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Abstract

This work compares two different approaches for obtaining numerical solutions for laminar and turbulent natural
convection within a cavity filled by a fixed amount of a solid conducting material. In the first model, a porous-continuum,
homogeneous or macroscopic approach is considered based on the assumption that the solid and the fluid phases
are observed as a single medium, over which volume-averaged transport equations apply. Secondly, a continuum,
heterogeneous ormicroscopicmodel is considered to solve the momentum equations for the fluid phase resulting in a con-
jugate heat transfer problem in both the solid and the void space. In the continuummodel, the solid phase is composed of
square obstacles, equally spaced within the cavity. In both models, governing equations are numerically solved using the
finite volume method. The average Nusselt number at the hot wall, obtained from the porous-continuum, homogeneous

or macroscopic model, for several Darcy numbers, are compared with those obtained with the second approach, namely
the continuummodel, with different number of obstacles. When comparing the two methodologies, this study shows that
the average Nusselt number calculated for each approach for the same Ram differs from each other and that this discrep-
ancy increases as the Darcy number decreases, in the porous-continuum model, or the number of blocks increases, in the
continuum model. Inclusion of turbulent transfer raises Nusselt for both the continuum and the porous-continuum
models. A correlation is suggested to modify the macroscopic Rayleigh number in order to match the average Nusselt
numbers calculated by the two models for Ram = const = 104 and Da ranging from 1.2060 · 10�4 to 1.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Studies on natural convection in porous enclosures
have important applications in engineering and environ-
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mental research. Heat exchangers, underground spread
of pollutants, environmental control, grain storage, food
processing, material processing, geothermal systems, oil
extraction, store of nuclear waste material, solar power
collectors, optimal design of furnaces, crystal growth
in liquids, packed-bed catalytic reactors and nuclear
reactor safety are just some examples of applications
of this subject of study.
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Nomenclature

cF Forchheimer coefficient
cp fluid specific heat, J/kg �C
Daeq equivalent Darcy number using Keq given by

Eq. (14); Daeq ¼ Keq

H2

Da Darcy number using a porous medium per-
meability K; Da ¼ K

H2

Dp square rod size, m
g gravity acceleration vector, m/s2

h heat transfer coefficient, W/m2 �C
H square height, m
Keq equivalent permeability for the continuum

model, Keq ¼ /3D2
p

120ð1�/Þ2; m
2

K specified permeability used with the porous-

continuum model; m2

kf fluid thermal conductivity, W/m �C
ks solid thermal conductivity, W/m �C
N number of obstacles
Nu Nu = hH/keff, Nusselt number
Pr Pr = m/aeff, Prandtl number

Ra Ra ¼ gbH3DT
vfa

, fluid Rayleigh number

Ra/ Ra/ ¼ gb/H
3DT

vfaeff
, volume-averaged Rayleigh

number
Ram Ra ÆDaeq = Ra/ ÆDa, Darcy–Rayleigh num-

ber
T temperature, �C

u microscopic velocity, m/s
uD Darcy or superficial velocity (volume aver-

age of u)

Greek symbols

a fluid thermal diffusivity, m2/s
b fluid thermal expansion coefficient, 1/K
DV representative elementary volume, m2

DVf fluid volume inside DV
l fluid dynamic viscosity, N s/m2

m fluid kinematic viscosity, m2/s
q fluid density, kg/m3

/ / = DVf/DV, porosity

Special characters

u general variable
huii intrinsic average
huiv volume average
iu spatial deviation
juj absolute value (Abs)
u general vector variable
ueff effective value, ueff = /uf + (1 � /)us

us,f solid/fluid
uH,C hot/cold
u/ macroscopic or porous continuum
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The studies on natural convection has received exten-
sive attention since the beginning of the 20th century
[1,2]. Furthermore, natural convection in enclosures still
attracts attention of researchers and a large number of
experimental and theoretical works have been carried
out mainly since the early 70s. The compilation and dis-
cussion of the main scientific contributions of research-
ers on understanding of natural convection during the
conference on Numerical Methods in Thermal Prob-
lems, which took place in Swansea, yielded the classical
benchmark of [3] for laminar clear fluid square cavities.

The works of [4–10] have exhibited some important
results to the problem of free convection in a rectangular
cavity filled with porous media and the monographs of
[11] and [12] fully document natural convection in por-
ous media. The recent work of [13], concerned a numer-
ical study of the steady state free convection flow in
rectangular and oblique cavities filled with homoge-
neous porous media using a nonlinear axis transforma-
tion. In the mentioned work, Darcy momentum and
energy equations are solved numerically using the
(ADI) method.

Macroscopic transport modeling of incompressible
flows in porous media has been based on the volume-
average methodology for either heat [14] or mass trans-
fer [15–17]. In turbulent flows, when time fluctuations
of the flow properties are also considered, in addition
to spatial deviations, there are two possible methodolo-
gies to follow in order to obtain macroscopic equations:
(a) application of time-average operator followed by
volume-averaging [18–21], or (b) use of volume-averag-
ing before time-averaging is applied [22–24]. However,
both sets of macroscopic mass transport equations are
equivalent when examined under the recently estab-
lished double decomposition concept [25–28]. Such devel-
opment, which was initially developed for only the flow
variables, has been extended to heat transfer in porous
media where both time fluctuations and spatial devia-
tions were considered for temperature and velocity
[29,30]. Further, a consistent program of systematic
studies based on the double-decomposition theory for
treating turbulent buoyant flows [31,32], mass transfer
[32], non-equilibrium heat transfer [34] and double dif-
fusion [35], in addition to a general classification of
models [36], have been published. Recently, the problem
of treating interfaces between a porous medium and a
clear region, considering a diffusion-jump condition
for the mean [37,38] and turbulence fields [39], have also
been investigated under the concept first proposed by
[25–28].
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Studies considering the distribution of a fixed
amount of solid material inside an enclosure for laminar
buoyancy driven flows can be found in [40] for the case
of a single conducting square solid located at the center
of a square cavity. The work of [41] also considered the
heat transfer from within a fluid filled enclosure with
thermal energy being generated by discrete, discon-
nected solid bodies. Later, in [42], a study in which the
continuum and the porous-continuum models were com-
pared for natural laminar convection in a non-homoge-
neous differentially heated enclosure, without heat
generation, was documented. In the work of [43] an
extension of the work performed by [41] was carried
out. Studies on flow around circular rods in heated cav-
ities have also been published [44]. Finally, in [45,46], the
effects of distributing a fixed amount of solid material in-
side a porous medium enclosure on the heat transfer
process were recently studied.

Motivated by the foregoing, this work presents
numerical solutions for steady laminar and turbulent
natural convection within a square cavity filled by a
fixed amount of solid conducting material. The solid
phase is composed by square obstacles, equally spaced
within the cavity. Heat transfer across the cavity is sim-
ulated using two models. The first model consists in a
conjugate heat transfer problem in which governing
equations are separately solved for the fluid and solid
phases. This approach is known as continuum, heteroge-
neous or microscopic model. The word ‘‘continuum’’ is
employed with the idea of expressing the continuity of
both media (solid and fluid), ‘‘heterogeneous’’ empha-
sizes the two phases considered and ‘‘microscopic’’ iden-
tifies the use of local transport equations. For simplicity,
this model shall be only referred to as continuum from
now on.

In the second approach, the cavity is supposed to be
completely filled with a porous material instead, having
the same quantity of solid material used in the first
model. This second approach is recalled as porous-con-
tinuum, homogeneous or macroscopic approach. Like-
wise, the expression ‘‘porous-continuum’’ reflects the
use of up-scaling techniques, ‘‘homogeneous’’ indicates
that only one phase is considered and ‘‘macroscopic’’
is associated with the application of the volume-averag-
ing operator to the governing equations. Here, also for
simplicity, only porous-continuum is used to refer to such
model. The objective herein is to compare the average
Nusselt number calculated by the two models.

For designing engineering systems that would resem-
ble the arrangement of the present analysis, considering
an enclosure with distribution of a fixed amount of solid
material, the use of a simpler porous-continuum model,
instead of applying costly and memory demanding dis-
tributed flow calculations (continuum approach), could
benefit the overall design process if repetitive calcula-
tions are necessary in order to obtain initial engineering
estimates. Thus, the contribution herein is based on eval-
uating the use of simpler porous media models when
simulating more complex continuum models for complex
physical systems.
2. The problem considered

As explained above, this work performs heat transfer
calculations in cavities containing a fixed amount of
solid material. While maintaining the same overall
volume, the morphology, shape and distribution of the
solid phase within the cavity may differ from case to
case. If one associates a permeability to such systems,
its value will be different depending on how easy the
fluid is able to flow through the solid matrix within the
cavity. Also, different fluids are characterized by distinct
properties such as the thermal expansion coefficient b.
Fig. 1a illustrates situations considering cavities satu-
rated with distinct fluids (different b) with the solid
material of different morphology, size and distribution
(distinct permeability).

To analyze such an arrangement, the continuum

model is here employed, in which the flow equations
are solved within the void (fluid) space. More specifi-
cally, the problem here investigated is schematically pre-
sented in Fig. 1b. The corresponding computational grid
is presented in Fig. 1c and refers to a square cavity of
side H = 1 m. In the continuum model, the cavity is par-
tially filled with a fixed amount of solid conducting
material, in the form of square obstacles of size Dp that
is equally distributed within the cavity. Also, the cavity
is isothermally heated from the left, with temperature
TH prevailing over that side, and cooled from the oppos-
ing surface, where a constant temperature TC is main-
tained. The horizontal walls are kept insulated.

On the other hand, the same physical system of
Fig. 1a was also treated as a permeable structure
(Fig. 1d), having the same void- to void-plus-solid ratio,
or porosity /. In this case, the porous-continuum model
was applied, in which the flow properties are integrated
over a representative elementary volume. The corre-
sponding computational grid is presented in Fig. 1e.
3. Governing equations and numerics

3.1. Continuum model solution

As mentioned before, the continuum model solves the
local momentum equation within the fluid phase and re-
solves a conjugated heat transfer problem in both the
solid and the void space. Standard equations for this
model are available in textbooks on fluid mechanics
and heat transfer, and for that they need not to be re-
peated here. However, it is interesting to point out that



Fig. 1. Physical systems: cavities with different fluids in distinct media (a); continuum model: cavities with distributed solid material (b)
and corresponding grid (c); porous continuum model: porous cavity (d) and corresponding grid (e).
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the square blocks inside the cavity participate in the
momentum transfer through their fluid–solid interfaces,
over which, in turn, the no-slip condition was applied.
The blocks are heat conducting and the energy balance
equation valid inside them is given by

ksr2T ¼ 0 ð1Þ
3.2. Porous-continuum model solution

In a series of papers, de Lemos and co-workers [25–
39] have systematically developed a macroscopic turbu-
lence model for highly porous, highly permeable media.
For simplicity, a laminar version of the governing equa-
tion set is presented below. Turbulent flow equations are
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fully documented in [25–39], and for that they need not
to be repeated here. Basically, for porous media analysis,
macroscopic form of the governing equations is ob-
tained by taking the volumetric average of the entire
equation set. In that development, the porous medium
was considered to be rigid and saturated by an incom-
pressible fluid.

The intrinsic average operator is defined by

huii ¼ 1

DV f

Z
DV f

udV ð2Þ

where DVf is the volume of fluid phase of the represen-
tative elementary volume, over which the integration
takes place [16]. For steady state laminar flow the equa-
tions take the form:

ruD ¼ 0 ð3Þ

q r uDuD

/

� �� �
¼ �rð/hpiiÞ þ lr2uD

� l/
K

uD þ cF/q uDj juDffiffiffiffi
K

p
� �

� qb/g/ðhT i
i � T refÞ ð4Þ

where all physical properties are assumed isotropic, uni-
form and constant, except the fluid density, q, in the
buoyancy term which, in turn, is modeled using the
Boussinesq–Oberbeck approximation. Also, uD is
the Darcy velocity defined as uD = /huii, where huii is
the intrinsic velocity vector, p is the total pressure and
l is the dynamic viscosity, hTii and Tref are the intrinsic
and the reference temperatures, respectively, and cF is
the Forchheimer coefficient.

The macroscopic energy equation reads,

ðqcpÞfr � ðuDhT iiÞ ¼ r � fKeff � rhT iig ð5Þ

where, Keff, given by

Keff ¼ ½/kf þ ð1� /Þks�Iþ Ktor þ Kdisp ð6Þ

is the effective conductivity tensor, Ktor and Kdisp are the
tortuosity and thermal dispersion conductivity tensors,
respectively. Following [20], determination of Ktor and
Kdisp can be accomplished by making use of a unit cell
subjected to periodic boundary conditions for the flow
and a linear temperature gradient imposed over the do-
main. The conductivity tensors are then obtained di-
rectly from the microscopic results for the unit cell.
Here, for simplicity, the contributions to heat transfer
due to these two mechanisms are neglected.

Focusing now attention to buoyancy effects only,
application of the volume average procedure to the clear
fluid buoyancy term leads to

hqgbðT � T refÞiv ¼
DV f

DV
1

DV f

Z
DV f

qgbðT � T refÞdV ð7Þ

Expanding the left hand side of (7), the buoyancy term
becomes,
hqgbðT � T refÞiv ¼ qb/g/ðhT i
i � T refÞ þ qgb//h

iT ii|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

ð8Þ

where the second term on the r.h.s. is null since hiuii = 0.
Here, the coefficient b/ is an effective macroscopic or

volume-averaged thermal expansion coefficient defined
by de Lemos and Braga [31] and Braga and de Lemos
[32]. Note that b/ and it is not necessarily equal to the
thermal expansion coefficient b. Assuming that gravity
is constant over the representative elementary volume,
REV, an expression for it based on (8) is given in [31]
as,

b/ ¼ hqbðT � T refÞiv

q/ðhT ii � T refÞ
ð9Þ

It is important to emphasize that when K! 1 and
/ = 1 the equation set above resembles the one applied
in the cases of clear (unobstructed) flows.

3.3. Non-dimensional parameter

For the systems in Fig. 1a, here also modeled with the
geometry and grid of Fig. 1d and e, the literature has de-
fined a modified Rayleigh number Ram in the form
[4,5,7–10,13,41–46],

Ram ¼ RaDa ð10Þ

with

Ra ¼ gbH 3DT
vfaeff

ð11Þ

Da ¼ K

H 2
ð12Þ

where aeff = keff/(qcp)f and H is the size of the square
cavity. One can note that Ra, as defined by Eq. (11), is
similar to the parameter used in clear (unobstructed)
heated cavities when keff is equal to the fluid thermal
conductivity. On the other hand, in Eq. (12) the attribu-
tion of a permeability K to a porous structured is com-
mon path followed in porous media analysis. Eq. (10)
then involves continuum properties such as the thermal
expansion coefficient for fluid phase b and porous-contin-

uum parameters such as permeability K. Here, a different
Rayleigh number is associated with heated porous cavi-
ties, being defined as,

Ra/ ¼
gb/H

3DT

vfaeff
ð13Þ

where b/ is defined in Eq. (9).
Furthermore, in order to associate a value for an

‘‘equivalent’’ permeability of the arrangement in Fig.
1b, for comparisons with the porous-continuum model,
the correlation of [47] was applied. That correlation is
based on the work of [48] and reads,
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Keq ¼
D2

p/
3

120ð1� /Þ2
ð14Þ

where Dp, as seen, is the size of the square rods. It is
important to note that Keq given by Eq. (14) was pro-
posed for forced flows thorough permeable media and
that use of such correlation in buoyancy driven flows
might be questionable. Nevertheless, in the absence of
better information, this work associates a permeability
Keq to the system in Fig. 1b using Eq. (14). This equiv-
alent permeability is used to form an ‘‘equivalent’’
Darcy number,

Daeq ¼
Keq

H 2
ð15Þ

As such, this work is based on the hypothesis that
both systems in Fig. 1b and d can be compared if the
same Ram is applied, or say, Ram = Ra Daeq character-
izing Fig. 1b was equal to Ram = Ra/Da describing
Fig. 1d. This imposed condition is therefore,

Ram ¼ Ra � Daeq ¼
gbHDTKeq

mfa

�

continuum model—Fig.1b

¼ Ra/ � Da ¼
gb/HDTK

mfaeff

�

Porous-continuum model—Fig.1d

ð16Þ

Also, if values for Ra or Ra/ and Da or Daeq are selected
while Ram is kept constant, a family of curves is ob-
tained as schematically shown in Fig. 2. Each curve in
the figure represents distinct systems consisting of possi-
bly different fluids and solid distribution, but all having
the same modified Rayleigh number Ram (see illustra-
tion in Fig. 1a). Considering such premise, the present
Ra

Da

Ram=104

Ram=106

Fig. 2. Family of curves for cavities of Fig. 1a with different
fluids in media having the solid phase distributed in different
forms and Ram = const.
work intends to study a family of cases with different
Ra in distinct media (different Da), having all of them
the same Ram = 104.

The local Nusselt number on the hot wall for the
square cavity at x = 0 is defined as,

Nuy ¼ hH=keff ; ) Nuy ¼
ohT iv

ox

� �
x¼0

H
TH � T C

ð17Þ

and the average Nusselt number for the continuum

model (see Fig. 1b and c) is given by,

Nu ¼ 1

H

Z H

0

Nuy dy ð18Þ

For porous cavities computed with the porous-contin-
uum model (see Fig. 1d and e), the Nusselt number is
here given the symbol Nu/.
4. Numerical method and solution procedure

The numerical method employed for discretizing the
governing equations is the control-volume approach
with a generalized grid. The flux blended deferred cor-
rection, which combines linearly the Upwind Differenc-
ing Scheme (UDS) and Central Differencing Scheme
(CDS), was used for interpolating the convective fluxes.
The well-established SIMPLE algorithm [51] is followed
for handling the pressure–velocity coupling. Individual
algebraic equation sets were solved by the SIP procedure
of (see [52] for details). Further, concentration of nodal
points to walls reduces eventual errors due to numerical
diffusion which, in turn, are further annihilated due to
the hybrid scheme here adopted.
5. Results and discussion

5.1. Grid independence studies

In order to guarantee grid independent solutions,
runs for porous-continuum model were also performed
with 110 · 110 control volumes, in addition to 80 · 80
mesh, in a stretched grid for Ram = 104. The difference
of the averaged Nusselt number at the hot wall between
these two meshes was smaller than 1%. Therefore, the
80 · 80 mesh was found to be refined enough near the
walls to capture the thin boundary layers that appear
along the vertical surfaces. The use of a stretched grid
rather than a uniform one is due to the fact that a uni-
form grid will require several grid points in order to
guarantee a first grid point closer enough to the wall
to capture the thin boundary layer that appears along
the heated walls, mainly for turbulent flows.

For the continuum model and for the most stringent
case simulated, i.e., N = 256 obstacles, a stretched grid
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with 151 · 151 nodes yielded average Nusselt numbers
less than 1% different from those obtained when using
a grid size of 117 · 117 stretched nodes. In spite of such
small difference, all results herein were computed with
the finer 151 · 151 stretched grid for conservativeness
and accuracy enhancement.

5.2. Velocity and temperature fields

First, to validate the continuum approach, runs
were performed for a clear (of obstacles) cavity and
compared with other values from the open litera-
ture. Present results were summarized in Table 1 and
show good agreement with those obtained from other
sources. A case with a single conducting square solid
located at the center of the cavity was also performed
showing good agreement with those summarized in
Table 2.

As said, the main idea of this work is to compare heat
transfer simulations in a porous square cavity using the
porous-continuum and the continuum models with several
obstacles. Comparisons are based on similar conditions
in order to verify if the two models yield equivalent val-
ues for the overall Nusselt numbers. As mentioned, runs
for continuum model solution were performed with a
151 · 151 control volumes in a stretched grid shown in
Fig. 1c. For the sake of comparison of the two models,
all calculations were made with Ram = Ra Da = 104.
For the continuum model, a Darcy number is associated
with the flow in the arrangement of Fig. 1b with a per-
Table 1
Average Nusselt numbers for buoyancy-driven laminar flow in
clear cavities; 104 < Ra < 108, Pr = 0.71 (unless otherwise
noted)

Ra 104 105 106 107 108

de Vahl Davis,
1983, [4]

2.243 4.519 8.800 – –

House et al,
1990, [36]

2.254 4.561 8.923 – –

Merrikh and
Lage, 2004, [45]

2.244 4.536 8.860 16.625 31.200

Kalita et al.,
2001, [54]

2.245 4.522 8.829 16.52 –

Lage and Bejan,
1991, [55], Pr = 1

– 4.9 9.2 17.9 31.8

Present results, Pr = 1 2.249 4.575 8.918 16.725 30.642

Table 2
Average Nusselt number for cavity with a single conducting solid at

Ra Dp ks/kf House et al, 1990, [36]

105 0.5 0.2 4.624
105 0.5 5.0 4.324
meability K calculated by expression (14), using for Dp

the size of the square rod.
As such, when the number of blocks N in the cavity is

increased while keeping the overall solid-to-void ratio
(equivalent to a constant porosity cavity case), a reduced
value of the square rod size Dp yield different Keq values,
according to (14), implying in distinct Daeq numbers (see
Eq. (12)). However, looking back at Fig. 2 and remem-
bering the definition of Ra (Eq. (11)), for different Darcy
numbers one has to modify Ra in order to keep Ram
fixed at 104. One way to accomplish this is to modify
the numerical value of coefficient b in Eq. (11), assuming
that a different fluid is being computed for all point lay-
ing in the same curve in Fig. 2. One could also modifyH,
q, DT or another variable composing Ra. This work
used several pairs of values for K and b so that the cor-
responding Ra and Da were such that their product
would yield always Ram = 104. Therefore, coefficients b
and K are the variables to be modified in order to main-
tain Ram constant and all cases here analyzed.

It is also interesting to note that when Da = 1, Ram
calculated for the continuum model reduces to Ra, simi-
lar to the one used for clear (unobstructed) fluid cavities.
For that, also shown with this set of results are calcula-
tions with the porous-continuum model with Da = 1
(high permeability K) and / = 0.998 (high porosity) in
order to simulate a clear fluid cavity, which, in turn,
would correspond to the case of having no obstacle at
all (N = 0). In fact, a cavity filled with a porous material
with Da = 1 and / = 0.998 is analogous to a continuum
model solution with a very small obstacle in its center,
which does not contribute effectively to the heat transfer
process [45]. Indeed, the difference between the average
Nusselt number calculated with the two models, for
clear cavity (N = 0) and porous cavity with Da = 1
and / = 0.998, is less than 3%, indicating that a por-
ous-continuum model will reproduce a clear fluid cavity
solution when appropriate parameters are set in Eqs.
(3)–(5). Also, solid obstacles in the cavity yield an over-
all cavity porosity / = 0.84 (unless otherwise noted).
The fluid Prandtl number and the conductivity ratio be-
tween the solid and fluid phases were assumed to be
equal to one. Table 3 summarizes the parameters used
in the calculations.

Figs. 3 and 4 show the streamlines and isotherms,
respectively, for the heterogeneous system of Fig. 1a
with several obstacles and equivalent Da ranging from
1 to 1.2060 · 10�4, Ram = 104, / = 0.84 and ks/kf = 1.
the center; Ra = 105, Pr = 0.71 (unless otherwise noted)

Merrikh and Lage, 2004, [45] Present results Pr = 1

4.605 4.667
4.280 4.375



Table 3
Parameters used in the arrangement of Fig. 1b for the continuum level

Pr = 1, equivalent / = 0.84, Ram = RaDa = 104, ks/kf = 1
Da = Daeq (Keq from (14)) Ra Dp [m] N = number of obstacles
Porous cavity with Da = 1 and / = 0.998 Ra/ = Ra = 104 (b/ = b = 0.001) 0.022 Equivalent to 0
Clear cavity 104 0 0

0.3087 · 10�1 0.0324 · 107 0.400 1
0.7717 · 10�2 0.1295 · 107 0.200 4
1.9290 · 10�3 0.5000 · 107 0.100 16
0.4823 · 10�3 2.0734 · 107 0.050 64
1.2060 · 10�4 8.2918 · 107 0.025 256
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Figs. 5 and 6 show corresponding results, i.e., same Ram,
/, Pr and ratio ks/kf, for a square cavity completely
filled by a porous material. Results in Figs. 3 and 4
are computed with the continuum approach whereas
Figs. 5 and 6 made use of the porous-continuum earlier
described.

Comparing Figs. 3a and 5a one can see that clear
cavity flow is reproduced in both models if appropriated
parameters are set, or say, N = 0 (continuum model with
no obstacle or clear cavity flow) or Da = 1 and /
= 0.998 (highly permeable and highly porous cavity).
The same comparisons hold for the thermal field (see
Figs. 4a and 6a).

Fig. 3 shows that, in comparison with corresponding
cases run with the porous-continuum model, Fig. 5,
the higher the number of obstacles inside the clear
cavity, the higher the similarity of the flow pattern bet-
ween the two approaches, i.e., the porous-continuum
and the continuum solutions resemble each other for
greater values of N (see Figs. 3f and 5f). In other words,
the porous-continuum model seems to be more represen-
tative of reality when the number of obstacles inside the
cavity is higher, which, in turn, correspond to lower per-
meability cases. Further, Fig. 4 shows that, the higher
the number of obstacles, the higher the stratification of
the thermal field. This characteristic is also observed
for the isotherms of the porous-continuum model,
Fig. 6.

Fig. 5 also indicates that the recirculation intensity
increases as the medium permeability decreases and
the flow patterns comprises primarily cells of relatively
high velocity, which circulate around of the entire cavity.
However, the secondary recirculation that appears in the
center of the cavity, for the higher Darcy numbers ana-
lyzed, tends to disappear as the permeability decreases.
In a similar way, the temperature gradients are stronger
near the vertical walls, but decrease at the center. Fig. 6
shows that the isotherms tend to stratification as Da is
decreased, i.e., as the medium permeability is decreased.

According to [45], as the number of square rods in-
creases, and their size becomes reduced, the flow tends
to migrate away from the wall towards the center of
the cavity. This phenomenon is seem in [45] as a re-
sponse of the system due to the increasing flow resis-
tance closer to the solid wall, as the obstacles get
closer to the solid surface.

Further, the available literature shows that for the
non-Darcy region in a porous cavity, [32,53], fluid flow
and heat transfer depend on the fluid Rayleigh number,
Ra, and on the Darcy number, Da, when other parame-
ters, such as porosity, Prandtl number, and conductivity
ratio between the fluid and solid matrix, are held con-
stant. In [32] it was shown that for a fixed Ram, the lower
the permeability (lower Da), the higher the average Nus-
selt number at the hot wall. It then looks evident that
different combinations of Ra and Da yields different heat
transfer results, even when Ram is the same. The increas-
ing of the fluid Rayleigh number increases the natural
convection inside the enclosure. For a fixed Ram, a
higher fluid Rayleigh number is associated with a less
permeable media (i.e. lower Darcy number).

To further validate the present porous-continuum
approach, runs were performed for a square cavity to-
tally filled with porous material and results were com-
pared with other values from the open literature.
Calculations in [32] made use of the same numerical pro-
cedure here exploited. Their results are summarized in
Table 4, showing good agreement with several other
authors.

5.3. Turbulent field

The set of macroscopic equations used to perform
turbulent model solutions, fully documented in [25–
30], was extended to natural convection in [31,32] and
for that they need not to be repeated here. Turbulent
model solutions were performed in the same grids used
for laminar model solutions. The stretched grid here
adopted is refined enough to capture the thin boundary
layer that appears along the heated walls.

Table 5 shows laminar and turbulent average Nusselt
numbers for the continuum and porous-continuum
models for 0.7717 · 10�2 < Da < 0.4823 · 10�3, Pr = 1,
/ = 0.84 , Ram = 106 and ks/kf = 1. According to Table
5, in both laminar and turbulent solutions a macro-
scopic model (Nu/) underestimates the value of Nu



Fig. 3. Streamlines for continuum model solution, / = 0.84, Pr = 1, ks/kf = 1, Ram = 104: (a) Da = 1, N = 0, (b) Da = 0.3087 · 10�1,
N = 1, (c) Da = 0.7717 · 10�2, N = 4, (d) Da = 1.929 · 10�3, N = 16, (e) Da = 0.4823 · 10�3, N = 64 and (f) Da = 1.206 · 10�4,
N = 256.
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and such discrepancy increases as the number of blocks
N increases. For laminar solution and N = 4 (see Table
5), Nu/ is (27.8 � 32.9)/32.9 · 100 = �15.5% lower than
Nu and for N = 64 such decrease is (48.3 � 66.7)/
66.7 · 100 = �27.6%. The same trend can be observed
when turbulence is included, being Nu//Nu = (30.73/
32.9) = 0.93 for N = 4 and (62.2/70.8) = 0.88 when
N = 64.



Fig. 4. Isotherms for continuum model solution, / = 0.84, Pr = 1, ks/kf = 1, Ram = 104: (a) Da = 1, N = 0, (b) Da = 0.3087 · 10�1,
N = 1, (c) Da = 0.7717 · 10�2, N = 4, (d) Da = 1.929 · 10�3, N = 16, (e) Da = 0.4823 · 10�3, N = 64, and (f) Da = 1.206 · 10�4,
N = 256.
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Also, both the continuum and the porous continuum

models give higher values for the Nusselt number when
turbulence is considered. Further, macroscopic solutions
are seen to be more sensitive to the inclusion of a turbu-
lence model (see [32] for details), and this sensitivity in-
creases with the number of blocks N. When N = 4,
inclusion of turbulence in the calculations rises Nu/ by
(30.7 � 27.8)/27.8 · 100 = +10.4% and forN = 64Nusselt
will be elevated by (62.2 � 48.3)/48.3 · 100 = +28.6%.
On the other hand, turbulent solution using the



Fig. 5. Streamlines for a porous cavity with / = 0.84, Pr = 1, ks/kf = 1, Ram = 104: (a) Da = 1, / = 0.998, (b) Da = 0.3087 · 10�1,
(c) Da = 0.7717 · 10�2, (d) Da = 1.929 · 10�3, (e) Da = 0.4823 · 10�3 and (f) Da = 1.206 · 10�4.
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continuum approach raises Nu by (32.94 � 32.87)/
32.87 · 100 = +0.2% for N = 4 and (70.8 � 66.7)/
66.7 · 100 = +6% for N = 64, which represents a much
weaker influence of turbulence than in the case of Nu/.
Therefore, one can infer that for Ram = 106 the flow is
already fully turbulent because results using only lami-
nar model solution gives average Nusselt numbers lower
than those obtained with the turbulent model solution.

Fig. 7 further shows results using the turbulent
model solution for: (a,b) streamlines, (c,d) isotherms,



Fig. 6. Isotherms for a porous cavity with / = 0.84, Pr = 1, ks/kf = 1, Ram = 104: (a) Da = 1, / = 0.998, (b) Da = 0.3087 · 10�1,
(c) Da = 0.7717 · 10�2, (d) Da = 1.929 · 10�3, (e) Da = 0.4823 · 10�3 and (f) Da = 1.206 · 10�4.
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(e,f) Isolines of turbulent kinetic energy, k, for / = 0.84,
Ram = 106, Da = 0.4823 · 10�3, ks/kf = 1, Pr = 1 for
continuum and porous-continuum model respectively.
Fig. 7a presents some recirculations between the solid
obstacles and that recirculations are turbulent kinetic
energy generators in such regions, see Fig. 7e. Neverthe-
less, the flow pattern for the two models considered
show satisfactory agreement when qualitatively com-
pared, see Fig. 7a and b. As mentioned, the porous-con-
tinuum model seems to be more representative of reality



Table 4
Average Nusselt number for buoyancy-driven laminar flow in porous cavities

Ram 10 102 103 104

Walker and Homsy, 1978 [4] – 3.097 12.96 51.0
Bejan, 1979 [5] – 4.2 15.8 50.8
Beckerman, 1986 [7] – 3.113 – 48.9
Gross et al, 1986 [8] – 3.141 13.448 42.583
Manole and Lage, 1992 [9] – 3.118 13.637 48.117
Moya et al, 1987 [10] 1.065 2.801 – –
Baytas and Pop, 1999 [13] 1.079 3.16 14.06 48.33
Braga and de Lemos, 2004 [32], Da = 10�8, Pr = 1 1.0908 3.0979 13.2751 43.5799

Table 5
Laminar and turbulent average Nusselt number for the continuum and porous-continuum models for 0.7717 · 10�2 < Da <
0.4823 · 10�3 and Pr = 1, / = 0.84, Ram = 106 and ks/kf = 1

Da = Daeq Laminar model solution Turbulent model solution

Nu Nu/ Nu Nu/ N

0.7717 · 10�2 32.8734 27.7820 32.9399 30.7346 4
1.9290 · 10�3 46.4907 36.7713 46.6804 43.7739 16
0.4823 · 10�3 66.6977 48.3144 70.7901 62.1561 64
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when the number of obstacles inside the cavity is large,
which, in turn, correspond to lower permeability cases.

Fig. 7c shows some peeks in the isotherms when com-
pared with the isotherms from the Fig. 7d. This distor-
tion on the thermal field is a response of the system
due to the non-homogeneity of the heat mixing process.
However, both models show a stratificated thermal field,
see Fig. 7c and d.

Fig. 7e shows the isolines of k for the continuum

model solution and one can note that the steepest veloc-
ity gradients are found near to the heated walls and be-
tween the solid obstacles. For that reason the generation
of turbulent kinetic energy is considerably higher in such
regions. On the other hand, the porous-continuum ap-
proach, Fig. 7f, show a high turbulent kinetic energy
generation only close to the heated wall while the center
of the cavity does not contribute to the k generation.

5.4. Nusselt number

Finally, Fig. 8 compares the behavior of the average
Nusselt number for the two models here investigated,
namely the porous-continuum and continuum models.
Both calculation methods were based on the same
numerical values for both the Rayleigh and the Darcy
numbers. It is clearly seen in the figure that, if Ra = Ra/
and Daeq = Da for both models, the overall values of
average Nusselt number for the porous-continuum,
Nu/ model are lower than those obtained with the
continuum model, Nu. This difference increases, with
increasing number of rods N. Therefore, the porous-
continuum model fails in predicting the average Nusselt
number, when compared with those obtained from the
continuum model with several obstacles.

A possible explanation for such discrepancy is two-
fold: First, similar cases for the porous and porous-
continuum models were compared under the condition
Ra/ = Ra (or b/ = b). However, it has already been
pointed out in de Lemos and Braga [31] that these two
thermal expansion coefficients do not, necessarily, have
equal values. In fact, expression (9), derived in [31],
shows the relationship between these two parameters.
The first one, b, is a fluid property and for an ideal
gas it is given by 1/T, where T is the absolute gas tem-
perature. On the other hand, b/ is a macroscopic quan-
tity, defined in Eq. (9), and by no means represents a
local fluid property. Consequently, comparisons with
the two models here investigated on the basis b/ = b
are strictly not quite correct. For having the same Nu,
a inspection in Fig. 8 indicates that one should have
Ra/ > Ra when comparing the two models.

Secondly, both models were compared in Fig. 8 using
the same value for parameter Darcy, or Daeq = Da.
Note that Daeq is an ‘‘equivalent’’ Darcy number, whose
associated Keq in the continuum model was estimated by
(14), being Dp the rod size. On the other hand, Da is the
Darcy number for the porous cavity of Fig. 1d formed
with the porous medium permeability K. In the simula-
tion herein, the same Keq value was prescribed in the
porous-continuum model for use in Eq. (4), or say,
Keq = K. However, Eq. (14) was derived for forced con-
vection flow over a porous bed so that its application to



Fig. 7. Turbulent model solution using the continuum (left) and porous-continuum (right) models for / = 0.84, Ram = 106,
Da = 0.4823 · 10�3, ks/kf = 1, Pr = 1: (a,b) streamlines, (c,d) isotherms, (e,f) isolines of turbulent kinetic energy, k.
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the natural convection problem here under analysis is
questionable. Also, real porous systems like the ones
in Fig. 1a may have lower permeability than those asso-
ciated with their counterpart continuum models of
Fig. 1b. As the number of rods, N, increases, Keq associ-
ated with Fig. 1b the might be reduced at a rate faster
than that given by Eq. (14). So, when calculating a coun-
terpart porous-continuum model for the system in
Fig. 1b, a lower value for K should be used instead of
Keq given by Eq. (14), or say, Da < Daeq.

Therefore, in order to try to match Nusselt numbers
calculated with both models here described, a correction
is applied to the values given by the porous-continuum
model. This correction is set by first curve fitting the
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Fig. 8. Comparison between the continuum and porous-con-
tinuum models with respect to the average Nusselt number at
the hot wall.
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values of Nu in Fig. 8. For the two models applied, the
following curves result

Nu ¼ 0.181Ra0.279 ð19Þ
Nu/ ¼ 0.283Ra0.231/ ð20Þ

where Eqs. (19) and (20) refer to fitting curves obtained
from the points of the average Nu (symbols) calculated
with continuum and porous-continuum models, respec-
tively. Now, by combining these two fittings, namely
Eqs. (19) and (20), one yields the following expression:

Ra/ ¼ 0.144Ra1.208 ð21Þ

As such, for matching Nu calculated from the two mod-
els, namely continuum and porous-continuum models,
Ra/ given by (21) should be used instead of Ra/ = Ra.
Also, keeping all parameters the same in Eqs. (11) and
(13), correction (21) is equivalent to setting
b/ = 4.128b1.208. This correction means that for calcu-
Table 6
Average Nusselt number for the continuum, porous-continuum and
1.206 · 10�4 and Pr = 1, / = 0.84, Ram = 104, ks/kf = 1

N Da Nu Nu/

0 1 2.2493 2.1854
1 0.3087 · 10�1 6.5254 5.5960
4 0.7717 · 10�2 9.6204 7.8484
16 1.9290 · 10�3 13.7276 10.4911
64 0.4823 · 10�3 19.4821 13.8199
256 1.2060 · 10�4 28.2085 17.4460
lating equivalent Nu with both models, one has to have
Ra/ > Ra.

Further, in order to keep,

Ram ¼ Ra/Da
zfflfflffl}|fflfflffl{Porous-continuum model

¼ RaDaeq|fflfflfflffl{zfflfflfflffl}
Continuum model

¼ 104 ð22Þ

a relationship between the two Darcy numbers was also
considered. Using Eq. (21) under the constraint (22)
yields for such connection,

Da ¼ 1.005Da1.208eq ð23Þ

which is equivalent to having K ¼ 1.005K1.208
eq since

Da = K/H2 and Daeq is defined in Eq. (15).
Therefore, in addition to using (21) for matching the

Nusselt numbers given by the two models, which are
represented by the correlations (19) and (20), one has
also to use (23) instead of applying Da = Daeq .

After that, new runs were performed for the porous-
continuum model using now a macroscopic Rayleigh
number given by (21), instead of using Ra/ = Ra , with
corresponding Darcy numbers expressed by (23), used in
place of Da = Daeq. These new runs were performed
while Ram was kept constant in such a way that

Ram ¼ Ra/Da|fflfflffl{zfflfflffl}
Using Ra/¼Ra;Da¼Daeq

¼ Ra/Da
zfflfflffl}|fflfflffl{Using Eqs: ð21Þ and ð23Þ

¼ 104

ð24Þ

As a result, the use of (21) and (23) yielded corrected
macroscopic Nusselt numbers, Nu/,corr. Table 6 shows
average values of Nusselt numbers for the continuum
(Nu), porous-continuum with Ra/ = Ra and Da = Daeq
(Nu/) and corrected porous-continuum using (21) and
(23) (Nu/,corr). The percent errors shown in the table
are calculates as,

e ¼ Nu/ � Nu
Nu

� 100; g ¼ Nu/;corr � Nu
Nu

� 100 ð25Þ

According to Table 6, the overall values of the cor-
rected average Nusselt numbers Nu/,corr are still lower
than those obtained from the continuum model for
corrected porous-continuum models for Da ranging from 1 to

Nu/,corr e (%) g (%)

2.1834 �2.84 �2.93
6.6804 �14.24 2.37
9.7677 �18.42 1.53
13.3775 �23.57 �2.55
17.9348 �29.06 �7.94
22.8239 �38.15 �19.08
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lower Da numbers or for cases with N large. Neverthe-
less, as can be seen in the table, g values are substantially
lower in comparison with e. One should point out that
thermal dispersion was not considered in this work
and that this additional mixing mechanism might be
important for cases with a large number of blocks,
which correspond to cases in Table 6 presenting the larg-
est discrepancies between the continuum and porous-
continuum solutions, even with the corrections on Nu

obtained with the use of Eqs. (21) and (23).
In the end, when results herein are seen along with

those presented in Ref. [32], which used the porous-con-
tinuum model for simulating macroscopic turbulent flow
in heated cavities with dispersion, there seems to be an
indication that inclusion of turbulence and dispersion
as additional exchange mechanisms is mandatory to re-
flect the actual heat transfer rate across the cavity, par-
ticularly for cases with large N. Ultimately, a more
realistic macroscopic model, accounting for all possible
mechanisms, will result is macroscopic values for Nu/
that will be closer to microscopic computations of Nu,
making cheaper and easy-to-implement macroscopic
models a suitable engineering tool for analyzing complex
physical systems as the ones in Fig. 1a.
6. Conclusions

This work presented numerical solutions for steady
laminar and turbulent natural convection within a
square cavity filled by a fixed amount of conducting
solid material using a continuum model. The solid phase
was composed by square obstacles, equally spaced with-
in the cavity. In addition, an isotropic and homogeneous
porous-continuum model was used for simulating the
flow and heat transfer across the cavity, assuming
the enclosure as totally filled with a porous material.
The main conclusions of this work are:

(1) The porous-continuum model failed to correctly
predict the average Nusselt number when com-
pared with those obtained from the continuum

model with several obstacles. This same conclu-
sion has also been reached in the recent literature
[44].

(2) An adjustment for the Rayleigh and Darcy num-
bers associated with the macroscopic model was
proposed in order to match the average Nusselt
number computed by the two approaches for a
fixed Ram = 104. After such correction, the overall
values of the corrected average Nusselt numbers
were still lower than those obtained from the con-
tinuum model, mostly for the lower Da numbers
cases, which correspond to cases with greater
number of blocks N.
(3) Both the continuum and the porous continuum

models give higher values for the Nusselt number
when turbulence is considered, being macroscopic

solutions more sensitive to the inclusion of a tur-
bulence model. This sensitivity increases with the
number of blocks N.

Finally, results herein indicate that inclusion of tur-
bulence and dispersion construct more realistic macro-
scopic models, making them a suitable engineering
tool for analyzing complex physical systems.
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