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Abstract

This work presents numerical computations for laminar and turbulent natural convection within a horizontal cylindrical annulus
filled with a fluid saturated porous medium. Computations covered the range 25 < Ram < 500 and 3.2 · 10�4 > Da > 3.2 · 10�6 and
made use of the finite volume method. The inner and outer walls are maintained at constant but different temperatures. The macroscopic
k–e turbulence model with wall function is used to handle turbulent flows in porous media. First, the turbulence model is switched off and
the laminar branch of the solution is found when increasing the Rayleigh number, Ram. Subsequently, the turbulence model is included
and calculations start at high Ram, merging to the laminar branch for a reducing Ram. This convergence of results as Ram decreases can
be seen as an estimate of the so-called laminarization phenomenon. Here, a critical Rayleigh number was not identified and results indi-
cated that when the porosity, Prandtl number, conductivity ratio between the fluid and the solid matrix and Ram are kept fixed, the lower
the Darcy number, the higher is the difference of the average Nusselt number given by the laminar and turbulent models.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The analyses of natural convection in a horizontal cylin-
drical annuli filled by a porous material has been subject of
a number of studies in recent years. Thermal insulators,
cryogenics, thermal storage systems, electronic cooling,
inert gas insulation of high-voltage electric cables and the
determination of the requirements for aircraft cabin insula-
tion are some examples of applications.

The first basic study on natural convection in clear cylin-
drical annuli was carried out by [1] and extended by [2]. A
very extensive analysis has been made on the concentric
annuli by [3]. They have conducted both numerical simula-
tion using the finite elements technique and experimental
studies using Mach-Zehnder interferometer. Application
of other type of finite differences method with ADI numer-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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ical solution has also reported by [4] in solving the laminar
horizontal concentric annuli problem formulated in cylin-
drical polar coordinates. Small eccentric annuli has per-
formed in the work of [5], using an expansion in terms of
the double series of eccentricity and Rayleigh number for
small values of Ra. The work of [6] extended the knowledge
on the natural convection heat transfer in the horizontal
cylindrical annuli and the numerical analysis has been
made using finite difference method in a bipolar coordinate
system based on successive over-relaxation iteration.

Flow analysis on clear concentric annulus has been
extended to turbulent natural convection using a two-equa-
tion turbulence model in the work of [7]. Experimental
works yielded new information about the field variable, pri-
marily on the distribution of the mean temperature in the
fluid and of Nusselt number around the cylinders circumfer-
ence in the work of [8]. The turbulence appears in the upper
region of the annulus in the plume above the heated inner
cylinder. On the other hand, the stable stratification below
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Nomenclature

cF Forchheimer coefficient
c’s non-dimensional turbulence model constants
cp specific heat
d pore diameter
D D = [$u + ($u)T]/2, deformation rate tensor
Da Darcy number, Da ¼ K

r2
i

Dp particle diameter
g gravity acceleration vector
Gi generation rate of hkii due to the action of the

porous matrix
Gi

b generation rate of hkii due to the buoyant effects
h heat transfer coefficient
I unit tensor

K K ¼ D2
p/3

144ð1�/Þ2, permeability

k k ¼ u0 � u0=2, turbulent kinetic energy per mass
unit

kf fluid thermal conductivity
ks solid thermal conductivity
Kdisp conductivity tensor due to the dispersion
Kdisp,t conductivity tensor due to the turbulent disper-

sion
Kt conductivity tensor due to the turbulent heat

flux
Ktor conductivity tensor due to the tortuosity
Nu Nusselt number
Pe Peclet number
PeD modified Peclet number, PeD = Pe(1 � /)1/2

Pi production rate of hkii due to gradients of �uD

Pr mf/af, Prandtl number
r radius
R ro/ri

Raf Raf ¼
gbr3

i
DT

mf af
, fluid Rayleigh number

Ram Ram ¼ Raf � Da ¼ gb/riDTK
mf aeff

, Darcy–Rayleigh
number

Racr critical Rayleigh number

Rep Rep ¼ juDjd
mf

, Reynolds number based on the pore
diameter

T temperature
u microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek symbols

a thermal diffusivity
b thermal expansion coefficient
DV representative elementary volume
DVf fluid volume inside DV

e e ¼ lru0 : ðru0ÞT=q, dissipation rate of k

l dynamic viscosity
lt microscopic turbulent viscosity
lt/ macroscopic turbulent viscosity
m kinematic viscosity
q density
r’s non-dimensional constants
/ / = DVf/DV, porosity
h angle

Special characters

u general scalar variable
�u time average
u 0 time fluctuation
huii intrinsic average
huiv volume average
iu spatial deviation
juj absolute value (Abs)
u general vector variable
ueff effective value, ueff = /uf + (1 � /)us

us,f solid/fluid
ui,o inner/outer
uH,C hot/cold
u/ macroscopic value
( )T transpose
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the heated inner cylinder suppresses any movement and
turbulence that might be convected downward. Direct

numerical simulation (DNS) was performed by [9]. How-
ever, because of the extreme requirements for computing
resources, these computations are limited to low Raf num-
bers. The work of [10] use a Large Eddy Simulation (LES)
for a case with a high Raf number indicated that this
method may serve in the future as an alternative to the
(DNS), but there are many critics about the use of such
model in 2-D cases due the 3-D characteristic of the turbu-
lence. The work of [11], reports on the modeling and com-
putational study of the natural convection in concentric
and eccentric annuli by means of several variants of the
Algebraic Stress Models (ASM), which is based on the
expression for turbulent heat flux hui obtained by trunca-
tion of the second-moment transport equation for this
correlation. Various levels of closure included the Low-Re

number form of the k–e model, but also a version in
which the differential transport equations are solved for
the temperature variance h2 and its decay rate eh. Ascending
flows of liquid metal [12] and anisotropic effects in flows
over rod-bundles, [13] have also been investigated via
ASMs.

The natural convection in cylindrical annular geometry
filled with porous material also have been studied by dis-
tinct numerical approaches, such as the finite-difference
method reported by [14 and 15]. Finite element method is
found in the work of [16] and the Galerkin spectral method
in the work of [17–20]. The work of [21] have shown that
the Fourier–Chebyshev method gives better accuracy than



Fig. 1. Schematic of the problem: (a) geometry; (b) grid.
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does the full Fourier–Galerkin method for the description
of two-dimensional multicellular flows.

Experimental studies using the Christiansen effect to
visualize the thermal two-dimensional fields have been car-
ried out by [22]. In contrast with analytical studies, exper-
iments have only unveiled unicellular flows.

Macroscopic transport modeling of incompressible
flows in porous media has been based on the volume-
average methodology for either heat [23] or mass transfer
[24–26]. If time fluctuations of the flow properties are also
considered, in addition to spatial deviations, there are two
possible methodologies to follow in order to obtain macro-
scopic equations: (a) application of time-average operator
followed by volume-averaging [27–30], or (b) use of vol-
ume-averaging before time-averaging is applied [31–33].
However, both sets of macroscopic mass transport equa-
tions are equivalent when examined under the recently
established double decomposition concept [34–38]. The
mathematical proof of this statement is demonstrated in
[35] and considers that the two additional drag terms that
appear in the momentum equation, namely the viscous
and form drags, have identical final forms after application
of both operators over their exact expressions. Also, in [34–
38] no association is made between turbulence and closure
of such two drag terms, namely the Darcy and Forcheimer
models. Turbulence is handled after ‘‘double-decompos-
ing’’ the convection term (not the drag terms) and setting
up models for the additional correlations obtained. To
the interested reader the discussions in Refs. [34–38] are
suggested for further study.

In addition to considering the flow variables in [34–38],
the double-decomposition concept has been extended to
heat transfer in [39,40]. Also, a consistent program of sys-
tematic studies based on such double-decomposition idea for
treating buoyant flows [41–44], mass transfer [45], non-
equilibrium heat transfer [46,47], double diffusion [48], flow
about an interface including mean [49] and turbulence
fields [51,52], in addition to a general classification of mod-
els [53], have been published. Further applications of the
work in [34–38] include flow trough porous inserts [54]
and heat transfer in permeable baffles [55].

Motivated by the innumerous practical applications of
turbulent natural convection in porous media, and by
the fact studies on this subject are not common in the
available literature, this paper presents results for both
laminar and turbulent flows in a porous layer bounded
by two horizontal isothermal concentric cylinders. The
turbulence model here adopted is the macroscopic k–e
model developed and applied by de Lemos and co-workers
[34–55].

2. The problem considered

The problem considered is showed schematically in
Fig. 1a and refers to a concentric annulus completely filled
with porous material with outer and inner radii ro and ri,
respectively, and R = ro/ri = 2. The cavity is isothermally
heated from the inner cylinder, TH and cooled from outer
cylinder, TC and the parameters Prandtl number, Pr, con-
ductivity ratio, ks/kf are fixed.

The local Nusselt number on the heated inner cylinder
for the horizontal cylindrical annuli considering half
domain is given by,

Nu ¼ � ln R r
ohT ii

or

 !
r¼ri

ð1Þ

so that the average Nusselt number becomes,

Nu ¼ � ln R
p

Z p

0

r
ohT ii

or

 !
r¼ri

dh ð2Þ
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The Ram is the dimensionless parameter used for porous

media and it is defined as, Ram ¼ gb/riDTK
mf aeff

, with aeff = keff/
(qcp)f and the medium permeability proposed by [56] and

based on the empirical correlations of [57] as K ¼ D2
p/3

144ð1�/Þ2.

3. Governing equations

The equations used herein are derived in details in Refs.
[34–38] and for this reason their derivation need not be
repeated here. It is interesting to point out that the value
of porosity, /, in the governing equations to be shown
below, is located inside the spatial operator (gradient). As
such, no assumption is made on the constancy of / over
the domain of calculation. The work of [35] points out that
the only restriction to apply is the constancy of / with
time, otherwise, volume and time average operators do
not commute.

Basically, for porous media analysis, a macroscopic
form of the time-averaged equations is obtained by taking
the volumetric mean of the entire equation set [34–38]. In
that development, the medium was considered rigid and
saturated by an incompressible fluid. Accordingly, for a
general fluid property u the intrinsic and volumetric aver-
ages are related through the porosity / as

huii ¼ 1

DV f

Z
DV f

udV ; huiv ¼ /huii; / ¼ DV f

DV
ð3Þ

where DVf is the volume of the fluid contained in DV, the
volume of a Representative Elementary Volume (REV).
The property u can then be defined as the sum of huii
and a term related to its spatial variation within the
REV, iu, as [25],

u ¼ huii þ iu ð4Þ
The macroscopic continuity equation is then given by,

r � �uD ¼ 0 ð5Þ
where the Dupuit–Forchheimer relationship, �uD ¼ /h�uii,
has been used and h�uii identifies the intrinsic (liquid) aver-
age of the local velocity vector �u. The macroscopic time-
mean Navier–Stokes (NS) equation for an incompressible
fluid with constant properties is given as,

q
o�uD

ot
þr � �uD�uD

/

� �� �
¼ �r /h�pii

� �
þ lr2�uD þr � ð�q/hu0u0iiÞ

� qb/g/ðhT ii � T refÞ �
l/
K

�uD þ
cF/qj�uDj�uDffiffiffiffi

K
p

� �
ð6Þ

Before proceeding, a word about the mechanical disper-
sion mechanism seems timely. Bear [24] and Hsu and
Cheng [23] have defined, among others, the dispersion
mechanism for momentum and heat transport, respec-
tively. Mathematically speaking, dispersion is a space cor-
relation between deviation of a generic flow property and
velocity deviation (see [35]). When the flow property is
velocity, temperature, or mass concentration, one has
mechanical, thermal or mass dispersion, respectively. Such
mechanism is also present in laminar flow through porous
media (low Rep = juDjd/mf).

In addition, to better clarify matters, one recalls that
from [35] the full decomposition of the convection term,
applying the double-decomposition concept, rendered four
terms (rather than two for either time decomposition only
or space decomposition only), which were given the follow-
ing physical significance (see [35] for details): (a) convection,
r � ðq/h�uiih�uii), (b) mechanical dispersion, r � ðq/hi�ui�uiiÞ,
which is also present in laminar flows, Rep < 150, (c)

macroscopic turbulent transport, r � ðq/hu0iihu0iiÞ and (d)

turbulent dispersion, r � ðq/hiu0iu0iiÞ. Having defined an
appropriate nomenclature, considerations about character-
istics of the models here employed can be made.

In view of the above, it is interesting to point out that
mechanical dispersion, or term (b) above, r � ðq/hi�ui�uiiÞ,
has been neglected in (6) in comparison to the other three
mechanisms. The reason for assuming such hypothesis is
that this work in intended to model high Re flows in highly
permeable, high porosity media, for which the correspond-
ing range of pore Reynolds number is given by Rep > 300,
provided that porosity and pore diameters are high. As
such, turbulent flow is assumed to exist within the medium
and, under this condition, turbulent transfer (third term on
the right of (6)), given by,

r � ð�q/hu0u0iiÞ ¼ r � �q/ hu0iihu0ii|fflfflfflffl{zfflfflfflffl}
macrocopic
turb: transp:

þhiu0iu0ii|fflfflffl{zfflfflffl}
turbulent
dispersion

0
BBB@

1
CCCA

2
6664

3
7775 ð7Þ

overwhelms mechanical dispersion (see [35]). For laminar
flow with low Rep, however, the greater importance of
mechanical dispersion as an effective mechanism of momen-
tum exchange is commonly accepted in the literature. On
should point out though that thermal dispersion is here
not neglected, as will be seen below.

Further, when treating turbulence with statistical tools,
the correlation �qu0u0 appears after application of the
time-average operator to the local instantaneous NS equa-
tion. Applying further the volume-average procedure to

this correlation results in the term �q/hu0u0ii. This term
is here recalled the Macroscopic Reynolds Stress Tensor

(MRST). Further, a model for the (MRST) in analogy with
the Boussinesq concept for clear fluid can be written as:

�q/hu0u0ii ¼ lt/
2h�Div � 2

3
/qhkiiI ð8Þ

where

h�Div ¼ 1

2
rð/h�uiiÞ þ rð/h�uiiÞ

h iT
� �

ð9Þ

is the macroscopic deformation rate tensor, hkii is the
intrinsic average for k and lt/

is the macroscopic turbulent
viscosity. The macroscopic turbulent viscosity, lt/

, is
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modeled similarly to the case of clear fluid flow and a
proposal for it was presented in [35] as,

lt/
¼ qcl

hkii
2

heii
ð10Þ

In a similar way, applying both time and volumetric
average to the microscopic energy equation, for either the
fluid or the porous matrix, two equations arise. Assuming
further the Local Thermal Equilibrium Hypothesis, which
considers hT fii ¼ hT sii ¼ hT ii, and adding up these two
equations, one has,

ðqcpÞfr � ð/huT fiiÞ

¼ ðqcpÞfr � /ðh�uiihT fiiþ hu0iihT 0fi
iþ hi�uiT fiiþ hiu0iT 0fi

iÞ
n o

ð11Þ

A modeled form of (11) has been given in detail in the
work of [40] as,

fðqcpÞf/þ ðqcpÞsð1� /Þg ohT ii

ot
þ ðqcpÞfr � ð�uDhT iiÞ

¼ r � fKeff � rhT iig ð12Þ

where Keff, given by

Keff ¼ ½/kf þ ð1� /Þks�Iþ Ktor þ Kt þ Kdisp þ Kdisp;t ð13Þ
is the effective conductivity tensor. In order to be able to
apply (12), it is necessary to determine the conductivity ten-
sors in (13), i.e., Ktor, Kt, Kdisp and Kdisp,t. Following [29],
this can be accomplished for the tortuosity and thermal dis-

persion conductivity tensors, Ktor and Kdisp, by making use
of a unit cell subjected to periodic boundary conditions for
the flow and a linear temperature gradient imposed over
the domain. The conductivity tensors are then obtained
directly from the microscopic results for the unit cell.

As mentioned earlier, here, thermal dispersion is not
neglected. Kuwahara and Nakayama [29] present, for an
infinite medium formed by an array of square rods, the Kdisp

components in the longitudinal and transversal directions,
(Kdisp)XX and (Kdisp)YY, respectively. The expressions read,

ðKdispÞXX ¼
0:022

Pe2
D

ð1�/Þ kf ; PeD < 10

2:7 PeD

/1=2 kf ; PeD > 10

8<
:

ðKdispÞYY ¼
0:022

Pe1:7
D

ð1�/Þ1=4 kf ; PeD < 10

0:052ð1� /Þ1=2PeDkf ; PeD > 10

8<
:

ð14Þ

where

PeD ¼ Peð1� /Þ1=2; Pe ¼ RepPr; Rep ¼
juDjd

mf

ð15Þ

and d is the pore diameter. The use of unit cells to obtain
correlations (14) is based on the notion that, for an infinite
medium, the macroscopic flow is ‘‘fully developed’’ (see
also [36–38]). Within the cell, after applying periodic
boundary conditions at cell inlet and outlet, one can then
compute distributed flow quantities that can be used to cal-
culate volumetric averages and spatial deviations. As such,
correlations composing the dispersion terms can be numer-
ically evaluated. This situation is akin to the determination
of constants in statistical turbulence models. One has to
isolate individual transport mechanisms in order to focus
on specific term and then ‘‘calibrate’’ or adjust some pro-
posed constant. Clearly, correlations (14) would be only
exact for flows where the macroscopic fully developed con-
dition applies. Nevertheless, in the absence of better infor-
mation, its application to general flows should be seen as
an approximation, which is subjected to refinement as
more experimental data is gathered.

The turbulent heat flux and turbulent thermal dispersion
terms, Kt and Kdisp,t, which cannot be determined from
such a microscopic calculation, are modeled here through
the Eddy diffusivity concept, similarly to [30]. It should
be noticed that these terms arise only if the flow is turbu-
lent, whereas the tortuosity and the thermal dispersion
terms exist for both laminar and turbulent flow regimes.
Starting out from the time averaged energy equation cou-
pled with the microscopic modeling for the ‘macroscopic
turbulent heat flux’ through the Eddy diffusivity concept,
one can write, after volume averaging,

�ðqcpÞfhu0T 0fi
i ¼ ðqcpÞf

mt/

rT
rhT fii ð16Þ

where the symbol mt/ expresses the macroscopic Eddy vis-
cosity, lt/

¼ qfmt/ , given by (10) and rT is a constant.
According to (16), the macroscopic heat flux due to turbu-
lence is taken as the sum of the turbulent heat flux and the
turbulent thermal dispersion found by [40]. In view of the
arguments given above, the turbulent heat flux and turbu-

lent thermal dispersion components of the conductivity ten-
sor, Kt and Kdisp,t, respectively, are expressed as:

Kt þ Kdisp;t ¼ /ðqcpÞf
mt/

rT
I ð17Þ

In the equation set shown above, when the variable
/ = 1, the domain is considered as a clear medium. For
any other value of /, the domain is treated as a porous
medium.

3.1. Turbulence model

Transport equations for hkii ¼ hu0 � u0ii=2 and heii ¼
lhru0 : ðru0ÞTii=q in their so-called High Reynolds num-
ber form are fully documented in the works of [34–38]
making use of the Double Decomposition concept and
extended in [41] to incorporate buoyancy effects. Basically,
for porous media analysis, a macroscopic form of the gov-
erning equations is here obtained by taking the volumetric
average of the time averaged equations set.

As explained in [35], different paths in obtaining a k-
equation have been proposed. The works of [31,32] devel-
oped a macroscopic equation for the turbulent kinetic

energy formed as km ¼ hu0ii � hu0ii=2, whereas de Lemos
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and co-workers [34–55] based their model on hkii ¼
hu0 � u0ii=2. The relationship between these two quantities
is [34]

hkii ¼ hu0 � u0ii=2 ¼ hu0ii � hu0ii=2þ hiu0 � iu0i=2

¼ km þ hiu0 � iu0i=2 ð18Þ

For that reason, transport equations for km ¼
hu0ii � hu0ii=2 and hkii ¼ hu0 � u0ii=2 are not equal because,
as seen, they represent two different quantities being trans-
ported [34]. In this work, macroscopic turbulent transport
equations are given by [41]:

q
o

ot
ð/hkiiÞ þ r � ð�uDhkiiÞ

� �

¼ r � lþ
lt/

rk

� �
rð/hkiiÞ

� �
þ P i þ Gi þ Gi

b � q/heii

ð19Þ

q
o

ot
ð/heiiÞ þ r � ð�uDheiiÞ

� �

¼ r � lþ
lt/

re

� �
rð/heiiÞ

� �
þ c1P i hei

i

hkii
þ c2

heii

hkii
Gi

þ c1c3Gi
b

heii

hkii
� c2q/

heii
2

hkii
ð20Þ

where c1, c2, c3 and ck are constants, P ið¼ �qhu0u0ii : r�uDÞ
is the production rate of hkii due to gradients of �uD,

Gi ¼ ckq
/hkii j�uDjffiffiffi

K
p

� �
is the generation rate of the intrinsic aver-

age of k due to the action of the porous matrix and

Gi
b ¼ /

lt/

rt
b/g � rhT ii

� �
is the generation rate of hkii due

to the buoyant effects. Here, it is also important to empha-
size that mechanical dispersion was not considered in the
transport of hkii and heii, as was the case for the mean
momentum Eq. (6). For highly porous and permeable med-
ia, for a fluid flowing with a high value of Rep, turbulence
interactions are expected to transport momentum and
turbulent kinetic energy as a rate faster than that due to
dispersion mechanisms.

Further, the constants used in Eqs. (10), (19) and (20) of
the macroscopic k–e model were the same given in [58] for
clear medium (/ = 1 and K!1). They read,

cl ¼ 0:09; c1 ¼ 1:44; c2 ¼ 1:92; c3 ¼ 1:0; rk ¼ 1:0;

re ¼ 1:3; rT ¼ 0:9 ð21Þ
For a porous medium, these constants may present dif-

ferent values but, as a first approximation, they were taken
as equal to those in [58], as suggested in [31].

Further, standard wall function has been employed for
calculating the flow near to the walls, as discussed in [49].
The use of such simpler model is justified due to the final
velocity values close to the interface will be a function
not only of inertia and viscous effects in full Navier–Stokes
equation, but also due to the Darcy and Forchheimer resis-
tance terms. Therefore, eventual errors coming from inac-
curate use of more appropriate boundary conditions will
have little influence on the final value for velocity close to
the wall since drag forces, caused by the porous structure,
will play also an important role in determining the final
value for the wall velocity. Thus, logarithm wall laws are
simple to be incorporated when simulating flow over rigid
surfaces and for that they have been modified to include
surface roughness and to simulate flows over irregular sur-
faces at the bottom of rivers [59]. Detailed information on
such numerical treatment can be found in [35–37].

4. Numerical method and solution procedure

The numerical method employed for discretizing the
governing equations is the control-volume approach with
a generalized grid. A hybrid scheme, Upwind Differencing
Scheme (UDS) and Central Differencing Scheme (CDS), is
used for interpolating the convection fluxes. The well-
established SIMPLE algorithm [60] is followed for han-
dling the pressure-velocity coupling. Individual algebraic
equation sets were solved by the SIP procedure of [61]. In
addition, concentration of nodal points closer to the walls
reduces eventual errors due to numerical diffusion which, in
turn, are further annihilated due to the hybrid scheme here
adopted.

5. Results and discussion

In order to guarantee grid independent solutions, runs
were performed in grids up to 80 · 80 control volumes
for laminar flow with Ram = 500. The percent difference
of the averaged Nusselt number at the hot wall, compared
with results obtained with the 50 · 50 grid, is less than 1%.
Therefore, the 50 · 50 mesh seems to be refined enough
near to the walls to capture the thin boundary layers that
appear along the vertical surfaces.

5.1. Laminar model solution

Runs for laminar model solution were performed with a
50 · 50 control volumes in the grid shown in Fig. 1b. The
present results were obtained with / = 0.2 (to represent
the packed bed measured by Caltagirone [14]) and / =
0.8, Prandtl number, Pr = 7 and the conductivity ratio
between the solid and fluid phases are assumed to be a unit
(unless otherwise noted).

As pointed out in [42 and 62] for the non-Darcy region,
fluid flow and heat transfer in porous cavities depend on
the fluid Rayleigh number, Raf, and the Darcy number,
Da, when other parameters such as /, Pr, kf/ks are fixed.
Therefore, porosity, Prandtl number and conductivity ratio
were here kept fixed. It is also important to emphasize that
most of runs were performed without the contribution of
the thermal dispersion, Kdisp. However, a few cases consid-
ering the effect of thermal dispersion on the Nusselt num-
ber were also computed in order to show its influence on
the overall heat transport.
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Da = 3.125 · 10�7, ks/kf = 1, / = 0.2, Pr = 7 and Kdisp given by (14).
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Many workers have focused their attention on the bifur-
cation and stability of the numerical solution. This work
has not this intention and its objective is to validate the
numerical tool comparing the present results with others
numerical and experimental works.

According to [14], there are three convection regimes
when considered the horizontal cylindrical annuli filled
with porous material. The first is for Ram 6 8 and the con-
vective phenomena are very little developed and the heat
transfer process occurs only by conduction mechanism.
This regime is called pseudo-conduction. The second regime
lies in the range 8 < Ram < 65 and the convective phenom-
ena is considered to be steady. The fluid is heated on con-
tact with the inner cylinder and impinges onto to the outer
surface. The last regime is for Ram > 65, which is character-
ized by flow perturbations in the upper part of the annular
layer causing fluctuations in temperature.

Further, experimental observations suggest that, for high
Rayleigh numbers, the fluid flow domain can be divided into
five regions. According to [20], the first region is the Inner

boundary layer which has a thin thermal layer close to the
inner cylinder where the gradients in the angular direction
are negligible compared to those in the radial direction.
The second is the Outer boundary layer with a thin thermal
layer near the outer cylinder in which gradients in the angu-
lar direction are also negligible compared to those in the
radial direction. The third region is the Plume that exits
along the vertical line of symmetry above the inner cylinder
and joins the inner and outer thermal layers. The fourth
region is the Stagnant region, which is located below the
inner cylinder where buoyancy forces inhibits fluid motion
and heat transfer is transferred purely by conduction mech-
anism. At last, the Core region is the one bounded by the
other four regions. Having described the basic features of
the flow structure, numerical results are now presented.

First, to validate the code, Table 1 compares some pre-
vious [14,18] and present laminar results for 25 < Ram <
500 and / = 0.2. This low porosity value was chosen in
order to represent the packed bed composed by glass balls
of Dp = 3 mm used in [14]. Computations are for Da =
3.125 · 10�7 (K = 0.7813 · 10�9 m2), ks/kf = 1, Pr = 7
(water) and Kdisp = 0. Table 1 shows a good agreement
between the present and previous results in the literature.
Fig. 2 further shows the behavior of the average Nusselt
Table 1
Some previous laminar numerical results for average Nusselt number for
Ram ranging from 25 to 500 with K = 0.7813 · 10�9 m2, Dp = 3 mm,
Da = 3.125 · 10�7, ks/kf = 1, / = 0.2, Pr = 7, Kdisp = 0

Ram

25 100 150 200 500

Caltagirone [14] 1.0993 1.8286 – 2.6256 4.1983
Charrier-Mojtabi [18] – 1.8670 2.3090 – –
Present results,

Kdisp = 0
1.1095 1.8629 2.3023 2.6764 4.2741

Present results,
Kdisp by Eq. (14)

1.1103 1.8783 2.3413 2.7500 4.7439
number versus Ram from experiments and other analyses.
The present results in Fig. 2 were obtained with the laminar
model for R = 2 and applying the conditions show in Table
1, which were used by (14). Such parameters try to repro-
duce the experimental conditions carried out in [14], which
considered water and glass balls of 3 and 4 mm in diameter.
Present laminar results in Fig. 2 show a good agreement
with respect to the numerical tool used in [14] but, how-
ever, experimental values are a little higher for high values
of Ram. The figure also indicates an improvement on the
simulations when the mechanism of dispersion is con-
sidered. A possible explanation for the under predicted
values for high Ram could be associated with the three-
dimensional characteristics of the real flow and additional
mechanisms, such as turbulence, not accounted for in the
predictions shown in Fig. 2.

Fig. 3 shows streamlines and isotherms for laminar
model solution for a cylindrical porous annuli with Da =
3.125 · 10�7, ks/kf = 1, / = 0.2, Pr = 7 and Ram ranging
from 25 to 500. The cavity is heated at the inner cylindrical
surface and cooled from the outer cylinder.

For lower Rayleigh number values, Ram 6 25 (not
shown here), the isotherms are concentric to the inner cyl-
inder, indicating that the most part of heat transfer is due
to conduction mechanism, while the streamlines yield a
recirculation bubble located at each half of the annulus.
Fig. 3a,b and e,f show a good agreement when compared
with those figures from the work of [14, pp. 346 and 350]
for Ram = 25 and Ram = 200, respectively.

The heat transfer coefficient is seen to increase as the Ray-
leigh number is varied distorting the circular isotherms and
creating a plume above the inner cylinder as convection
becomes dominant (see Fig. 3b and h). Streamlines do not



Fig. 3. Streamlines (left) and isotherms (right) for laminar model solution
for a cylindrical porous annuli with R = 2, Dp = 3 mm, Da = 3.125 ·
10�7, ks/kf = 1, / = 0.2, Pr = 7, Kdisp = 0, (a, b) Ram = 25, (c, d) Ram =
100, (e, f) Ram = 200 and (g, h) Ram = 500.

Table 2
Behavior of the average Nusselt number for different values of Da for Ram

ranging from 25 to 500 with ks/kf = 1, / = 0.8, Pr = 7, (Kdisp = 0, unless
otherwise noted)

Da Ram

25 100 150 200 500

3.2 · 10�4 1.0836 1.7042 2.0560 2.3468 3.4797
3.2 · 10�4, Kdisp

given by Eq. (14)
1.0907 1.7503 2.1642 2.5374 4.4075

3.2 · 10�5 1.1035 1.8243 2.2395 2.5889 4.0277
3.2 · 10�6 1.1090 1.8581 2.2936 2.6635 4.2295
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present such intense variations in shape as the Rayleigh
number is varied but only an increase in the recirculation
strength and a slight displacement of the vortex center
towards the upper part of the annulus (see Fig. 3a and g).

Table 2 further shows the average Nusselt number for
different Darcy numbers for Ram ranging from 25 to 500
and / = 0.8. It is clearly seen from the (2) that for a fixed
Ram that the lower the permeability, and consequently the
lower the Da number, the higher the average Nusselt num-
ber at the hot wall. This trend has been also observed in
[42] and is due to the constraint of having the definition
Ram = Raf Da. Different combinations of Raf and Da yields
different heat transfer results although the value of Ram is
kept constant. Accordingly, increasing the fluid Rayleigh
number, as Da is reduced, enhances natural convection
inside the annulus. As pointed out in [42], if Ram is fixed,
a higher fluid Rayleigh number is associated with a less per-
meable media (i.e., having a lower Darcy number). It is
also clearly seen from the Table 2 that the Nusselt numbers
computed with the thermal dispersion mechanism are
higher than those computed without Kdisp (see Table 2
for Da = 3.2 · 10�4). It seems evident then that this addi-
tional mechanism also increases heat transfer. Table 2 fur-
ther shows that for higher values of Ram, the effect of the
thermal dispersion on the Nusselt number are more pro-
nounced. For example, including Kdisp for Ram = 25
increases Nu by only 100 · (1.0907 � 1.0836)/1.0836 =
0.65% whereas for Ram equal to 500 such increase
is 100 · (4.4075 � 3.4797)/3.4797 = 26.75%. However, al-
though not shown here, the computational cost due to
the inclusion of this mechanism significantly rises.

5.2. Turbulence model solution

In this work, the same strategy used in [42] is adopted.
First, the turbulence model is switched off and the laminar
branch of the solution is obtained when increasing the Ray-
leigh number, Ram. Subsequently, the turbulence model is
included and calculations start at high Ram, merging to the
laminar branch for a reducing Ram. Using this methodology,
a critical Rayleigh number, Racr, is sought for which the two
branches of the solutions differ by a prescribed percentage.
This convergence of results as Ram decreases can be seen
as an estimate of the so-called laminarization phenomenon.
Below a critical Ram number the standard k–e model gives
a turbulent viscosity that is close to zero everywhere and
the solution can be interpreted as an approximation of the
laminar flow. However, above this critical value, the turbu-
lent viscosity increases and turbulent flow is considered.

Calculations for turbulent flow were performed with the
same grid used for the laminar model solution. The same
parameters (porosity, Prandtl number and conductivity
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ratio between the fluid and the solid matrix) were also
employed when running the k–e model, whose results are
presented in Fig. 4. Comparing the laminar and the turbu-
lent solution (Figs. 3 and 4), one can note that for the
smallest Ram considered, Figs. 3a,b and 4a,b, both cases
(laminar and turbulent model solutions) do not show
remarkable differences and the flow pattern remains almost
the same with the center of the streamlines a little further
downward for the turbulent case. For the highest Ram
Fig. 4. Streamlines (left) and isotherms (right) for turbulent model
solution for a cylindrical porous annuli with R = 2, Da = 3.2 · 10�5,
ks/kf = 1, / = 0.8, Pr = 7, Kdisp = 0, (a, b) Ram = 25, (c, d) Ram = 100,
(e, f) Ram = 200 and (g, h) Ram = 500.
number analyzed, the isotherms presented in Fig. 4h in
the region located beneath the inner cylinder show a similar
behavior when compared with those from the laminar case,
in which the buoyancy forces inhibits fluid motion and the
heat transfer is purely by conduction mechanism, Fig. 3h.
However, the upper part of the annulus in Fig. 4h does
not show a plume above the inner heated cylinder as
appears in the laminar case of Fig. 3h.

Accordingly, Fig. 5a shows the corresponding macro-
scopic temperature profiles at the symmetry line above
the inner cylinder for Ram = 500, R = 2, Da = 3.2 · 10�5,
ks/kf = 1, / = 0.8, Pr = 7, Kdisp = 0 for laminar and turbu-
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Table 3
Comparison between laminar and turbulent model solutions for the average Nusselt number at the hot wall for 3.2 · 10�4 > Da > 3.2 · 10�6 and Ram

ranging from 25 to 500 with ks/kf = 1, / = 0.8, Pr = 7, (Kdisp = 0, unless otherwise noted)

Model solutionnRam 25 100 150 200 500

Da = 3.2 · 10�6

Raf 7.8125 · 106 3.125 · 107 4.6875 · 107 6.25 · 107 1.5625 · 108

Laminar 1.1090 1.8581 2.2936 2.6635 4.2295
Turbulent 7.0036 11.2417 12.6458 13.6791 16.9869

Da = 3.2 · 10�5

Raf 7.8125 · 105 3.125 · 106 4.6875 · 106 6.25 · 106 1.5625 · 107

Laminar 1.1035 1.8243 2.2395 2.5889 4.0277
Turbulent 2.3621 4.4824 5.3780 6.0961 8.8406

Da = 3.2 · 10�4

Raf 7.8125 · 104 3.125 · 105 4.6875 · 105 6.25 · 105 1.5625 · 106

Laminar 1.0836 1.7042 2.0560 2.3468 3.4797
Turbulent 1.1415 1.9344 2.3875 2.7638 4.2966

Da = 3.2 · 10�4, Kdisp given by Eq. (14)
Raf 7.8125 · 104 3.125 · 105 4.6875 · 105 6.25 · 105 1.5625 · 106

Laminar 1.0907 1.7503 2.1642 2.5374 4.4075
Turbulent 1.1445 1.9792 2.4856 2.9302 5.0425
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ks/kf = 1, / = 0.8, Pr = 7, Kdisp = 0.
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lent model solutions. As indicated by the figure, the turbu-
lent solution shows a more gradual temperature distribu-
tion across the entire gap when compared with those for
the laminar case. The steeper temperature gradient at the
inner wall indicates that more heat is transferred through
the gap. Fig. 5b shows corresponding isolines of intrinsic
turbulent kinetic energy, hkii, for the same conditions as
in Fig. 5a. The figure clearly shows that in the upper part
of the annular region the turbulent kinetic energy presents
its highest levels. The enhancement of heat transfer across
the gap is coherent with the large values for hkii observed
in that same region. These high levels of turbulent kinetic
energy promote a higher overall heat flux from the inner
surface towards the outer cylinder, reflecting on the shape
of the temperature profiles seen before in Fig. 5a.

Table 3 shows, for selected modified Rayleigh numbers
Ram = RafDa, the average Nusselt number Nu based on
the heated inner cylinder. Also shown in the table are cor-
responding values for the fluid Raleigh number Raf, which
increases as Da decreases for maintaining the same Ram. In
general, the overall turbulent average Nusselt numbers are
significantly greater than those obtained with the laminar
model. A possible explanation for this Nu behavior is that
the thin thermal boundary layer above the inner cylinder,
appearing when turbulence is considered (see Fig. 5a),
entails a steeper temperature gradient which, in turn, pro-
motes the exchange of heat across the gap. These results
seem to be in agreement with all simulations shown so
far. Also seen is that by keeping /, Pr and ks/kf constants,
the lower the Darcy number (or the higher Raf), the higher
the difference of the average Nusselt numbers between the
two models. Table 3 seems to suggest that a lower perme-
ability (or a higher Raf) implies in an earlier laminarization,
i.e., the laminarization occurs for lower Ram numbers. In
order to further illustrate this point, Fig. 6 finally shows
the average Nusselt number plotted against Raf. The figure
seems to suggest that for lower Da, laminar and turbulence
models depart from each other at an earlier value of Raf,
corresponding then to the observed early laminarization

phenomena mentioned above.

6. Conclusion

This work presents numerical computations for laminar
and turbulent natural convection within a horizontal cylin-
drical annulus filled with a fluid saturated porous medium.
The present simulation yielded good agreements with
numerical results from Caltagirone [14]. Comparisons with
experimental data, also by Caltagirone [14], show that for
up to Ram = 100 calculations are within the data envelop.

Present results show that keeping with the parameters /,
Pr and ks/kf, constants, the lower the Darcy number, the
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higher the difference of the average Nusselt numbers given
by the two models considered. Present results show also that
a lower permeability implies in an earlier laminarization, i.e.,
the laminarization occurs for lower Ram numbers. This is
probably associated with the high levels of turbulent kinetic
energy in the region located at the symmetry line above the
inner cylinder, inducing a higher overall heat flux from the
inner surface towards the outer cylinder. In summary, a crit-
ical Rayleigh number is not clear from the results herein.

In addition to the observations above, one should men-
tion that as more experimental data are gathered, the
model herein can undergo an in deep validation for more
realistic and accurate simulations. In the end, analyses of
important environmental and engineering flows can benefit
from the derivations herein and, ultimately, it is expected
that additional research on this new subject be stimulated
by the work here presented.
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