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a b s t r a c t

Turbulent natural convection in a two-dimensional horizontal composite square cavity, isothermally
heated at the left side and cooled from the opposing surface, is numerically analyzed using the finite vol-
ume method. The composite square cavity is formed by three distinct regions, namely, clear, porous and
solid region. The development of a numerical tool able to treat all these regions as one computational
domain is of advantage for engineering design and analysis of passive thermal control systems. Govern-
ing equations are written in terms of primitive variables and are recast into a general form. It was found
that the fluid begins to permeate the porous medium for values of Ra greater than 106. Nusselt number
values show that for the range of Ra analyzed there is no significant variation between the laminar and
turbulent model solution. When comparing the effects of Ra, ks/kf and Da on Nu, results indicate that the
solid phase properties have a greater influence in enhancing the overall heat transferred trough the
cavity.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Buoyancy-driven flows in porous enclosures have been exten-
sively studied recently due to their many engineering and environ-
mental applications. Underground spread of pollutants,
environmental control, grain storage, food and material processing,
geothermal systems, oil extraction, storage of nuclear waste mate-
rial, solar power collectors, optimal design of furnaces, nuclear
reactor safety, compact heat exchangers, packed-bed catalytic
reactors and passive thermal control devices are some examples
of applications of heat removal or addition by free convection
mechanism.

Studies concerning natural convection in porous media can be
found in the monographs of [1,2]. The case of free convection in
a rectangular cavity heated on one side and cooled at the opposing
side is also an important problem in thermal convection in porous
media. The works of [3–8] have further contributed with some
classical results to this problem. Reference [9] considered a numer-
ical study of the steady free convection flow in rectangular and ob-
lique cavities filled with homogeneous porous media using a
nonlinear axis transformation. The Darcy momentum and energy
equations were solved numerically using the (ADI) method.
According to Massarotti et al. [10], many researchers ignored tran-
sient effects although for certain porous media flows transient
analysis is required. For such cases, the velocity correction method
can be based on a time stepping scheme. Also, implementation of
different numerical techniques such as semi-implicit [11,12]
ll rights reserved.
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quasi-implicit [13] and fully implicit schemes are possible. Other
important contributions on free convection in porous media are
available in the literature published in the last few decades
[14–21], which are here referred to for the sake of completeness
and for conveying to the reader a broader view of the subject here
studied. However, most works found in the literature are restricted
to cavities consisting of a single domain, either an unobstructed
space or an enclosure filled with a fluid saturated porous medium,
covering both laminar and turbulent flow regimes.

Turbulence modeling is necessary when time fluctuations of the
flow properties are also considered, in addition to spatial devia-
tions. For such analyses, there are two possible methodologies to
follow in order to obtain macroscopic equations. The first one ap-
plies the time-average operator followed by volume-averaging
[22–25]. In the second path, volume-averaging is used of before
time-averaging is considered [26–28]. However, both sets of mac-
roscopic transport equations are equivalent when examined under
the double decomposition concept [29,30], which has been also
extended to non-buoyant heat transfer in porous media [31,32].
Further, a consistent and systematic study based on the double-
decomposition theory for treating turbulent buoyant flows
[33–37], mass transfer [38], non-equilibrium heat transfer
[39,40], double diffusion [41] and transport across the interface
between a porous medium and a clear region [42,43], has been
published. However, none of these papers by de Lemos and co-
workers [29–43] have tackle a problem similar to the one here
investigate, which deals with a three-layer composite cavity
configuration.

Motivated by the many engineering applications mentioned
earlier, as well as the observed lack of turbulent flow solutions
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Nomenclature

Latin characters
cF Forchheimer coefficient
c1,2,3,k,l model constants
cp fluid specific heat
Da Darcy number, K/H2

Dp particle diameter used in computing the permeability K
g gravity acceleration vector
H cavity height
K permeability, K ¼ D2

p/3

144ð1�/Þ2
k turbulent kinetic energy
kf fluid thermal conductivity
ks solid thermal conductivity
Nu Nu = hH/k, Nusselt number

Ra Ra ¼ gbH3DT
va , Rayleigh number

T non-dimensional temperature, hTi
i�TC

TH�TC

u microscopic velocity
uD Darcy or superficial velocity (volume average of u)
x, y cartesian coordinates

Greek characters
a fluid thermal diffusivity
b fluid thermal expansion coefficient
bi jump coefficient at interface clear-porous media
DV representative elementary volume

DVf fluid volume inside DV
e dissipation rate of k
l fluid dynamic viscosity
lt/

macroscopic turbulent viscosity
m fluid kinematic viscosity
q fluid density
rk,e,T turbulence model constants
/ / = DVf/DV, porosity

Special characters
u general variable
�u temporal average
u0 temporal fluctuation
huii intrinsic average
huiv volume average
iu spatial deviation
u vectorial general variable
ueff effective value, ueff = /uf + (1 � /)us

us,f solid/fluid
uH,C hot/cold
()T transpose
u/ macroscopic value
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for compound cavity flows, which may contain solid material and
free spaces in addition to internal porous layers, this paper pre-
sents results for turbulent flows in a composite heated enclosure.
As the overall heat flux across the cavity is from left to right, this
geometry is here considered a horizontal cavity. Further, the enclo-
sure is formed by three distinct regions, namely, a clear, a porous
and a solid region. The turbulence model here adopted is the stan-
dard k–e with wall function.

It is expected that the present contribution can benefit engi-
neering design and analysis of passive thermal control systems,
for example.

2. Geometry under analysis

The problem considered is shown schematically in Fig. 1a, and
refers to the two-dimensional flow of a Boussinesq fluid of Prandtl
number, Pr = 1, in a square cavity of side H = 1 m. The cavity is as-
sumed to be of infinite depth along the z-axis and is isothermally
heated from the left side and cooled from the opposing side. Heat
flows horizontally and for this reason the nomenclature ‘‘horizon-
tal cavity” is here assumed. Further, the cavity is equally divided in
three distinct regions, namely, clear, porous and solid region.

The no-slip condition is applied for velocity and the resulting
flow is treated as steady. The controlling parameter is the Rayleigh
number, Ra ¼ gbH3DT

ma . Further, a relationship for the permeability
was proposed in [44] for circular rods, which are in good accord
with the empirical expression proposed by [45], as

K ¼
D2

p/
3

144ð1� /Þ2
ð1Þ

where Dp is the equivalent diameter of the particle composing the
porous medium.

3. Governing equations

The equations used herein are derived in details in the work of
[33–37], and for this reason they will be just reproduced here. Basi-
cally, for porous media analysis, a macroscopic form of the govern-
ing equations is obtained by taking the volumetric average of the
entire equation set. In that development, the porous medium is
considered to be rigid and saturated by an incompressible fluid.

The macroscopic continuity equation is given by

r � �uD ¼ 0 ð2Þ

The Dupuit–Forchheimer relationship, �uD ¼ /h�uii, has been
used and h�uii identifies the intrinsic (liquid) average of the local
velocity vector �u. The macroscopic time-mean Navier–Stokes
(NS) equation for an incompressible fluid with constant properties
is given as

q
o�uD

ot
þr �

�uD �uD

/

� �� �
¼ �r /h�pii

� �
þ lr2 �uD þr

� �q/hu0u0ii
� �

� qb/g/ hTii � Tref

� �
� l/

K
�uD þ

cF/qj�uDj�uDffiffiffiffi
K
p

� �
ð3Þ

When treating turbulence with statistical tools, the correlation
�qu0u0 appears after application of the time-average operator to
the local instantaneous NS equation. Applying further the volume
average procedure to this correlation results in the term
�q/hu0u0ii. This term is here recalled the Macroscopic Reynolds
Stress Tensor (MRST). Further, a model for the MRST in analogy with
the Boussinesq concept for clear fluid can be written as

�q/hu0u0ii ¼ lt/
2hDiv � 2

3
/qhkiiI ð4Þ

where

hDiv ¼ 1
2
rð/h�uiiÞ þ ½rð/h�uiiÞ�T
h i

ð5Þ

is the macroscopic deformation rate tensor, hkii is the intrinsic aver-
age for k and lt/

is the macroscopic turbulent viscosity. The macro-
scopic turbulent viscosity, lt/

, is modeled similarly to the case of
clear fluid flow and a proposal for it was presented in [30] as
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Fig. 1. Problem considered: (a) composite cavity, (b) grid used in all calculations:
112 � 112.

Table 1
Cases investigated using turbulence model

/ Da = K/H2 ks/kf Pr Ra

Variation of Rayleigh number, Ra
9.50E�01 2.382E�06 1.00E+00 1.00E+00 1.00E+04
9.50E�01 2.382E�06 1.00E+00 1.00E+00 1.00E+06
9.50E�01 2.382E�06 1.00E+00 1.00E+00 1.00E+08
9.50E�01 2.382E�06 1.00E+00 1.00E+00 1.00E+10
9.50E�01 2.382E�06 1.00E+00 1.00E+00 1.00E+12

Variation of thermal conductivity ratio, ks/kf

9.50E�01 2.382E�06 1.00E+01 1.00E+00 1.00E+08
9.50E�01 2.382E�06 1.00E+02 1.00E+00 1.00E+08

Variation of Darcy number, Da = K/H2

9.50E�01 2.38E�04 1.00E+00 1.00E+00 1.00E+08
9.50E�01 2.38E�02 1.00E+00 1.00E+00 1.00E+08
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lt/
¼ qcl

hkii
2

heii
ð6Þ

In a similar way, applying both time and volumetric average to
the microscopic energy equation, for either the fluid or the porous
matrix, two equations arise. Assuming further the Local Thermal
Equilibrium (LTE) hypothesis, which considers hT f ii ¼ hTsii ¼ hTii,
and adding up these two equations, one has,

ðqcpÞfr � ð�uDhTiiÞ ¼ r � f½kf/þ ksð1� /Þ�rhTiig

þr � 1
DV

Z
Ai

nðkf T f � ksTsÞdS

" #

� ðqcpÞfr � ½/ðh
i �uiT fiiÞ� ð7Þ

A model for the transient form of Eq. (7) has been given in detail
in [31,32], as,

fðqcpÞf/þ ðqcpÞsð1� /Þg ohTii

ot
þ ðqcpÞfr � ðuDhTiiÞ

¼ r � fKeff � rhTiig ð8Þ

where, Keff, given by

Keff ¼ ½/kf þ ð1� /Þks�Iþ Ktor þ Kt þ Kdisp þ Kdisp;t ð9Þ
is the effective conductivity tensor. In order to be able to apply (8),
it is necessary to determine the conductivity tensors in (9), i.e., Ktor,
Kt, Kdisp and Kdisp,t. Following [24], this can be accomplished for the
tortuosity and thermal dispersion conductivity tensors, Ktor and Kdisp,
by making use of a unit cell subjected to periodic boundary condi-
tions for the flow and a linear temperature gradient imposed over
the domain. The conductivity tensors are then obtained directly
from the microscopic results for the unit cell [24].

4. Turbulence model

The turbulent heat flux and turbulent thermal dispersion terms
appearing in (9), Kt and Kdisp,t, which cannot be determined from
unit cell calculations [24], are modeled here through the eddy dif-
fusivity concept, similarly to [25,30]. It should be noticed that
these terms arise only if the flow is turbulent, whereas the tortuos-
ity and the thermal dispersion terms exist for both laminar and
turbulent flow regimes.

Starting out from the time averaged energy equation coupled
with the microscopic modeling for the turbulent heat flux through
the eddy diffusivity concept, one can write, after volume-
averaging,

�ðqcpÞfhu0T
0
fi

i ¼ ðqcpÞf
mt/

rT
rhT fii ð10Þ

where the symbol mt/ expresses the macroscopic eddy viscosity,
lt/
¼ qfmt/ , given by (6) and rT is a constant. According to (10),

the macroscopic heat flux due to turbulence is taken as the sum
of the turbulent heat flux and the turbulent thermal dispersion
[32]. Therefore, the sum of the components of the conductivity ten-
sor Kt and Kdisp,t can be expressed as

Kt þ Kdisp;t ¼ /ðqcpÞf
mt/

rT
I ð11Þ

Transport equations for hkii ¼ hu0 � u0ii=2 and heii ¼ lhru0 :

ðru0ÞTii=q in their so-called high Reynolds number form are pro-
posed in [30] and extended in [34] to incorporate the buoyant ef-
fects as:

q
o

ot
ð/hkiiÞ þ r � ð�uDhkiiÞ

� �
¼ r � lþ

lt/

rk

� �
rð/hkiiÞ

� �
þ Pi þ Gi þ Gi

b � q/heii ð12Þ

q
o

ot
ð/heiiÞ þ r � ð�uDheiiÞ

� �
¼ r � lþ

lt/

re

� �
rð/heiiÞ

� �

þ c1Pi heii

hkii
þ c2

heii

hkii
Gi þ c1c3Gi

b

heii

hkii
� c2q/

heii
2

hkii
ð13Þ
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Fig. 2. Streamlines (left) and isotherms (right) for a composite cavity with / = 0.95, Da = 0.2382 � 10�5, ks/kf = 1 and Pr = 1: (a and b) Ra = 104, (c and d) Ra = 106, (e and f)
Ra = 106, (g and h) Ra = 1010.
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where c1, c2, c3 and ck are constants, Pi ¼ �qhu0u0ii : r�uD is the pro-
duction rate of hkii due to gradients of �uD, Gi ¼ ckq /hkii j�uD jffiffiffi

K
p is the gen-

eration rate of the intrinsic average of k due to the action of the
porous matrix and Gi

b ¼ /
lt/
rt

gb/rhTii is the generation rate of hkii
due to the buoyant effects.

Here, a word about the choice of a volume-averaged k–e model to
handle turbulence in hybrid (porous/clear) domains seems timely. It
is the authors’ believe that a macroscopic view of flow and heat
transfer in such media can bring benefits to the design and analysis
of flows occurring in the environment and in engineering equip-
ment. Solving the intra-porous fine-flow structure would demand
an enormous amount of computational resources, which is most of
the time incompatible with the desirable reduction of costs in per-
forming practical flow simulations. In addition, simulating turbulent
flow and heat transfer in multi-domains (Fig. 1a), using only one set
of equations, reduces the complexity of numerical analyses.
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Accordingly, the macroscopic k–e model developed earlier [29–43]
brings a compromise between accuracy and economy, avoiding
excessive computational time when resolving primitive variables
such as the volumetric velocity, pressure and temperatures. In addi-
tion, the well-known shortcomings of the standard two-equation
model, such as modest performance in recirculating flows, are coun-
terbalanced by the fact that a linear stress–strain relationship, which
is inherent to the k–e model, enhances numerical stability besides
being easy to program in existing code architectures.

5. Nusselt number

The local Nusselt number on the hot wall for the square cavity
at x = 0 is defined as

Nuy ¼ hH=k)Nuy ¼
ohTiv

ox

� �
x¼0

H
TH � TC

ð14Þ
and the average Nusselt number is given by

Nu ¼ 1
H

Z H

0
Nuy dy ð15Þ
6. Interface conditions

The interface conditions between the clear region and the por-
ous medium follows the work of [46] using the shear stress jump
concept. In Fig. 1 it was shown a hybrid domain where, for the
interface clear-porous media, one has,

�uDj/<1 ¼ �uDj/¼1 ð16Þ

h�piij/<1 ¼ h�pi
ij/¼1 ð17Þ

/�1 o�uD1

ox2

				
/<1
� o�uD1

ox2

				
/¼1
¼ biffiffiffiffi

K
p �uD1

				
interface

ð18Þ
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hkivj/<1 ¼ hki
vj/¼1 ð19Þ

lþ
lt/

rk

� �
ohkiv

ox2

				
/<1
¼ lþ lt

rk

� �
ohkiv

ox2

				
/¼1

ð20Þ

heivj/<1 ¼ hei
vj/¼1 ð21Þ

lþ
lt/

re

� �
oheiv

ox2

				
/<1
¼ lþ lt

re

� �
oheiv

ox2

				
/¼1

ð22Þ

hTiij/<1 ¼ hTi
ij/¼1 ð23Þ

e2 � ðKeff � rhTiiÞj/<1 ¼ kf
ohTii

ox2

					
/¼1

ð24Þ
Table 2
Average Nusselt numbers for 104 < Ra < 1010 with / = 0.95, Da = K/H2 = 0.2382 � 10�5,
ks/kf = 1 and Pr = 1

Model appliednRa 104 106 108 1010

Laminar solution 1.0000 1.2385 2.0230 2.7200
Turbulent solution 1.0000 1.2386 2.0231 2.7223
where bi in Eq. (18) is a coefficient that expresses a jump condition
in the shear stress at the interface. The interface conditions for k and
e, Eqs. (19)–(22), were proposed by [47], assuming continuity of k
and e, and their respective diffusive fluxes at the interface.
7. Numerical method and solution procedure

The numerical method employed for discretizing the governing
equations is the control-volume approach. The flux blended de-
ferred correction which combines linearly the Upwind Differencing
Scheme (UDS) and Central Differencing Scheme (CDS), was used for
interpolating the convective fluxes. The well-established SIMPLE
algorithm [48] is followed for handling the pressure–velocity cou-
pling. Individual algebraic equation sets were solved by the SIP
procedure of [49]. Details on the validation of the numerical tool
here employed can be found in previous publications, which in-
clude buoyant flows in hybrid (clear/porous) square cavities [50]
and in different geometries, such as cylindrical annulus [36]. In
those papers, as well as in [34–37], care was taken in order to
check the solution against available numerical and experimental
data in the literature.
8. Results and discussion

Calculations were performed for all cases using a 112 � 112
stretched grid with several points inside the boundary layers, as
shown in Fig. 1b. Further, stretching of the grid aimed at resolving
the flow structure inside the boundary layers by concentrating
nodes close to external walls and about internal interfaces. The
percent difference for the average Nusselt number on the heated
wall calculated with larger grids was less than 1%. For this reason,
all computations herein used the 112 � 112 stretched mesh. All
cases simulated herein are compiled in Table 1.

Fig. 2 shows the isotherms and streamlines of a composite
square cavity for Ra number ranging from 104 to 1010 with /
= 0.95, Da = 0.2382 � 10�5, ks/kf = 1, Pr = 1. For the sake of simplic-
ity, all calculations were performed with Kdisp = 0 in Eq. (24).

For Ra = 104, the streamlines, form a single vortex confined only
in the left of the clear region and the flow circulation in the porous
medium is almost none (Fig. 2a). The isotherms are almost parallel
to the heated wall indicating that the main mechanism of heat
transfer is conduction (Fig. 2b). Increasing the Ra number to 106,
the isotherms in the clear region starts to be distorted due to the
increasing of the natural convection. However, in the porous re-
gion, the main mechanism of heat transfer is still conduction
(Fig. 2d). The streamlines are now stronger than those for
Ra = 104, but the flow structure still remains mainly in the clear re-
gion (Fig. 2c). Further increasing Ra to 108, the isotherms in the
clear region are stratified and the convection mechanism is fully
developed in such region. In the porous region, the isotherms be-
come distorted due to the fluid that penetrates the porous layer
inducing the also the natural convection (Fig. 2f). The fluid motion
in the clear region is now very intense and the center of the single
vortex is moved toward to the heated wall. In the porous region,
the fluid starts to permeate the porous matrix inducing the natural
convection in that region (Fig. 2e). Finally, for Ra = 1010, the iso-
therms in both clear and porous region are stratified and the heat
transfer in the solid region as a high temperature gradient (Fig. 2h).
The fluid movement is stronger in both regions and the natural
convection is also developed in the porous medium (Fig. 2g).

Fig. 3 also presents the effect of Ra on temperature field across
the composite cavity. Upward velocities are presented in Fig. 3a at
the cavity mid-height y/H = 0.5. For the sake of clarity, only a small
portion of the solid layer is plotted at the right of Fig. 3a. For
Ra = 104, convective currents exist only in the clear domain, and
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a single recirculating bubble appears at the left of the unobstructed
space, close to the hot wall. For Ra = 106, the recirculation regions
grows filling the entire clear space. Further increasing Ra to 108,
the flow enters the porous cavity in addition to recirculate in the
clear region as well. With such Ra, boundary layers can be noticed
at the interface porous-solid material as well as along the hot wall
at the left. Finally, for Ra = 1010, convective currents get stronger
and a single large recirculation bubble fills both the porous and
the clear domains. These observations corroborate those done ear-
lier about Fig. 2.

In Fig. 3b corresponding temperature profiles at the same cavity
height are plotted. The nearly conduction dominated regime for
Ra = 104 stretches across the entire cavity, resulting in an almost
linear temperature profile. Elongation of the recirculation bubble
for Ra = 106 increases the temperature at the clear-porous inter-
face, mixing the fluid within the clear regions. For higher values
of Ra, the stratification regime covers not only the clear space
but also the porous matrix. Thermal resistance across the cavity,
for high Ra values, is concentrate in the solid material. Thermal
control devices can then be engineered with appropriate layer
material and dimensions in order to modulating heat transfer
across such cavities.

Corresponding results for hkii as a function of Ra are presented
in Fig. 4a, where dimensional values for the turbulent kinetic
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energy, in (m/s)2, are plotted across the cavity for y/H = 0.5. At
Ra = 104, the weak recirculating bubble shown in Fig. 2a exists only
in the clear domain and the levels of hkii are negligible everywhere
in the cavity. For Ra = 106, the recirculation bubble grows and
starts to penetrate the porous region (Fig. 2c), but its strength is
not enough to generate turbulence. Only at Ra = 1010 the strong
currents ascending close to the hot wall and penetrating the por-
ous region are able to generate turbulence (Fig. 2g), which is
mostly confined within the boundary layers on the hot wall and at-
tached to the solid material. Accordingly, as discussed in [30], the
porous matrix contributes with the generation of turbulent kinetic
energy via the extra term Gi in the hkii – Eq. (12). A corresponding
two-dimensional map is shown in Fig. 4b, where hkii isolines for
the left bottom part of the cavity are plotted (x/H < 0.6). Such
two-dimensional view indicates the distribution of turbulence
within the cavity, with higher values concentrated within the
above-mentioned boundary layers.

The effect of changing the solid thermal conductivity values is
shown next. Fig. 5b illustrates how temperature profiles are influ-
enced when the thermal conductivity ratio ks/kf is varied from
unity up to 100. For simplicity, the material of the solid is assumed
to have the same thermal conductivity of that of the porous sub-
strate. As such, only one unique value for ks is adopted for both
the porous and the solid material. One can observe that for the con-
ditions in the figure and for ks/kf = 1, thermal resistance within the
solid material is higher. As this ration increases (ks/kf = 10), heat is
easily conducted though the solid and thermal resistance are
equivalent in the two layers on the left of the cavity. For ks/
kf = 100, either in the solid, due to high ks, or within the stratified
fluid layer at the left, due to stratification, thermal resistance is
mostly confined within the porous layer. This result may indicate
that such devices can be manufactured so that one can control
where heat will encounter most resistance, which can be used to
advantage when designing passive thermal control devices.

Fig. 5b indicates the effect of Da on temperature. For highly per-
meable materials, strong convective currents penetrate the porous
substrate, causing a homogenization effect on the temperature in
both the clear and within the porous layer. The figure also indicates
that increasing Da past a certain value does not contribute to en-
hance heat transport across the cavity.

Table 2 shows the average Nusselt number in the heated wall
for Ra ranging from 104 to 1010. The table shows that for the range
of Ra analyzed there are no significant variation between the lam-
inar and turbulent model solution. Probably for higher values of Ra,
remarkable variations between the two models might occur. Fig. 6
follows presenting the information on Table 2 in the form of
graphics.

As mentioned, Fig. 6 consolidates results for the behavior of Nu
as a function of distinct parameters here investigated, which were
compiled in Table 2. First, Fig. 6a presents the increase of Nusselt as
Ra is augmented, with corresponding T profiles given in Fig. 3b.
Strong recirculating currents penetrating the porous material carry
heat from hot wall at left to edge of the solid layer. Thermal resis-
tance at high Ra is therefore sole controlled with the use of appro-
priate solid materials. Fig. 6b compiles Nu from the cases shown in
Fig. 5a. Reducing the thermal resistance through the solid and fluid
layer enhances the overall transfer of heat across the cavity, at least
for the conditions here analyzed. Fig. 6c finally presents Nu for
cases previously shown in Fig. 5b. As the porous matrix becomes
more permeable, both the clear and the porous regions suffer strat-
ification to a certain point, above which a further increase in Da
does not enhances heat transfer, as can be seen by little variation
on T profiles (Fig. 5b) and Nu values (Fig. 6c) for Da > 2.38 � 10�4.

Ultimately, results herein can help engineers in designing pas-
sive heat control systems by constructing composite walls made
of layers of different materials and shapes.
9. Conclusions

This paper presented computations for laminar and turbulent
flows with the macroscopic k–e model with a wall function for nat-
ural convection in a square composite cavity. It is clearly seen from
the figures that the fluid begins to permeate the porous medium
for values of Ra greater than 106. At higher Ra, turbulent kinetic en-
ergy levels are higher along the hot wall and on the interface por-
ous-solid media, as presented in Fig. 4. Nusselt numbers for a
square composite cavity show that for the range of Ra analyzed
there are no significant variation between the laminar and turbu-
lent model solution. When comparing the effects of Ra, ks/kf and
Da on Nu, results indicate that the solid phase properties have a
greater influence in enhancing the overall heat transferred trough
the cavity.

Ultimately, one can conclude that among the possibilities of
using a different fluid (changing m, a, b for varying Ra), a different
solid material (ks/kf) or by changing the porous matrix shape (dis-
tinct K, Da = K/H2), the use of a higher solid thermal conductivity
can more efficiently enhance heat transfer across a cavity with a
certain height H and subjected to a temperature difference DT.
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