed that for more
than 30 nodal points in the radial direction, the solution is nearly grid-independent.
An illustration is presented in Figure 2. Nondimensional velocity distribution u=Um

along the axial coordinate x=D for several radial positions was extensively analyzed
in [10] and [23]. Results therein were compared with experimental data of Barbin and
Jones [24] for Re¼ 388,000. Computations by Braga [23] for the fully developed
region were also extensively compared with the classical experiments of Laufer [25].
Ultimately, extensive validation of the code was accomplished and reported in a
number of previous articles. That previous work assured the correctness of the code
used in the computations herein.

Proposed Correlation for the Nodal Point Closest to the Wall

Several correlations for the Darcy (Moody) friction factor f defined by

f ¼ 8tw
rU2

m

ð17Þ

are compiled in Table 1. Those correlations are valid for a smooth tube and are
presented in Kakaç [29], Table 2 shows values for computed f compared with same
factors calculated with the correlations of Table 1, but for different radial positions
yþN [see Eq. (12)] for the grid point closest to the wall (Figure 1b). Noted is the general
agreement of the calculated values with those from the literature. Also observed is
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the existence of an optimal value for yþN for a certain Re. According to Matsumoto
and de Lemos [8], the dependence of this optimal value for yþN on Re was considered
in the proposed correlation for circular tubes,

yþNjoptimal ¼ 6; 2849� 10�4 Reþ 6:1452 ð18Þ

The main idea of Eq. (18) is to use an optimal grid layout depending on the
range of Re of the flow. Table 3 presents results for the friction factor for several Re

Figure 2. Effect of number of nodal points N on u=Um, Re¼ 500.

Table 1. Correlations for turbulent flow in smooth pipe by Kakaç [29]

Reference Correlation

Blasius fB ¼ 4(0.0791 Re7 0.25)

Drew, Koo, & McAdams fD ¼ 4(0.00140 + 0.125 Re7 0.32)

von Kármán & Nikuradse fKN ¼ 4[(3.64 log Re7 3.28)7 2]

Flonenko fF ¼ 4/(1.58 ln Re7 3.28)2

Techo, Tickner, & James fT ¼ 4 1:7372 ln Re
1:964 lnRe�3:8215

� �� ��2
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values calculated with optimum values for yþN from Eq. (18). Also presented are the
relative errors when the same friction factor is calculated with the correlations of
Table 1. The relative error is calculated as

ecorrel ¼
fcalc � fcorrel

fcorrel
� 100 ð19Þ

where correl¼B, D, KN, F, or T, depending on the reference cited. Independent of
the correlation used (except Blasius, valid up to Re¼ 10,000), the results show
reasonable agreement with the literature cited.

Duct of Varying Cross Section

This section presents results for two flow cases considering converging and
diverging sections. Simulations are presented for the hydrodynamic field, mean ve-
locity and turbulent kinetic energy being presented. Herein, the main features of the
flow past a conical diffuser or contraction are calculated. For both air and water,
profiles of u=Um and k=Um

2 were compared against experimental values and nu-
merical calculations. As mentioned, the results that follow were compared with
measurements of Spencer et al. [1], who reported data for air and water in con-
tracting and expanding ducts. In that work, a compilation of the combined effort by
11 European institutions in measuring and simulating turbulent flow past conical
diffusers and enlargements was reported. A schematic of the test rigs used is re-
produced in Figure 3, containing also all dimensions used to simulate the experi-
ments reported by Spencer et al. [1]. Measurements were reported for air and water
in addition to calculations obtained with commercial CFD codes.

Table 2. Calculated f values with correlations of Table 1 (Re¼ 388,000)

yN
þ fcalc fcalc=fB fcalc=fT fcalc=fD fcalc=fKN fcalc=fF

100 0.01398 1.10427 1.01356 1.01747 1.01747 1.01628

175 0.01387 1.09549 1.00558 1.00946 1.00946 1.00829

200 0.01384 1.09312 1.00341 1.00728 1.00728 1.00611

225 0.01382 1.09154 1.00196 1.00582 1.00582 1.00465

250 0.01380 1.08996 1.00051 1.00437 1.00437 1.00320

275 0.01378 1.08838 0.99906 1.00291 1.00291 1.00175

300 0.01376 1.08680 0.99761 1.00146 1.00146 1.00029

325 0.01375 1.08601 0.99688 1.00073 1.00073 0.99956

400 0.01369 1.08113 0.99253 0.99636 0.99636 0.99520

Table 3. Influence of Re on f with optimal yþN

Re yþN fcalc fB fT fD fKN fF

eB
(%)

eT
(%)

eD
(%)

eN
(%)

eF
(%)

50,000 38 0.02096 0.02113 0.02091 0.02128 0.02093 0.02096 0.80 0.24 1.50 0.14 0.00

388,000 250 0.01380 0.01266 0.01379 0.01374 0.01374 0.01376 9.00 0.07 0.44 0.44 0.29

500,000 320 0.01327 0.01188 0.01316 0.01310 0.01311 0.01313 11.70 1.14 1.30 1.22 1.07
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Contraction. Figure 4 show results for mean velocity at stations 1, 2, 3 of a
contraction (Figure 3, upper drawing). Due to symmetry in y¼ 0, present simula-
tions cover the range 0< y=R< 1 only (thick lines). To emphasize the spread in
the results reported by Spencer et al. [1], the experiments therein were combined into
three groups, Lab-A, Lab-B and Lab-C. Numerical runs, also reported by Spencer
et al. [1], were also recast into the groups Calc-1, related to the use of the k–e model,
and Calc-2, where an algebraic stress model (ASM) for turbulence was used. These
so-called groups of results, either experimental or numerical, express the proximity
of different data sources when compared against each other. The existence of differ-
ent groups of results is a clear indication that even for simple engineering flows, mea-
suring and calculations can differ quite a bit if taken at different places, using
different techniques and equipment.

Also, although not stated explicitly in the text, the use of commercial codes in
Spencer et al. [1] is an indication of solution being sought with elliptic solvers rather
than with the simpler parabolic approach as adopted here. It is equally important to
note that all calculations reported by Spencer et al. had as inlet boundary condition
the experiments in station 1, always before the area-change section, either for con-
tractions or diffusers, for both air and water runs. Therefore, computation presented

Figure 3. Experimental setup used by Spencer et al. [1].
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by Spencer et al. are expected to agree at all stations 1, as they do in Figure 4a. On
the other hand, the present calculations had an inlet developing region simulated
first, beginning at several diameters upstream of station 1. In addition, boundary
conditions applied here, instead of using measured values at section 1 of test rigs,
were always given as flat profiles for u and by Eqs. (7) and (8) for k and e, respec-
tively, not at station 1, but rather at the beginning of the just-mentioned inlet length.
This procedure was adopted such that at station 1 we had enough boundary-layer
growth so that calculations would match the reported experimental profiles. The
agreement with experiments and the present simulations at station 1 is then, as
expected, clearly seen in all figures.

Figure 4. Nondimensional velocity profiles for air flow in a contraction (see Figure 3 for station location):

(a) station 1 (x=D¼ 21); (b) station 2 (x=D¼ 24.1933); (c) station 3 (x=D¼ 28.6933).
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Corresponding turbulence kinetic energy is presented in Figure 5 for sections 1,
2, and 3. The present results were calculated with different inlet turbulence in-
tensities, giving distinct inlet values for k at the inlet according to Eq. (10). In Figure
5, results are presented for Tu¼ 1.26, 2.28, 4.02, and 7.07% and show that an effect
is obtained at the inlet section 1, particularly at the pipe center, but little influence on
the overall k values seems to exist downstream in the flow. The most striking feature
to be noted, however, is the perfect follow-up to the problem physics by the present
method, showing the damping of turbulence as the flow passes the contraction. This
important feature, further discussed in the results show below, could not be correctly
reproduced with more sophisticated models (ASM) and numeric tools (elliptic sol-
vers) compared by Spencer et al. [1].

Figure 5. Profiles of k=U2
m for air flow in a contraction (see Figure 3 for station location): (a) station 1

(x=D ¼ 21); (b) station 2 (x=D ¼ 24:1933); (c) station 3 (x=D ¼ 28:6933).
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Similar results through the contraction of test rig in Figure 3 for water are
presented in Figure 6 for u=Um and Figure 7 for k=Um

2. Basically, the same features
are also found here, showing the correctness of the methodology employed when
compared with experimental evidence.

Diffuser. In a diffuser, the flow is subjected to an adverse pressure gradient.
For the conditions of the measurements, separation was indeed observed as pointed
out by Spencer et al. [1], for air, although no information on the size of the recircu-
lating region was reported. Here, it is also important to emphasize that, in principle,
the overall calculation in diffusers depends much more on the turbulence model than
it does on contracting ducts. Enhancement of turbulence makes turbulence terms of
a greater importance in the momentum equation (2). Other factors, however, also

Figure 6. Nondimensional velocity profiles for water flow in a contraction (see Figure 3 for station

location): (a) station 1 (x=D¼ 50.8); (b) station 2 (x=D¼ 53.93); (c) station 3 (x=D¼ 58.43).
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affect the quality of the predictions. When using parabolic solvers, proper grid
layout, appropriate integration step size relative to boundary-layer thickness,
number of visited x stations, and care in handling the unknown pressure gradient
can substantially improve numerical stability and results accuracy.

Figures 8 and 9 shows comparisons for u=Um and k=Um
2 , respectively. The

lines represented by Calc in the figures are computations performed with an alge-
braic stress model rather than the simpler linear k–e here employed. Profiles calcu-
lated at station 1, for u=Um (Figure 8a) and for k=Um

2 (Figure 9a), did not quite
match those of the other calculations, most likely due to the distinct methodologies
as explained earlier. In this work a developing length was calculated first, before the
diffuser inlet. Also, turbulence intensities at the beginning of all diffuser calculations
were maintained at 2.28%.

Figure 7. Profiles of k=U2
m for water flow in a contraction (see Figure 3 for station location): a) station 1

(x=D ¼ 50:8); b) station 2 (x=D ¼ 53:93); c) station 3 (x=D ¼ 58:43).
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The striking feature of Figures 8 and 9 is that in spite of using a parabolic
solver and a linear k–e model, the present calculations seem to be of comparable
quality to those obtained with an ASM model of turbulence. Bulging of the mean
velocity profile (Figure 8b) is even closer to experiments than the ASM calculations.
In measuring section 2, Figure 9b also reveals quite a difficulty in recovering the
correct levels of k, in either set of calculations. At station 3 ( Figure 9c), the standard
k–e model also gives closer agreement with experimental data, although values for
the turbulent kinetic energy were nearly 30% lower at the wall region.

Similar results for water are presented in Figure 10 for u=Um and Figure 11 for
k=Um

2. The general behavior for all curves indicates that the program developed here
indeed reproduces the basic features of the flow, namely, the increasing in the

Figure 8. Nondimensional velocity profiles for air flow in a diffuser (see Figure 3 for station location): (a)

station 1 (x=D¼ 52); (b) station 2 (x=D¼ 61.865); (c) station 3 (x=D¼ 79.865).
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turbulent kinetic energy along expansions and its reduction along contraction,
independent of the fluid being used.

In Spencer et al. [1], the overall conclusion was that an advanced turbulence
model would do a better job and that ‘‘numerical simulation of turbulent flow
through simple pipe components cannot be achieved with the commercial programs
available.’’ Here, based on the results shown, it is suggested that, for accurate flow
prediction, not only the sophistication of the turbulence model matters, but also
proper implementation of the numerical model and the use of an adequate tool for
the flow in question.

Accordingly, in some practical situations there exists a predominant flow
direction, and yet the cross-stream pressure variation is not negligible. Thus,
the pressure-decoupling approach employed in the parabolic procedure is not

Figure 9. Profiles of k=U2
m for air flow in a diffuser (see Figure 3 for station location): (a) station 1

(x=D¼ 52); (b) station 2 (x=D¼ 61.865); (c) station 3 (x=D¼ 79.865).
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appropriate. Except for the pressure, the solution of all other flow variables can be
obtained by marching from upstream of the domain to the flow exit. However,
important downstream effects transmitted back via pressure cannot be simulated
with a parabolic model. Such situations are called partially parabolic flows. Highly
curved ducts, jets in cross streams, ducts with a rapid change of cross section, and
rotating passages are examples of partially parabolic situations. Pratap and Spalding
[26] presented the basic concept of this class of flow.

In the partially parabolic calculation procedure, the pressure field is stored for
the entire calculation domain, while all other variables are stored for only one or two
marching stations. For a given pressure field, the marching procedure is employed
just as in the fully parabolic situation, while an improved pressure field is obtained

Figure 10. Nondimensional velocity profiles for water flow in a diffuser (see Figure 3 for station location):

(a) station 1 (x=D¼ 51.5); (b) station 2 (x=D¼ 60.37); (c) station 3 (x=D¼ 78.37).
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from a pressure correction or a pressure equation. Many repetitions of the marching
procedure are needed before a converged solution is obtained. Compared with the
fully elliptic procedure, the fully parabolic method offers savings in both computer
time and storage. The partially parabolic procedure saves storage, but the savings in
computer time may not be appreciable [27].

Pressure Coefficient, Cp

Results for the pressure recovery coefficient in diffusers, Cp, defined as

Cp ¼
P1 � P2

1
2 ru

2
1

ð20Þ

Figure 11. Profiles of k=U2
m for water flow in a diffuser (see Figure 3 for station location): (a) station 1

(x=D¼ 51.5); (b) station 2 (x=D¼ 60.37); (c) station 3 (x=D¼ 78.37).
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are presented in Figures 12a, 12b, 12c, and 12d for four values of angle y. Indexes 1
and 2 in Eq. (20) refer to positions at entrance and exit of the diffuser, respectively
(see Figure 1). Results are compared with experiments of Cockrell and Bradley [28].
The length of the conical section of the diffuser is varied for the same angle y.
Pressure recovers as the length of the diffuser increases and flow is decelerated.
Further increasing xc, the velocity close to the walls is reduced, leading eventually to
boundary-layer separation. Then, the model presented is no longer valid for rapidly
expanding ducts flows. Accordingly, a departure from experimental values can be
seen in the figures for lower xc as the diffuser angle increases. These results are co-
herent with the idea of limiting the present model to calculation of diffusers with
small angles y. Here, the idea of having engineering estimates of flow in ducts of
gradually varying cross section, based on economical parabolic solutions, was the

Figure 12. Pressure recovery coefficient for conical diffuser. (a) y¼ 2.5�; (b) y¼ 4.0�; (c) y¼ 5.0�; (d)
y¼ 7.5�.
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main motivation of this work. Detailed flow simulation, capturing the elliptic nature
of the pressure field and boundary-layer separation, can only be achieved with a
proper elliptic formulation.

CONCLUDING REMARKS

This work presented computations with the standard k–e model for simulation
of confined flow in ducts of varying cross section. Diverging and converging ducts
were calculated. In general, accelerated flows in a convergent duct reduce turbulence
level, and the opposing trend is observed in expanding passages.

Comparisons with classical measurements for fully developed pipe indicate
reasonable agreement with the literature. For contractions and diffusers, compari-
sons with the data bank in Spencer et al. 1995 [1] demonstrated that the methodology
employed here, although simple in nature and limited to nonrecirculating flows, gave
better or comparable results than those calculated with more sophisticated numerical
tools and employing more elaborated turbulence modes. Accuracy of the calculated
coefficient of pressure recovery is also limited by the angle and length of the diffuser.

Essentially, this work suggests that, for accurate flow prediction, not only the
sophistication of the turbulence model matters, but also proper implementation of
the numerical model and the robustness and stability of the algorithm employed. For
simple flows, isotropic turbulence theories and simple parabolic codes can provide
economical and reliable tools during preliminary steps in the overall design process
for engineering equipment.
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