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Comparisons of computations for turbulent natural convection within clockwise and counter-clockwise
inclined cavities, filled with a fluid saturated porous medium, are presented. The finite volume method
in a generalized coordinate system is applied. Oblique walls are maintained at constant but different tem-
peratures, whereas horizontal surfaces are kept insulated. Flow and heat transfer characteristics are
investigated for Rayleigh number up to 104 and inclination angles up to 45�, in both directions of rotation.
Turbulent is handled using a macroscopic two-equation model with a wall function. In this work, the tur-
bulence model is first switched off and the laminar branch of the solution is obtained. Subsequently, the
turbulence model is included and the solution merges to the laminar branch for a reducing value of Ram.
Present computations are compared with published results and the influence of the inclination angle on
Racr is analyzed, for both the left and right rotating directions. For Ram greater than around 104, both lam-
inar and turbulent flow solutions deviate, possibly indicating that a critical value for Ram was reached.
Both left and right rotation of the hot wall reduce Nu, but rotating the hot wall on the counter-clockwise
direction decreases Nu at a faster rate than when bending the cavity to the right.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The study of buoyancy driven flows in both clear and porous do-
mains has several applications in many fields of science, technol-
ogy and environment. In addition, if the Reynolds number based
on the mean porous diameter is higher than 300, there might be
sufficient ‘‘room” in the void space for turbulence to be established.
In fact, modeling of important environmental and engineering
flows using a macroscopic view, resorting to a porous medium
model, is found in the study of atmospheric boundary layer over
dense rain forests, in the underground spread of pollutants, in
the analysis of heat exchangers, in cooling devices for electronic
equipment, in grain storage, in nuclear reactor safety and in may
other applications. In all cases above, instead of looking at a de-
tailed distribution of the flow field within the void phase, both
fluid and solid components are treated by a unique set of equations
via appropriate volume-averaging tools. As such, the existence of
turbulence in the fluid phase, analyzed with macroscopic equa-
tions and based on a porous medium model, gives rise to the study
of Turbulence in Porous Media.

There are many studies concerning laminar flow in porous med-
ia in the available literature. The monographs of Nield and Bejan
[1] and Ingham and Pop [2] fully documented the problem of a
ll rights reserved.

os).
laminar flow in a porous medium. The case of natural convection
in a rectangular cavity heated on a side and cooled at the opposing
side is an important problem in thermal convection in porous med-
ia and the works of Walker and Homsy [3], Bejan [4], Prasad and
Kulacki [5], Beckermann et al. [6], Gross et al. [7], Manole and Lage
[8] and Moya et al. [9] have contributed with some important re-
sults to this problem. The work of Baytas and Pop [10] concerned
a numerical study of the steady free convection flow in rectangular
and oblique cavities filled with homogeneous porous media using a
non-linear axis transformation. The Darcy momentum and energy
equations are solved numerically using the (ADI) method. Turbu-
lence, however, has never been the main subject of previous
studies.

Modeling of macroscopic transport for incompressible flows in
porous media has been based on the volume-average methodology
for either heat [11] or mass transfer [12–14]. Accordingly, if time
fluctuations of the flow properties are also considered, in addition
to spatial deviations, there are two possible methodologies to fol-
low in order to obtain turbulent macroscopic equations: (a) appli-
cation of time average operator followed by volume-averaging
[15–18] or (b) use of volume-averaging before time averaging is
applied [19–21]. However, both sets of macroscopic mass transport
equations are equivalent when examined under the recently estab-
lished double decomposition concept [22–25].

This methodology, initially developed for the flow variables, has
been extended to heat transfer in porous media where both time
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Nomenclature

cF Forchheimer coefficient
c0s non-dimensional turbulence model constants
cp constant pressure specific heat
D D=[$u + ($u)T]/2, Deformation rate tensor
Da Darcy number, Da = K/L2

Dp particle diameter
g Gravity acceleration vector
Gk buoyancy production rate of turbulent kinetic energy
Gi generation rate of hkii due to the action of the porous

matrix
Gi

b generation rate of hkii due to the buoyant effects
h heat transfer coefficient
I unit tensor

K K ¼ D2
p/3

144ð1�/Þ2
, permeability

k k ¼ u0 � u0=2 Turbulent kinetic energy per mass unit
kf fluid thermal conductivity
ks solid thermal conductivity
keff effective thermal conductivity
Kdisp conductivity tensor due to the dispersion
Kdisp,t conductivity tensor due to the turbulent dispersion
Kt conductivity tensor due to the turbulent heat flux
Ktor conductivity tensor due to the tortuosity
L square width
n unit vector normal to the Ai

Nu average Nusselt number, Nu ¼ 1
H

RH
0 Nuy dy; Nuy ¼ hH

keff
¼

ohTiv
ox

� �
x¼0

H
TH�TC

Pk Shear production rate of turbulent kinetic energy
Pi Production rate of hkii due to gradients of uD

Pr Prandtl number
Raf Raf ¼ gbL3DT

vf af
, fluid Rayleigh number

Ram Ram ¼ Raf � Da ¼ gb/LDTK
mf aeff

, Darcy–Rayleigh number
Racr critical Rayleigh number

T temperature
u microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek symbols
a thermal diffusivity
b thermal expansion coefficient
h inclination angle
DV representative elementary volume
DVf fluid volume inside DV
e e ¼ lru0 : ðru0ÞT=q, dissipation rate of k
l dynamic viscosity
lt/

Macroscopic turbulent viscosity
m kinematic viscosity
q density
r0s non-dimensional constants
/ / = DVf/DV, porosity

Special characters
u general variable
�u time average
u0 time fluctuation
huii intrinsic average
huiv volume average
iu spatial deviation
juj absolute value (Abs)
u general vector variable
()s,f solid/fluid
()T transpose
()eff effective value, /uf + (1 � /)us

( )H,C hot/cold
()/ macroscopic value

5280 E.J. Braga, M.J.S. de Lemos / International Journal of Heat and Mass Transfer 51 (2008) 5279–5287
fluctuations and spatial deviations were considered for velocity and
temperature [26,27]. Studies on the treatment of interface condi-
tion [28,29] and a general classification of all proposed models for
turbulent flow and heat transfer in porous media [30] have also
been published. Extension of the double decomposition theory for
treating turbulent natural convection [31–34], mass transfer [35],
non-equilibrium heat transfer [36,37] and double diffusion [38] in
saturated rigid porous media has also been recently documented.

Motivated by the foregoing works, this paper presents results
for both laminar and turbulent flows in oblique cavities, inclined
towards both directions, which is totally filled with a porous mate-
rial and are heated from the left and cooled from the opposing side.
The other two walls are kept insulated. The turbulence model here
adopted is the macroscopic k–e with the wall function. To the best
of the authors’ knowledge, no comparison on the behavior of the
cavity Nusselt number, considering both inclination directions,
has been previously published. The contribution herein presents
such comparison, including the cases when the flow is in turbulent
regime.

2. The problem considered

The problem considered is showed schematically in Fig. 1 and
refers to an oblique cavities with width L = 1 m completely filled
with porous medium. The cavity is isothermally heated from the
left, TH, and cooled from the opposing side, TC. The other two walls
are insulated. The porous medium is considered to be rigid and sa-
tured by an incompressible fluid. The Ram is the dimensionless
parameter used for porous media and it is defined as, Ram = RafDa,
with aeff = keff/(qcp)f and the particle diameter is given by

Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144Kð1�/Þ2

/3

r
.

3. Governing equations

The equations used herein are derived in details in the works of
Pedras and de Lemos [23], de Lemos and Rocamora [27] and de Le-
mos and Braga [32]. Basically, for porous media analysis, a macro-
scopic form of the governing equations is obtained by taking the
volumetric average of the entire equation set. In that development,
the porous medium was considered to be rigid and saturated by an
incompressible fluid.

The macroscopic continuity equation is given by,

r � �uD ¼ 0 ð1Þ

The Dupuit–Forchheimer relationship, �uD ¼ /h�uii, has been used
and h�uii identifies the intrinsic (liquid) average of the local velocity
vector �u. The macroscopic time-mean Navier–Stokes (NS) equation
for an incompressible fluid with constant properties is given as

q
o�uD

ot
þr �

�uD �uD

/

� �� �
¼ �rð/h�piiÞ þ lr2 �uD þr � ð�q/hu0u0iiÞ

� qb/g/ðhTii � Tref Þ �
l/
K

�uD þ
cF/qj�uDj�uDffiffiffiffi

K
p

� �

ð2Þ



Fig. 1. Geometry and grid under consideration: (a) counter-clockwise direction and
(b) clockwise direction.
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When treating turbulence with statistical tools, the correlation
�qu0u0 appears after application of the time average operator to
the local instantaneous NS equation. Applying further the volume-
average procedure to this correlation results in the term
�q/hu0u0ii. This term is here called the Macroscopic Reynolds Stress
Tensor (MRST). Further, a model for the MRST in analogy with the
Boussinesq concept for clear fluid can be written as

�q/hu0u0ii ¼ lt/
2hDiv � 2

3
/qhkiiI ð3Þ

where

hDiv ¼ 1
2
½rð/h�uiiÞ þ ½rð/h�uiiÞ�T� ð4Þ

is the macroscopic deformation rate tensor, hkii is the intrinsic aver-
age for turbulent kinetic energy, k and lt/

is the macroscopic turbu-
lent viscosity. The macroscopic turbulent viscosity, lt/

, is modeled
similarly to the case of clear fluid flow and a proposal for it was pre-
sented in [23] as

lt/
¼ qCl

hkii
2

heii
ð5Þ

In a similar way, applying both time and volumetric average to the
microscopic energy equation, for either the fluid or the porous ma-
trix, two equations arise. Assuming further the Local Thermal Equi-
librium Hypothesis, which considers hT fii ¼ hTsii ¼ hTii, and adding
up these two equations, one has,

ðqcpÞfr � ð/huT f iiÞ ¼ ðqcpÞfr

� /ðh�uiihT f ii þ hu0iihT 0f i
i þ hi �uiT f ii þ hiu0 iT 0f i

iÞ
n o

ð6Þ

A modeled form of (6) has been given in detail in the work of de Le-
mos and Rocamora [27] as

fðqcpÞf/þ ðqcpÞsð1� /Þg ohTii

ot
þ ðqcpÞfr � ð�uDhTiiÞ

¼ r � fKeff � rhTiig ð7Þ

where Keff given by

Keff ¼ ½/kf þ ð1� /Þks�Iþ Ktor þ Kt þ Kdisp þ Kdisp;t ð8Þ

is the effective conductivity tensor. In order to be able to apply (7),
it is necessary to determine the conductivity tensors in (8), i.e. Ktor,
Kt, Kdisp and Kdisp,t. Following [17], this can be accomplished for the
tortuosity and thermal dispersion conductivity tensors, Ktor and
Kdisp, by making use of a unit cell subjected to periodic boundary
conditions for the flow and a linear temperature gradient imposed
over the domain. The conductivity tensors are then obtained di-
rectly from the microscopic results for the unit cell (see [17] for de-
tails on the expressions here used).

The turbulent heat flux and turbulent thermal dispersion terms,
Kt and Kdisp,t, which cannot be determined from such a microscopic
calculation, are modeled here through the Eddy diffusivity concept,
similarly to Nakayama and Kuwahara [18]. It should be noticed
that these terms arise only if the flow is turbulent, whereas the tor-
tuosity and the thermal dispersion terms exist for both laminar
and turbulent flow regimes.

Starting out from the time averaged energy equation coupled
with the microscopic modeling for the ‘turbulent thermal stress
tensor’ through the Eddy diffusivity concept, one can write, after
volume averaging,

�ðqcpÞf hu0T
0
f i

i ¼ ðqcpÞf
mt/

rT
rhT fii ð9Þ

where the symbol mt/
expresses the macroscopic eddy viscosity,

lt/
¼ qfmt/

, given by (5) and rT is a constant. According to (9), the mac-
roscopic heat flux due to turbulence is taken as the sum of the turbu-
lent heat flux and the turbulent thermal dispersion found by de Lemos
and Rocamora [27]. In view of the arguments given above, the turbu-
lent heat flux and turbulent thermal dispersion components of the
conductivity tensor, Kt and Kdisp,t, respectively, are expressed as

Kt þ Kdisp;t ¼ /ðqcpÞf
mt/

rT
I ð10Þ

In the all equations shown above, when / = 1 and the permeability
K tends to infinite, the domain is considered as a clear medium. For
any other value of /, the domain is treated as a porous medium.

4. Turbulence model

Transport equations for hkii ¼ hu0 � u0ii=2 and heii ¼
lhru0 : ðru0ÞTii=q in their so-called High Reynolds number form
are fully documented in [23] making use of the double decomposi-
tion concept [22], and extended in [31,32] to incorporate the buoy-
ant effects. Basically, for porous media analysis, a macroscopic
form of the governing equations is here obtained by taking the vol-
umetric average of the time averaged equations set. It is important
to emphasize that the parameter Reynolds number, while not con-
sidered as a basic parameter in natural convection flows, is here re-
called with the sole purpose of characterizing the turbulent regime
and the corresponding wall treatment used.
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On the other hand, in both works of Lee and Howell [19] and
Antohe and Lage [20] was developed a macroscopic equation for
turbulent kinetic energy from the macroscopic momentum equa-
tion. According to Pedras and de Lemos [23], the kinetic energy
used in [19,20] differs from hkii and is given by km ¼ hu0ii � hu0ii=2.
Pedras and de Lemos [23] have shown that the relationship be-
tween these two quantities as being

hkii ¼ hu0 � u0ii=2 ¼ hu0ii � hu0ii=2þ hiu0 � iu0i=2

¼ km þ hiu0 � iu0i=2 ð11Þ

The last term on the right-hand side of (14) is the extra turbulent
kinetic energy and for that reason, models based on km do not ac-
count for all of the turbulent kinetic energy associated with the
flow.

Therefore, the macroscopic turbulent transport equations pre-
sented in [23] and extended in [31] are given by

q
o

ot
ð/hkiiÞ þ r � ð�uDhkiiÞ

� �
¼ r � lþ

lt/

rk

� �
rð/hkiiÞ

� �
þ Pi

þ Gi þ Gi
b � q/heii ð12Þ

q
o

ot
/heii
� �

þr � ð�uDheiiÞ
� �

¼ r � lþ
lt/

re

� �
rð/heiiÞ

� �
þ c1Pi heii

hkii

þ c2
heii

hkii
Gi þ c1c3Gi

b

heii

hkii
� c2q/

heii
2

hkii

ð13Þ

where c1, c2, c3 and ck are constants, Pi ¼ ð�qhu0u0ii : r�uDÞ is the
production rate of hkii due to gradients of �uD, Gi ¼ ckq

/hkii j�uD jffiffiffi
K
p is the

generation rate of the intrinsic average of k due to the action of
the porous matrix and Gi

b ¼ /
lt/

rt
b/g � rhTii is the generation rate

of hkii due to the buoyant effects.
The constants of the standard k–e turbulence model in Eqs. (5),

(12) and (13), according to Launder and Spalding [39] for a clear
medium (/ = 1 and K ?1), are given by

cl ¼ 0:09; c1 ¼ 1:44; c2 ¼ 1:92; c3 ¼ 1:0; rk ¼ 1:0;
re ¼ 1:3; rT ¼ 0:9 ð14Þ

For a porous medium, these constants can present different values
of those presented above. However, as a first approximation, they
were taken as equal to those in (14), as suggested in the work of
Lee and Howell [19].

5. Numerical method and solution procedure

The numerical method employed for discretizing the governing
equations is the control-volume approach with a generalized grid.
A hybrid scheme, Upwind Differencing Scheme (UDS) and Central
Differencing Scheme (CDS), is used for interpolating the convective
fluxes. The well-established SIMPLE algorithm [40] is followed for
handling the pressure–velocity coupling. Individual algebraic
equation sets were solved by the SIP procedure of Stone [41]. The
present results were performed with / = 0.8, Da = 10�7 and
Kdisp = 0. The Prandtl number and the conductivity ratio between
the solid and fluid phases are assumed to be unity. It was used
an 80 � 80 stretched grid. Concentration of nodal points to walls
reduces eventual errors due to numerical diffusion which, in turn,
are further annihilated due to the hybrid scheme here adopted.
Fig. 2. Average Nusselt numbers for tilted cavities.
6. Results and discussion

Problems of natural convection concerning cavities of different
shapes arise from the need of developing passive techniques to en-
hance the heat transfer process across enclosures. As such, one of
these passive techniques is the reshaping of the bounded region
and the study of different sizes of cavities. Thus, either in cavities
of 1 m side, as the one here computed, or in enclosures of a few
millimeters high, detailed studies contribute to the design of pas-
sive heat transfer devices. In fact, the investigation herein is also
of great importance in regard to miniaturization of electronic de-
vices, which are severely constrained by space and weight. In the
work herein two types of oblique cavities are investigated, namely
with clockwise and counter-clockwise inclination.

It is also important to emphasize that the main objective of this
work is not to detect the transition mechanism, from laminar re-
gime to fully turbulent flow, which involves modeling of complex
physical processes and hydrodynamic instabilities. Here the aim is
to establish a Racr where below it laminarization of the turbulent
flow occurs. For clear flows, when Raf is varied, the literature often
refers to laminar and turbulent ‘‘branches” of solutions as Raf

passes a critical value. When a turbulence model is included, the
turbulent solution can deviates from the laminar branch for
Raf > Racr and follows its turbulent branch. Below a critical Raf

number, the standard k–e model gives a turbulent viscosity, which
is close to zero everywhere. This reduction of turbulent transfer
can be interpreted as an indication of the laminarization phenom-
enon. However, above this critical value, the turbulent viscosity
suddenly increases and a turbulent solution is obtained.

In the work of Braga and de Lemos [32], a Racr for a porous
square cavity was found. This value was about Racr = 104 and was
not sensible to small variations in the Darcy number, Da or due
to the consideration of dispersion (Kdisp) mechanism. This work
studies the influence of a clockwise and a counter-clockwise incli-
nation angle on the Racr in an oblique cavity. Thus, as done in
[32,34] the turbulence model is first switched off and the laminar
branch of the solution is found when increasing the Rayleigh num-
ber, Ram. Subsequently, the turbulence model is included so that
the solution merges to the laminar branch for Ram < Racr. Here, it
is important to emphasize that, similarly to Braga and de Lemos
[32], the turbulent branch of the solution was obtained by reducing
the value of Ra to a point where no differences were detected when
using the two models. Reproduction of this ‘‘laminarization” path,
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already mentioned above, was in fact the main motivation for the
development of the k–e model more than three decades ago [42].

Fig. 2 shows the average Nusselt number for laminar flow for a
clockwise inclination with Ram = 103 and 104 for Da = 10�7, / = 0.8,
ks/kf = 1, Pr = 1 for several angles. The shows that, the higher the
inclination angle, the lower is the average Nusselt number at the
hot wall. A possible explanation for such behavior is reduction of
the available area for the recirculatory flow as the inclination angle
increases.

Further, Fig. 3 shows streamlines and isotherms for the turbu-
lent model solution for a counter-clockwise inclination cavity of
Ram = 105. The streamlines shown in Fig. 3 indicate a small depen-
dence with the angle variation. For the range of inclination angles
analyzed, the higher the inclination angle, the lower the overall
values of recirculation intensity. On the other hand, the isotherms
are stratified for the three angles analyzed and the inclination an-
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Fig. 3. Streamlines (left) and isotherms (right) for turbulent model solution for a cavit
Pr = 1; (a,b) h = 15�, (c,d) h = 30�, (e, f) h = 45�.
gle seems not to affect the isotherms significantly and the main
mechanism of heat transport is by convection mechanism.

Fig. 4 shows the streamlines and isotherms for the turbulent
model solution for a clockwise inclination cavity of Ram = 105.
The streamlines show a small dependence with the angle variation.
For the range of inclination angles analyzed, the higher the inclina-
tion angle, the lower the overall values of recirculation intensity.
This behavior is probably due to the positive inclination that acts
like an obstacle for the ascendant buoyant flow near to the heated
wall and due to the reduction of the space inside the enclosure. The
isotherms are also stratified for the three angles analyzed and the
inclination angle do not play an important hole in the isotherms, so
that, the main mechanism of heat transport is by convection
mechanism.

Table 1 shows the average Nusselt number at the hot wall for
the two types of regime, namely laminar and turbulent, for various,
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Fig. 4. Streamlines (left) and isotherms (right) for turbulent model solution for a cavity with a clockwise inclination with Ram = 105, / = 0.8, Da = 10�7, ks/kf = 1, Pr = 1; (a,b)
h = 15�, (c,d) h = 30�, (e, f) h = 45�.

Table 1
Comparison between laminar and turbulent model solutions for the average Nusselt
number at the hot wall for a cavity with counter-clockwise inclination angle h = 0�,
15�, 30�, 45�, respectively, and Ram ranging from 103 to 105 with Da = 10�7, / = 0.8, ks/
kf = 1, Pr = 1

Model solution/Ram 103 104 105

h = 0�
Laminar model 12.9310 38.9716 88.4639
k � e model 13.0326 40.6142 101.6477

h = 15�
Laminar model 12.8900 38.4983 87.4852
k–e model 12.9937 40.1084 100.4768

h = 30�
Laminar model 12.2365 36.7182 84.2690
k–e model 12.3272 38.1392 96.2246

h = 45�
Laminar model 10.9776 33.4860 78.4577
k–e model 11.0464 34.5895 88.4691
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and h. Inspecting Table 1 one can see that the turbulent solution
departs from the laminar one for Ram greater than about 104. Con-
sequently, the calculations herein suggest that a critical value for
Rayleigh–Darcy number, Ram, is also of the order of 104 and from
that value on simulations considering a turbulence model gives a
higher value of Nu than their laminar counterpart. It was observed
that the overall values of Nu for higher inclination angles are smal-
ler than those for lower inclinations. Ultimately, it seems that the
inclination angle does not affect the point where the deviation oc-
curs for the range of angles analyzed.

Table 2 shows the average Nusselt number at the hot wall for
the two types of regime, namely laminar and turbulent, for various
Ram and h. The table shows that the turbulent solution departs
from the laminar one also for Ram greater than about 104. Conse-
quently, the calculations herein suggest that a critical value for
Rayleigh–Darcy number, Ram, is also of the order of 104 and from
that value on simulations considering a turbulence model gives a



Table 2
Comparison between laminar and turbulent model solutions for the average Nusselt
number at the hot wall for a cavity with clockwise inclination angle h = 0�, 15�, 30�,
45�, respectively, and Ram ranging from 103 to 105 with Da = 10�7, / = 0.8, ks/kf = 1,
Pr = 1

Model solution/Ram 103 104 105

h = 0�
Laminar model 12.9310 38.9716 88.4639
k–e model 13.0326 40.6142 101.6477

h = 15�
Laminar model 12.3622 38.1886 87.3490
k–e model 12.4473 39.6990 99.8880

h = 30�
Laminar model 11.1117 36.0252 83.9821
k–e model 11.1717 37.2610 95.0257

h = 45�
Laminar model 9.0899 32.1553 77.8913
k–e model 9.1411 32.9969 86.5605

Fig. 6. Average Nusselt number as a function of model and h: (a) clockwise incli-
nation and (b) counter-clockwise inclination.

Fig. 5. Average Nusselt number as a function of model and Ram: (a) clockwise
inclination and (b) counter-clockwise inclination.
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higher value of Nu than their laminar counterpart. It was observed
that the overall values of Nu for higher inclination angles are smal-
ler than those for lower inclinations. Also, it seems that the inclina-
tion angle does not affect the point where the bifurcation occurs
for the range of angles analyzed. From the table results it is ob-
served that the overall Nusselt values for cavities with counter-
clockwise inclination are slightly higher than those obtained for
the cavities with clockwise inclination angles. Results in Tables 1
and 2 can be better visualized next.

Fig. 5 plots average Nusselt numbers as a function of Ram for
both angle orientations, which where illustrated by Fig. 1. For either
angular direction, Nu computed with a turbulence model is greater
for higher values of Ram, indicating that a departure from the lam-
inar branch of the solution has probably started. The effect of angle
h on Nu is further shown in Fig. 6, also for both cavity inclinations. In
both clockwise and counter-clockwise directions, a slight reduction
on Nu is observed, for either the laminar solution or when the k–e
model is applied. Such reduction when varying h is greater for larger
Rayleigh number, indicating that for low speed flows the overall
transport currents between walls is less sensitive on h. Reduction
of Nu, using both models for either direction, seems to reflect a
reduction in the overall cavity area, which apparently impairs heat
transfer by reducing convective currents within the cavity.

In order to access which inclination direction has the most
influence on Nu, a relative Nusselt defined as Nucw/Nuccw, where
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the subscripts refers to the rotation direction, is defined. Fig. 7 fi-
nally shows results for such relative Nu as a function of the angle
modulus, jhj. One can observe that clockwise cavity rotations will
always reduce heat transfer in a more efficient manner, regardless
of the Rayleigh number applied (Nucw always less than Nuccw). This
could be explained due to the fact that, although both Nucw and
Nuccw decrease with cavity rotation, due to the effective area
reduction mentioned above, a counter-clockwise rotation brings
the hot wall to an overall ‘‘lower” level, whereas the clockwise
rotation tends towards bringing the configuration closer to a cavity
heated from above. As such, although a rotation to the left de-
creases convective currents due to reduction of flow area
(Fig. 6b), the tendency towards an unconditionally unstable
heated-from-below cavity case does that at a lower rate than in
the case of a rotation to the right (Fig. 6a). Also observed from
Fig. 7 is that the lower the Ram, the greater the reduction on Nu
when varying h on both rotating directions. Also, as expected, for
low Ram flows no detectable difference exists when Nu is computed
with both mathematical models. Finally observed in Fig. 7 is that
for higher values of jhj and for large Ram the two solutions present
the most discrepancy when calculating Nu.

7. Conclusions

Computations for laminar and turbulent flows with the macro-
scopic k–e model with a wall function for natural convection in ob-
lique cavities totally filled with porous material were performed.
The calculations herein suggest that a critical value for Ram is of
the order of 104. Additional conclusions of this work are:

(a) In either rotating direction, the average Nusselt numbers for
horizontal heat transfer is decreased for a porous square cav-
ity. This behavior is probably due to the overall cross-sec-
tional area reduction, acting as an obstacle for the
ascendant buoyant flow near to the heated wall, as well as
due to the reduction of the effective cavity height with
rotation.

(b) The inclination angle does not affect the point where both
the laminar and turbulent solutions deviate from each other,
at least for the range of angles here analyzed.
(c) The overall Nusselt values for oblique cavities with counter-
clockwise inclination are slightly higher than those obtained
for oblique cavities with the same clockwise inclination. This
effect might be associated with the fact that turning the hot
wall to the left reduces Nu but, at the same time, brings the
hot wall to a lower overall height, tending towards the
unconditionally unstable cases of cavities heated from
below. The opposite trend is observed for right rotations of
the hot wall, leading to unconditionally stable heated-
from-above cases, which, in turn, further damps convective
currents within the cavity.

Ultimately, the study herein is expected to be useful to engi-
neering design of systems such as packed electronics.
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