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Turbulent Heat Transfer in an
Enclosure With a Horizontal
Permeable Plate in the Middle
Turbulent natural convection in a vertical two-dimensional square cavity, isothermally
heated from below and cooled at the upper surface, is numerically analyzed using the
finite volume method. The enclosure has a thin horizontal porous obstruction, made of a
highly porous material and extremely permeable, located at the cavity midheight. Gov-
erning equations are written in terms of primitive variables and are recast into a general
form. For empty cavities, no discrepancies result for the Nusselt number when laminar
and turbulent model solutions are compared for Rayleigh numbers up to 107. Also, in
general the porous obstruction decreases the heat transfer across the heated walls show-
ing overall lower Nusselt numbers when compared with those without the porous obstruc-
tion. However, the presence of a porous plate in the cavity seems to force an earlier
separation from laminar to turbulence model solutions due to higher generation rates of
turbulent kinetic energy into the porous matrix. �DOI: 10.1115/1.2352779�
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Introduction
The analysis of buoyancy-driven flows in an enclosed cavity

rovides useful comparisons for evaluating the robustness and
erformance of numerical methods dealing with viscous flow cal-
ulations. The importance of the enclosure natural-convection
henomena can best be appreciated by noting several of their
pplication areas. Nuclear reactor safety, heat exchangers, under-
round spread of pollutants, environmental control, grain storage,
ood processing, material processing, geothermal systems, oil ex-
raction, store of nuclear waste material, solar power collectors,
ptimal design of furnaces, crystal growth in liquids, and packed-
ed catalytic reactors are some examples of applications of heat
emoval or addition by free convection mechanism.

The study of natural convection in enclosures still attracts the
ttention of researchers and a significant number of experimental
nd theoretical works have been carried out mainly from the
970s. During the conference on Numerical Methods in Thermal
roblems, which took place in Swansea, Jones �1� proposed that
uoyancy-driven flow in a square cavity would be a suitable ve-
icle for testing and validating computer codes. Following discus-
ions at Swansea, contributions for the solution of the problem
ere invited. The compilation and discussion of the main contri-
utions yielded the classical benchmark of Refs. �2,3�.

The first to introduce a turbulence model in their calculations
ere Markatos and Pericleous �4�. They performed steady 2D

imulations for Ra up to 1016 and presented a complete set of
esults. The work of Henkes, van der Vlugt, and Hoogendoorn �5�
sed the same turbulence model adopted by Markatos and Pericle-
us �4� for 2D calculations up to Ra=1011. In Ref. �5� 2D calcu-
ations using various versions of the k-� turbulence model was
erformed. These versions included the standard as well as the
ow-Reynolds number k-� models. A comparison with experimen-
al results for Nu showed the superiority of the low-Reynolds
umber k-� closures. In Ref. �6�, 3D calculations for laminar flow
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for Ra up to 1010 were presented. Their graphs revealed the 3D
character of the flow. Comparisons were made with 2D simula-
tions and differences were reported for the heat transfer correla-
tion between Nu and Ra. A recent paper by Barakos, Mitsoulis,
and Assimacopoulos �7� reworked the problem for laminar and
turbulent flows for a wide range of Ra. Turbulence was modeled
with the standard k-� closure and the effect of wall functions on
heat transfer was investigated.

Studies concerning natural convection in porous media can be
found in the monographs of Refs. �8,9�. The case of free convec-
tion in a rectangular cavity heated on a side and cooled at the
opposing side is also an important problem in thermal convection
in porous media. The works of Walker and Homsy �10�, Bejan
�11�, Prasad and Kulacki �12�, Beckermann, Viskanta, and Ra-
madhyani �13�, Gross, Bear, and Hickox �14�, and Manole and
Lage �15� have contributed with some important results to this
problem. The recent work of Baytas and Pop �16� was concerned
with a numerical study of the steady free convection flow in rect-
angular and oblique cavities filled with homogeneous porous me-
dia using a nonlinear axis transformation. The Darcy momentum
and energy equations are solved numerically using the �ADI�
method.

Studies on macroscopic transport modeling of incompressible
flows in porous media have been based on the volume-average
methodology for either heat �17� or mass transfer �18–20�. In
turbulent flows, when time fluctuations of the flow properties are
also considered in addition to spatial deviations, there are two
possible methodologies to follow in order to obtain macroscopic
equations: �a� application of time-average operator followed by
volume averaging �21–24�, or �b� use of volume-averaging before
time-averaging is applied �25–27�. However, both sets of macro-
scopic mass transport equations are equivalent when examined
under the recently established double decomposition concept
�28–31�. This theoretical work has been extended to heat transfer
in porous media where both time fluctuations and spatial devia-
tions were considered for temperature and velocity �32,33�. Fur-
ther, a consistent program of systematic analyzes based on the
double-decomposition theory for treating turbulent buoyant flows
�34,35�, nonequilibrium heat transfer �36,37�, mass transfer �38�,
and double diffusion �39�, has been applied to investigate flow
trough porous inserts �40�, heat transfer in permeable baffles �41�,

and flow over a finite porous substrate considering a diffusion-
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ump condition at the interface for the mean �42,43� and turbu-
ence fields �44,45�. All those studies were based on the concepts
rst proposed by �28–31�, which were compared to other views

he literature in �46�. Recently, a book has been published on the
ubject of turbulence modeling in porous media �47�.

Motivated by the foregoing work, this work presents turbulent
atural convection in a vertical two-dimensional square cavity,
sothermally heated from below and cooled at the upper surface.
he enclosure has a thin horizontal porous obstruction located at

he cavity mid height. As the overall heat flux across the enclosure
s from bottom to top, this geometry is here considered a vertical.
he turbulence model here adopted is the standard k-� with wall

unction.

The Problem Considered
The problem considered is shown schematically in Fig. 1 and

efers to the two-dimensional flow of a Boussinesq fluid of Prandtl
umber 1 in a square cavity of side L=1 m. The cavity is assumed
o be of infinite depth along the z-axis and is isothermally heated
rom the bottom and cooled from the ceiling. The vertical square
avity has a porous obstruction of thickness d=0.05 m positioned
t cavity midheight.

The no-slip condition is applied for velocity and the resulting
ow is treated as steady. The controlling parameter is the Rayleigh
umber, Ra=g�H3�T /��, which was varied up to 107 only to
nsure that for unobstructed cavities the flow is practically lami-
ar. Further, a relationship for the permeability was proposed in
efs. �46,48� for circular rods, which are in good accord with the
mpirical expression proposed by Ref. �49�, as:

K =
Dp

2�3

144�1 − ��2 �1�

Governing Equations
The equations used herein are derived in details in the work of

efs. �29,32,33,35�. Basically, for porous media analysis, a mac-
oscopic form of the governing equations is obtained by taking the
olumetric average of the entire equation set. In that development,
he porous medium is considered to be rigid and saturated by an
ncompressible fluid.

The macroscopic continuity equation is given by,

� · ūD = 0 �2�

The Dupuit–Forchheimer relationship, ūD=��ū�i, has been
¯ i

Fig. 1 Geometry under consideration
sed and �u� identifies the intrinsic �liquid� average of the local

ournal of Heat Transfer
velocity vector ū. The macroscopic time-mean Navier–Stokes
�NS� equation for an incompressible fluid with constant properties
is given as

�� �ūD

�t
+ � · � ūDūD

�
	
 = − ����p̄�i� + ��2ūD + � · �− ���u�u��i�

− ���g���T̄�i − Tref�

− ���

K
ūD +

cF���ūD�ūD

�K

 �3�

The use of Eq. �3� is largely employed in the literature when
“numerical” solutions are sought for a “macroscopic” view of the
flow. As such, Eq. �3� is used when one seeks modeling the “over-
all” effect of the porous substrate on the flow. The interested
reader is referred to Refs. �28–31� for extensive discussions on
this important point.

Further, when treating turbulence with statistical tools, the cor-
relation −�u�u� appears after application of the time-average op-
erator to the local instantaneous NS equation. Applying further the
volume-average procedure to this correlation results in the term
−���u�u��i. This term is here recalled the macroscopic Reynolds
stress tensor �MRST�. Further, a model for the MRST in analogy
with the Boussinesq concept for clear fluid can be written as

− ���u�u��i = �t�
2�D̄�v − 2

3���k�iI �4�

where

�D̄�v = 1
2 �����ū�i� + �����ū�i��T� �5�

is the macroscopic deformation rate tensor, �k�i is the intrinsic
average for k and �t�

is the macroscopic turbulent viscosity. The
macroscopic turbulent viscosity, �t�

, is modeled similarly to the
case of clear fluid flow and a proposal for it was presented in Ref.
�29� as

�t�
= �c�

�k�i2

���i �6�

In a similar way, applying both time and volumetric average to
the microscopic energy equation, for either the fluid or the porous
matrix, two equations arise. Assuming further the local thermal

equilibrium hypothesis, which considers �Tf�i= �Ts�i= �T̄�i, and
adding up these two equations, one has

��cp� f � · ���uTf�i�

= ��cp� f � · ���ū�i

↑
I

�Tf�i + �u��i�Tf��
i

↑
II

+ �iūiTf�i

↑
III

+ �iu�iTf��
i

↑
IV

��
�7�

where to each term on the right hand side of Eq. �7�, the following
significance can be attributed: I convection—due to macroscopic
time-averaged velocity and temperature, II turbulent heat flux—
due to the macroscopic time fluctuations of local velocity and
temperature, III thermal dispersion—associated with spatial de-
viations of the time averaged velocity and temperature. Note that
this term is also present in laminar flows in porous media. IV
turbulent thermal dispersion—due to both time fluctuations and
spatial deviations of local velocity and temperature.

A modeled form of Eq. �7� has been given in detail in the work
of Rocamora, Jr. and de Lemos �32,33�, as

���cp� f� + ��cp�s�1 − ���
��T̄�i

�t
+ ��cp� f � · �uD�T̄�i�

= � · �Keff · ��T̄�i� �8�
where, Keff, given by
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Keff = ��kf + �1 − ��ks�I + Ktor + Kt + Kdisp + Kdisp,t �9�

s the effective conductivity tensor. In order to be able to apply
8�, it is necessary to determine the conductivity tensors in �9�,
.e., Ktor, Kt, Kdisp, and Kdisp,t. Following Ref. �23�, this can be
ccomplished for the tortuosity and thermal dispersion conductiv-
ty tensors, Ktor and Kdisp, by making use of a unit cell subjected
o periodic boundary conditions for the flow and a linear tempera-
ure gradient imposed over the domain. The conductivity tensors
re then obtained directly from the microscopic results for the unit
ell �see Ref. �23� for details on the expressions here used�.

The turbulent heat flux and turbulent thermal dispersion terms,
t and Kdisp,t, which cannot be determined from such a micro-

copic calculation, are modeled here through the Eddy diffusivity
oncept, similarly to Ref. �24�. It should be noticed that these
erms arise only if the flow is turbulent, whereas the tortuosity and
he thermal dispersion terms exist for both laminar and turbulent
ow regimes.
Starting out from the time averaged energy equation coupled

ith the microscopic modeling for the “turbulent heat flux”
hrough the eddy diffusivity concept, one can write, after volume
veraging

− ��cp� f�u�Tf��
i = ��cp� f

�t�

	T
� �T̄f�i �10�

here the symbol �t�
expresses the macroscopic eddy viscosity,

t�
=� f�t�

, given by �6� and 	T is a constant. According to �10�,
he macroscopic heat flux due to turbulence is taken as the sum of
he turbulent heat flux and the turbulent thermal dispersion found
y Ref. �33�. In view of the arguments given above, the turbulent
eat flux and turbulent thermal dispersion components of the con-
uctivity tensor, Kt and Kdisp,t, respectively, are expressed as

Kt + Kdisp,t = ���cp� f

�t�

	T
I �11�

n the equation set shown above, when the variable �=1, the
omain is considered as a clear medium. For any other value of �,
he domain is treated as a porous medium.

3.1 Nusselt tumber. The local Nusselt number on the hot

ig. 2 Isotherms for laminar solution for a square cavity
eated from below and cooled from the ceiling for Ra=4Ã104
all for the square cavity at x=0 is defined as

124 / Vol. 128, NOVEMBER 2006
Nu = hH/k � Nu = � ��T�v

�y
	

y=0

H

TH − TC
�12�

and the average Nusselt number is given by

Nu¯ =
1

L�0

L

Nudx �13�

4 Turbulence Model

Transport equations for �k�i= �u� ·u��i /2 and �
�i

=���u� : ��u��T�i /� in their so-called high Reynolds number
form are proposed in Ref. �29� and extended in Ref. �35� to in-
corporate the buoyant effects as

�� �

�t
���k�i� + � · �ūD�k�i�
 = � · ��� +

�t�

	k
	 � ���k�i�


+ Pi + Gi + G�
i − �����i �14�

�� �

�t
�����i� + � · �ūD���i�
 = � · ��� +

�t�

	�

	 � �����i�

+ c1Pi ���i

�k�i + c2
���i

�k�i G
i + c1c3G�

i ���i

�k�i

− c2��
���i2

�k�i �15�

where c1, c2, c3, and ck are constants, Pi= �−��u�u��i :�ūD�
is the production rate of �k�i due to gradients of ūD, Gi

�=ck����k�i�ūD� /�K�� is the generation rate of the intrinsic aver-
age of k due to the action of the porous matrix and G�

i

�=���t�
/	t�g��� �T̄�i� is the generation rate of �k�i due to the

buoyant effects.
Before proceeding, a word about the class of problems under

consideration herein seems timely. Cases here investigated are
akin to having a forced flow through a grid. The grid, or any
“highly permeable” structure, will perturb the flow rather the
“suppress” it, inducing instabilities leading eventually to turbulent
regime. Evidently, if the flow restriction is intense, then a substan-
tial reduction on the mass flow rate across the porous material is
resultant for the same �T across the cavity. This, however, is not
the situation here. The class of problems treated in this paper deals
only with highly permeable, highly porous structure so that no
substantial head loss is added to the flow. The source term Gi in
Eq. �14� reflects this notion and physically represents an addi-
tional generation rate of k due to the flow perturbation caused by
the highly permeable obstruction. Comprehensive discussions on
this matter are available in Refs. �29–31,46�, which are suggested
for further reading.

The interface conditions between the clear medium and the po-
rous medium follows the work of Ochoa-Tapia and Whitaker �50�
using the “shear stress jump” concept. At the interface one has
�see Fig. 1�,

�ūD���1 = �ūD��=1 �16�

��p̄�i���1 = ��p̄�i��=1 �17�

�−1� �ūD1

�x2
�

��1
− � �ūD1

�x2
�

�=1
=

�i

�K
�ūD1

�interface �18�

��k�v���1 = ��k�v��=1 �19�

�� +
�t�

	
	� ��k�v

�x
� = ��� +

�t

	
	 ��k�v

�x
� �20�
k 2 ��1 k 2 �=1
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����v���1 = ����v��=1 �21�

�� +
�t�

	�

	� ����v

�x2
�

��1
= ��� +

�t

	�
	 ����v

�x2
�

�=1
�22�

��T̄�i���1 = ��T̄�i��=1 �23�

e2 · ��K= eff · ��T̄�i����1 = �kf
��T̄�i

�x2

�
�=1

�24�

here �i in Eq. �18� is a nondimensional coefficient that expresses
“jump” condition in the shear stress at the interface. Such dis-

ontinuity might be due to interface roughness or be a way to
omply with irregular interfaces. In addition, it can also be seen as
n accommodation of the fact that close to the interface the per-
eability K attains higher values than those used within the po-

ous substrate. The interface conditions for k and �, Eqs. �19�–�22�
ere proposed by Ref. �51� and used in Refs. �42–45�. They as-

ume continuity of k and � at the interface. On should point out,
owever, that the use of Eq. �18� has very little influence on flows
ostly normal to the interface, as in the case here analyzed �see
ef. �40� for flow computations normal to a porous insert�. Here,
q. �18� is considered for the sake of completeness only.

Numerical Method and Solution Procedure
The numerical method employed for discretizing the governing

quations is the control-volume approach with a generalized col-
ocated grid. The flux blended deferred correction which combines
inearly the upwind differencing scheme and central differencing
cheme, was used for interpolating the convective fluxes, see Ref.
52�. The well-established SIMPLE algorithm �53� is followed for
andling the pressure-velocity coupling. Individual algebraic
quation sets were solved by the SIP procedure of �see Refs.
54,55� for details�. Further, concentration of nodal points to walls
educes eventual errors due to numerical diffusion which, in turn,
re further annihilated due to the hybrid scheme here adopted.

Results and Discussion
Calculations for turbulent flow were performed for all cases

sing an 80�120 grid with concentration of nodes near the hori-
ontal walls. Runs were performed with high porosity, �=0.95,
s /kf =2, Pr=1, and an equivalent particle diameter, Dp=1 mm
see Eq. �1��, which gives a Da=K /L2=0.2382�10−5 in order to
ermit a high mass flux through the porous obstruction and to
void suppression of convective currents.

It is important to emphasize that the main objective of this work
s not to simulate the transition mechanism from laminar regime
o fully turbulent flow, which involves modeling of complex
hysical processes and hydrodynamic instabilities. Here, the aim
f this work is to establish when both turbulent and laminar mod-
ls do not differ substantially as far as predictions of overall Nu
re of concern. Therefore, a strategy for determining the range of
alidity of a laminar flow solution was to simulate the laminar-
zation of turbulent flow when the Raleigh number is reduced. Or
ay, we start with a low value of Ra and the “laminar” model,
ompute Nu and repeat the calculations for increasing Raleigh
umbers. Also, we turn on the k-� model for Ra=107, calculate
u, and repeat the procedure for smaller Ra’s, remembering that

uch a two-equation model was first proposed with the aim of
redicting the laminarization process. We perform calculations
ith and without the porous obstruction and compare the behavior
f Nu in both cases.

According to Ref. �5�, the separation of the averaged wall-heat
ransfer between laminar and turbulent fields depends on the tur-
ulence model used. When Ra is varied, the literature often refers
o laminar and turbulent “branches” of solutions as Ra passes a

ritical value. When a turbulence model is included, the solution

ournal of Heat Transfer
can depart from the laminar branch for RaRac and follows the
turbulent branch: Rac in this analysis is called separation point of
the governing equations.

The Rayleigh number is calculated as in the clear fluid case. It
is important to emphasize that the present results were started with
the solution for the cavity without the porous obstruction and
Ra=4�104, Fig. 2, which has a remarkable plume impinging at
the center of the cavity. It is known that the solutions for vertical
cavities are not unique, but, the bifurcation of the solution is out
of the concern of this work.

Figures 3–5 show the streamlines, isotherms, and isolines of
turbulent kinetic energy for turbulent flow in a vertical square
cavity with a porous obstruction at its midheight for Ra ranging
from 4�104 to 107. For lower values of Ra, not shown here, the
isotherms are stratified and the main mechanism of heat transfer is
conduction and the generation of turbulent kinetic energy is null
due to the low velocity gradients.

For Ra=4�104, a plume arise from the bottom of the heated
wall impinging through the porous obstruction, Fig. 4�a�. The
flow is divided in two vortices of each side of the porous obstruc-
tion, Fig. 3�a�. The generation of turbulent kinetic energy remains
small and it is almost null everywhere, Fig. 5�a�.

Increasing Ra to 106, the plume becomes stronger, impinging
through the porous obstruction more intensively, Fig. 4�b�. The
vortices move a little faster than before, Fig. 3�b�, and the genera-
tion of turbulent kinetic energy is now evident, mainly inside and
around the vicinity of the porous obstruction �Fig. 5�b��. As pro-
posed by Ref. �29�, the porous matrix contributes with the genera-
tion of turbulent kinetic energy such that a new term Gi in the �k�i

transport equation �14� was introduced. For a fixed value of the
Darcy velocity through a porous bed, the amount of mechanical
energy converted into turbulence should depend on the medium
properties. For the limiting case of high porosity and permeability
media ��→1⇒K→�� no fraction of this available mechanical
energy is expected to generate turbulence. The flow, in this situa-
tion, behaves like clear fluid flow. As the flow resistance in-
creases, by increasing � /�K, gradients of local u within the pore
will contribute to increasing �k�i. This porous obstruction, as will
be shown later, forces an earlier departure of Nu calculated for
both regimes, namely, laminar and turbulent.

For Ra=107, two plumes arise from the porous obstruction of
each side of the square cavity. Both plumes point to opposing
directions and move toward to the heated walls, Fig. 4�c�. This
feature makes the streamlines, Fig. 3�c�, change its directions,
probably to minimize the shear stresses between the vortices.
Therefore, the isolines of turbulent kinetic energy are very pro-
nounced in the porous matrix and present symmetry with respect
to the center of the cavity, Fig. 5�c�.

Table 1 shows the Nusselt numbers for a vertical square cavity
with two possibilities: �a� vertical square cavity with a porous
obstruction and �b� vertical square cavity without a porous ob-
struction. It is interesting to note that for clear cavities �unob-
structed flow� the values of Nu calculated with and without the
turbulence model shows nearly the same values �cases �b� in Table
1�. As mentioned above, this is an indication that within the se-
lected range for Ra, namely 102�Ra�107, turbulence seems to
be not yet fully established in an “empty” cavity. An increase in k
within the flow has to be “promoted” by some sort of agent,
similarly to what happens when an orderly laminar flow is forced
through a “grid,” generating turbulence by disturbing the flow past
the solid wires.

Further, Table 1 clearly shows that the overall values of the
Nusselt number for a vertical square cavity without a porous ob-
struction are higher than those with porous obstruction �cases �a�
and �b� in Table 1�. The porous plate damps the heat transfer
across the heated walls, showing an overall lower Nusselt num-
bers, for each Ra, when compared with those without porous ob-
struction.
Also, when the two solutions are compared for the cases with

NOVEMBER 2006, Vol. 128 / 1125
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Fig. 3 Streamlines of turbulent solution of a vertical square cavity with
a porous obstruction for Ra=4Ã104, 106, and 107 with �=0.95 and Dp

=1 mm
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10 with �=0.95 and Dp=1 mm
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the porous plate �cases �a� in Table 1�, even for a relatively low
Ra number, Ra�107, the turbulent model solution differs by a

Fig. 5 Isolines of k for turbulent solution for a vertical square
cavity with a porous obstruction for Ra=4Ã104, 106, and 107

with �=0.95 and Dp=1 mm
ig. 4 Isotherms of turbulent solution of a vertical square cav-
ty with a porous obstruction for „a… Ra=4Ã104, „b… 106, and „c…

7

considerably amount from the laminar one. For example, for Ra
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106 Nu is 100� �5.44−3.79� /3.79=43.53% higher if the turbu-
ent model is compared with the laminar result, whereas for the
lear cavity case the laminar and turbulent solutions gives similar
alues. For Ra=107, the inclusion of the porous plate yield an
ncrease in Nu by 100� �10.83−7.05� /7.05=53.62% when turbu-
ent and laminar models are compared. As such, the presence of a
orous obstruction in the square cavity seems to force an earlier
ncrease in Nu, and that can be interpreted as an earlier separation
f the laminar branch to the turbulent branch of the solution.

Conclusion
This paper presented computations for laminar and turbulent

ows with the standard k-� model with a wall function for natural
onvection in a square cavity with a porous obstruction in the
iddle. Nusselt numbers for a vertical square cavity without a

orous obstruction are higher than those with porous obstruction.
he porous obstruction damps the heat transfer across the heated
alls, showing an overall lower Nusselt numbers when compared
ith those with porous obstruction. However, the presence of a
orous obstruction in the square cavity seems to force an earlier
eparation of the laminar branch to the turbulent branch due to the
igher generation of turbulent kinetic energy in the porous matrix.
nalyses of important environmental and engineering flows can
enefit from the derivations herein and, ultimately, it is expected
hat additional research on this new subject be stimulated by the
ork here presented.
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omenclature

atin Characters
cF � Forchheimer coefficient

c1,2,3,k,� � model constants
cp � fluid specific heat, J/kg°C

Da � Darcy number, Da=K /L2

g � gravity acceleration vector, m/s2

H � square height, m
K � permeability, K=Dp

2�3 /144�1−��2, m2

k � turbulent kinetic energy, J/kg
kf � fluid thermal conductivity, W/m°C
ks � solid thermal conductivity, W/m°C
L � square width

Nu � Nu=hH /k, Nusselt number
Ra � Ra=g�H3�T /v�, fluid Rayleigh number

T � Temperature, °C
u � microscopic velocity, m/s

uD � Darcy or superficial velocity �volume average
of u�

reek Characters
� � fluid thermal diffusivity, m2/s

able 1 Average Nusselt numbers for 102<Ra<107 with �
0.95 and Dp=1 mm: „a… with porous obstruction and „b… with-
ut porous obstruction

Ra 102 4�104 106 107

Laminar solution a 1.00 1.32 3.79 7.05
b 1.00 2.87 6.58 11.74

Turbulent solution a 1.00 1.32 5.44 10.83
b 1.00 2.88 6.65 12.32
� � fluid thermal expansion coefficient, 1/°K
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�V � representative elementary volume, m2

�Vf � fluid volume inside �V
� � dissipation rate ok k, W/kg
� � fluid dynamic viscosity, N s/m2

�t� � macroscopic turbulent viscosity, N s/m2

� � fluid kinematic viscosity, m2/s
� � fluid density, kg/m3

	k,�,T � turbulence model constants
� � �=�Vf /�V, prosity

Special Characters
� � general variable
�̄ � temporal average

�� � temporal fluctuation
���i � intrinsic average
���v � volume average

i� � spatial deviation
� � vectorial general variable

�s,f � solid/fluid
�H,C � hot/cold

� �T � transpose
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