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ABSTRACT

This work presents a numerical investigation of turbulent flow past a
backward-facing-step channel with a porous insert using linear and non-
linear eddy viscosity macroscopic models. The nonlinear turbulence
models are known to perform better than classical eddy-diffusivity mod-
els due to their ability to simulate important characteristics of the flow.
Turbulence-driven secondary motion and the effects of streamline curva-
ture on turbulence cannot be fully accounted for with simpler isotropic
models. Parameters such as porosity, permeability, and thickness of the
porous insert are varied in order to analyze their effects on the flow pat-
tern, particularly on the damping of the recirculating bubble after the
porous insertion. The numerical technique employed for discretizing the
governing equations is the control-volume method. The SIMPLE algo-
rithm is used to correct the pressure field. The classical wall function is
utilized in order to handle flow calculation near the wall. Comparisons
of results simulated with both linear and nonlinear turbulence models
are shown.
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INTRODUCTION

Turbulent recirculating bubbles appear in many flows of
practical interest and are usually related to mechanical
energy losses within the fluid. Flows past a backward-fac-
ing step, over sinusoidal surfaces or inside diffusers are
examples of such configurations. Sometimes attenuation or
even suppression of the recirculating bubble is desirable.
Inserts such as honeycombs, screens, or other devices to
redistribute the flow are frequently applied in wind tunnels
where a uniform flow with low turbulence intensity is
required at the test section. Depending on certain parame-
ters, such as insert type, thickness, porosity, and directional
permeability, such components may be treated as a porous
medium positioned within the flow. For simulating turbu-
lence within permeable media, several macroscopic mod-
els have been developed (de Lemos & Pedras, 2001; Lage
et al., 2002), some of which based on the so-called "double
decomposition" concept. Such an idea has been applied to
simulate flow (Pedras & de Lemos, 2000, 2001a–c, 2003),
non-buoyant heat transfer (Rocamora & de Lemos, 2000a),
buoyancy effects (de Lemos & Braga, 2003, Braga & de
Lemos, 2004), mass transfer (de Lemos & Mesquita, 2003)
and double-diffusive convection (de Lemos & Tofaneli,
2004) in porous media. In addition, many engineering
problems have flows involving interfaces between a porous

medium and a clear domain. The problem of boundary
conditions at the porous medium–clear fluid interface has
been dealt by several authors (Beavers and Joseph, 1967;
Vafai and Tien, 1981; Vafai and Kim, 1990; Ochoa Tapia
and Whitaker, 1995). Recently, analytical (Kuznetsov,
1996, 1997, 1999) and numerical (Silva and de Lemos,
2003a) solutions for laminar flow in composite channels
have been considered, in addition to simulation of turbulent
flows in such systems (Silva and de Lemos, 2003b).

More specifically, the problem of flow over a porous
block in a channel and past a backward-facing step with
porous inserts has been studied by Rocamora and de Lemos
(2000b,c) and by Chan et. al. (2000). Both works presented
laminar and turbulent results with forced convective heat
transfer. They used, for modeling turbulent flow, a two-
equation linear k−ε-model with wall function for both the
fluid region and the porous medium. Rocamora and de
Lemos (2000b,c) treat the interface between the porous
medium and the clear fluid following the work by Ochoa
Tapia and Whitaker (1995). Chan et. al. (2000) considered
the flow at the interface between the fluid and porous
medium as being continuous. The presence of the Brink-
man’s extension model (Brinkman, 1948) in the porous
media equation eliminates the need for imposing an ex-
plicit interface condition, in accordance with Nield and
Bejan (1999).
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NOMENCLATURE

a porous insert thickness (m) u
_

D average surface velocity (m/s)

cF Forchheimer coefficient Ui fluid inlet velocity (m/s)

c1NL, c2NL, coefficients of nonlinear model UD|| average surface velocity component 

c3NL parallel to the interface (m/s)

cµ, c1ε, turbulence model constants xR reattachment length (m)

c2ε 

ck constant for macroscopic Greek symbols

turbulence model β interface stress jump coefficient

H step height (m) φ porosity

K porous media permeability (m2) µ fluid molecular viscosity (Ns/m2)

L recirculation length (m) ρ fluid density (kg/m3)

n coordinate normal to the interface (m) σk, σε turbulence model constants

sp
_
t intrinsic average pressure (N/m2)



In this work, numerical results for turbulent flow past a
backward-facing step in a channel with a porous insert are
presented. Both linear and nonlinear eddy viscosity mac-
roscopic models are employed. Here, the boundary condi-
tions at the porous medium–clear fluid interface are the
same as those used by Rocamora and de Lemos (2000b,c).

Accordingly, it is well established in the literature that
clear fluid linear eddy-viscosity turbulence models
(LEVM) do not, on the whole, cope well with strong
streamline curvature arising, for example, in flows over
curved surfaces. And yet, turbulence-driven secondary mo-
tion and directional effects due to buoyancy cannot, due to
absence of information on individual stresses, be fully
simulated with LEVM. In spite of that, they are often used
for engineering computations due to the numerical robust-
ness obtained via their linear stress-strain rate relationship
(Jones and Launder, 1972). This diffusion-like approach
makes the numerical solution stable, with the model easily
adaptable to existing computer code architectures. The
nonlinear eddy-viscosity models (NLEVM), which repre-
sent an extension of the LEVM, have shown good perform-
ance in flows where the Reynolds normal stresses play an
important role (Assato and de Lemos, 2000, 2001) in
correcting the deficiencies presented by the LEVM. They
basically follow the procedures used in obtaining constitu-
tive equations for laminar flow of non-Newtonian fluids
(Rivlin, 1957). An example is the work of Speziale (1987).
Essentially, the observed relationship between laminar
flow of viscoelastic fluids and turbulent flow of Newtonian
substances has motivated developments of such NLEVM
(Lumley, 1970). The basic advantage of the NLEVM over
other more complex models, e.g., the algebraic stress mod-
els (ASM) (Rodi, 1972; de Lemos and Sesonske, 1985; de
Lemos, 1988), lies in the achieved computational savings
(roughly 25–50% less computing time).

Therefore, in this article comparisons of results simu-
lated with both linear and nonlinear k−ε turbulence models
for turbulent flow through a backward-facing-step channel
are shown. Some important parameters such as porosity,
permeability, and thickness of the porous insert are varied
and their effects on the flow are assessed.

MACROSCOPIC TRANSPORT
AND CONSTITUTIVE EQUATIONS

The development presented in (Pedras and de Lemos, 2001a–
c, 2003) assumes single-phase flow in a saturated, rigid porous
medium (∆Vf independent of time), for which a time-aver-
aged operation on a variable commutes with a space

average. For this situation Pedras and de Lemos (2001a)
present the following macroscopic equations system.

Macroscopic Continuity Equation

∇  ⋅ u
_

D = 0 (1)

where u
_

D is the average surface velocity ("seepage" or
Darcy velocity). Equation (1) represents the macroscopic
continuity equation for an incompressible fluid.

Macroscopic Momentum Equation

where −ρφsu′u′
____

t
i is the macroscopic Reynolds stress and

the last two terms represent the Darcy–Forchheimer con-
tributions. Further, the symbol K is the porous medium
permeability, cF is the form drag coefficient (Forchheimer
coefficient), sp

_
t

i is the intrinsic average pressure of the
fluid, ρ is the fluid density, µ represents the fluid viscosity,
and φ is the porosity. Here, it is also important to acknow-
ledge a possible influence of the medium morphology on
macroscopic models that, in principle, do not explicitly
account for any effect of turbulence such as the inclusion of
the macroscopic Reynolds Stress tensor of Eq. (2). In fact,
recent literature results by Bhattacharya et. al. (2002) pro-
pose correlations for the inertia coefficient cF as a function
of medium and flow properties. In the path here followed,
however, one unique value for the inertia coefficient will be
used when presenting macroscopic results later. Here, the
explicit accounting for turbulent transport, while keeping a
unique macroscopic inertia coefficient, can be seen as an
alternative path on adjusting the Forchheimer coefficient for
large values of Re. A model for the macroscopic Reynolds
Stresses −ρφsu′u′

____
t

i, required in the present formulation, is
given below.

Macroscopic Reynolds Stress

A macroscopic linear stress–strain rate relationship was
given by Pedras and de Lemos (2001a) as

in analogy with clear flow cases. In Eq. (3) the term
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represents the mean deformation tensor and I is the unity
tensor.

Macroscopic Eddy Viscosity

µtφ = ρcµ 
skti2

sεti (5)

where cµ = 0.09 and skti and sεti are the intrinsic averages
of the turbulent kinetic energy and its dissipation rate,
respectively.

Macroscopic Turbulent
Kinetic Energy Equation

where −ρφsu′u′
____

t
i is defined by Eq. (3) and σk = 1.0.

Macroscopic Dissipation Rate
of Turbulent Kinetic Energy Equation

where σε = 1.33, c1ε = 1.44, c2ε = 1.92, and ck assumes a
value equal to 0.28 found by Pedras and de Lemos (2001a–
c, 2003).

It is worthwhile to mention that the surface volume
average quantities are related to the intrinsic average quan-
tities through the porosity φ as

sϕtv = φsϕti (8)

Also, the equations given above are valid for the clear
medium as well, setting φ = 1 (K → ∞) and discarding the
last two terms in Eq. (2).

Macroscopic Nonlinear Model

In this work, results produced by NLEVMs are investi-
gated. Differently from the linear stress–strain rate rela-
tionship Eq. (3), a more general nonlinear constitutive
equation will be employed. These models originated in a

general proposal done by Pope (1975). However, in the
1980s such closures had greater progress, particularly due
to the works of Speziale (1987), Nisizima and Yoshizawa
(1987), Rubinstein and Barton (1990), and Shih et. al. (1993)
among others. In these works, quadratic products were intro-
duced involving the strain rate and vorticity tensors with
different derivations and calibrations for each model. These
quadratic forms produce a certain anisotropy degree among
the normal stresses, which make it possible to predict, among
other processes, the presence of secondary motion in noncir-
cular ducts.

The macroscopic nonlinear turbulence model here
proposed is constituted by the same system of Eqs.
(1)–(7) formerly given by Pedras and de Lemos (2001a).
The sole difference between both macroscopic models
(linear and nonlinear) lies in the expression for the
macroscopic Reynolds Stress. Using indexed notation
for clarity and keeping terms to the second order, this
new macroscopic nonlinear stress-strain rate equation
can be rewritten in the form

where δij is the Kronecker delta; the superscripts L and NL
indicate linear and nonlinear contributions; µtφ is again the
macroscopic turbulent viscosity given by Eq. (5); and
sD
__

ijt
v and sΩ

__
ijt

v are the deformation and vorticity tensors,
written in the indexed form, respectively, as

sD
__

ijt
v = 





∂u
_

Di

∂xj
 + 

∂u
_

Dj

∂xj




 ,

sΩ
__

ijt
v = 





∂u
_

Di

∂xj
 + 

∂u
_

Dj

∂xi





(10)

Table 1 shows the different values of cµ, c1NL, c2NL, and
c3NL proposed in the literature. Note that Eq. (3) is recovered
if constants c1NL, c2NL, and c3NL in Eq. (9) are set to zero.
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It is important to emphasize here that values in Table 1 were
obtained in the literature for models developed for a clear
medium, although Eq. (2) will be applied to both porous
and clear domains. Here, in the absence of better informa-
tion, no modifications are introduced in the constants or
model parameters when Eq. (2) is used within the porous
structure.

Interface Conditions

The interface between the porous medium and the clear
fluid is treated as follows (Ochoa Tapia and Whitaker,
1995) and the interface conditions can be expressed as

u
_

D,clear  medium = u
_

D,porous  medium (11)

sp
_
tclear  medium

i  = sp
_
tporous  medium

i (12)

where UD|| is the component of the average surface velocity
parallel to the interface, n is the coordinate normal to the
interface from the porous medium to the clear medium, and

β is a coefficient that expresses the stress jump condition
at the interface. For all of the cases treated in this article,
the coefficient β was assumed to be null, i.e., β = 0. The
effect of using a different value of such coefficient is shown
below.

NUMERICAL METHOD

Flow over the backward-facing-step of Fig. 1, with and
without the porous insert, was computed using the control-
volume method applied to a boundary-fitted coordinate
system. The SIMPLE algorithm was used to relax the
algebraic equations. Classical wall function was employed
to describe the flow near the wall. Results were obtained
considering an inlet Reynolds number of Re = 132,000
based on the height of the step H, which in this work was
taken as equal to 0.1 m. Inlet conditions for U, k, and ε were
used according to values proposed by Heyerichs and Pol-
lard (1996). All boundary condition values are illustrated
in Fig. 1. The nonlinear model employed was the closure
(Shih et. al., 1993). An orthogonal mesh of size 200 × 60
was used due to the simplicity of the geometry investi-
gated. In all computations shown below normalized resi-
dues, all transport equations involved were brought down
to 1 × 10–5.
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Table 1

Nonlinear turbulence models

Models cµ c1NL c2NL c3NL Extra terms

Nisizima
and Yoshizawa (1987)

0.09 –0.76 0.18 1.04

Speziale (1987) 0.09 –0.1512 0.0 0.0 TSPE

Rubinstein
and Barton (1990)

0.0845 0.68 0.14 –0.56

Shin et al. (1993)
2 ⁄ 3

1.25 + s + 0.9Ω
0.75

cµ (1000 + s3)
3.8

cµ (1000 + s3)
4.8

cµ (1000 + s3)
Park and Sung (1995) 0.09 0.6 0.4 0.005

{ }1
3

1 1
2 2

0.3024 , where 

and ,

∂ ∂∂〈 〉〈 〉= − − = + ⋅ 〈 〉 − 〈 〉 − 〈 〉
∂ ∂ ∂〈 〉

〈 〉 〈 〉= 〈 〉 〈 〉 = 〈 〉 〈 〉
〈 〉 〈 〉

G
� � � D D

vi
i jij v v v

SPE t ij mm ij ij D ij kj kii
k k

i i
v v v v

ij ij ij iji i

V VDk
T D D D V D D D

t x x

k k
s D D 
 
 


0

φ
µ δ

ε

ε

||,porous med. ||,clear med.

||,porous med.

1 ∂ ∂
−

φ ∂ ∂
β=

D D

D

U U

n n

U
K

(13)



RESULTS AND DISCUSSION

Preliminary results for unobstructed flow past a backward-
facing-step were obtained in order to assess the performance
of the linear and nonlinear turbulence models in clear do-
mains. Numerical parameters for this cases were a = 0, cF
= 0, φ = 1, and K → ∞. Figures 2–4 show calculations for
the axial velocity, turbulent intensity, and shear stress,

respectively, compared with experimental data reported by
Kim et. al. (1980). The figures indicate that overall beha-
vior of the mean and statistical flow is reproduced by both
linear and nonlinear theories, the latter method being of
superior quality when comparing results for the mean and
statistical quantities.

Grid independence studies were also conducted with
the aim of checking the behavior of the solution as the grid
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Figure 1. Boundary conditions for turbulent flow past a backward-facing step with porous insert.

Figure 2. Axial mean velocity profiles along axial coordinate.



size was varied. Table 2 presents calculations for the reat-
tachment length xR

 ⁄ H for different grids. One can see that
for grids greater than 200 × 60 grid nodes, there is no
detectable change in the calculated reattachment length.
Based on Table 2, in this work all computations are shown
for a mesh of size 200 × 60. With unobstructed results
validated, calculations involving the mentioned porous
insert can be better accessed.

As such, in the following figures, the effect of coeffi-
cient β, channel length L ⁄ H, porosity, thickness, and per-
meability of a porous insert on the flow pattern will be
shown for turbulent flow, using both the linear and non-
linear models. In each figure, the streamlines are analyzed
without the porous insert and with the porous material for
the following thicknesses: a = 0.15H, a = 0.30H, and a =
0.45H, where H is the step height.
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Figure 3. Nondimensional turbulence intensity along axial coordinate compared with experiments by Kim et. al. (1980).

Figure 4. Nondimensional turbulent shear stress compared with experiments by Kim et. al. (1980).



The effect of using a different coefficient β is shown in
Fig. 5. One can see that the flow pattern presents nearly the
same behavior regardless of the value used for the jump
coefficient in Eq. (13). Further calculations for the friction
coefficient along the bottom wall defined as

Cf = 
τw

ρU0
2 ⁄ 2

(14)

are presented in Fig. 6, where a similar behavior can be
noted. Since the flow in the geometry of Fig. 1 is mostly
perpendicular to the interface, the shear stress caused by
the fluid at that location is negligible. In fact, previous work
on the stress jump condition across an interface for laminar
(Silva and de Lemos, 2003a) and turbulent flow (Silva and
de Lemos, 2003b) parallel to a layer of porous material in
a channel indicated a substantial modification of the ve-
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Table 2

Separation length as a function of grid size

Model Dimensions (m) Grid size
Reattachment
length (xR ⁄ H)

Percent deviation from experimental
value of xR ⁄ H = 7.0

L_HRN 
1.5 × 0.3 150 ×  45

5.50 –21.43
NL_HRN 6.50 –7.14
L_HRN

1.5 × 0.3 200 ×  60
5.55 –20.71

NL_HRN 6.45 –7.86
L_HRN

1.5 × 0.3 200 ×  75
5.55 –20.71

NL_HRN 6.45 –7.86 
L_HRN

1.8 × 0.3 240 ×  60
5.55 –20.71

NL_HRN 6.45 –7.86

Figure 5. Calculated flow pattern using a linear model with a = 0.15H m, K = 10–6 m2, φ = 0.85: a) β = 0.0, b) β = 0.5; c)
β = –0.5.
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Figure 6. Friction coefficient at bottom surface for β equal to –0.5, 0.0, and 0.5.

Figure 7. Calculated flow pattern using a linear model with a = 0.15H m, K = 10–6 m2, φ = 0.85: a) L ⁄ H = 15, grid: 200 ×
60, b) L ⁄ H = 18, grid: 240 × 60; c) L ⁄ H = 21, grid: 280 × 60.
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Figure 8.  Friction coefficient at bottom surface for different values of L ⁄ H.

Figure 9. Comparison of streamlines between the linear and nonlinear models for backward-facing-step flow with porous insert,
K = 10–6 m2, φ = 0.65.
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Figure 10. Comparison of streamlines between the linear and nonlinear models for backward-facing-step flow with porous in-
sert, K = 10–6 m2, φ = 0.85.

Figure 11. Comparison of streamlines between the linear and nonlinear models for backward-facing-step flow with porous in-
sert, K = 10–7 m2, φ = 0.85.
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Figure 12. Mean velocity field simulated by linear and nonlinear models. Porous insert with K = 10–6 m2, φ = 0.65.
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Figure 13. Mean velocity field simulated by linear and nonlinear models. Porous insert K = 10–6 m2, φ = 0.85.



locity pattern, depending on the mentioned β parameter.
Therein, however, the streamlines were aligned to the
interface position, corresponding to a different flow
configuration than the one explored in the present work.

An indication of the appropriateness of the channel
length value used, L ⁄ H = 15, can be drawn from analyzing
Fig. 7 where one can see that the size and shape of the
recirculating bubble is nearly the same if the channel is
increased. Figure 8 further indicates that no influence is

also detected on the friction coefficient, calculated by Eq.
(14), if the length of the computational domain is increased.
Preliminary results shown so far support the use of 200 ×
60 grid nodes, L ⁄ H = 15, and β = 0 in all computations to
be presented.

Therefore, Figs. 9–11 show comparisons of streamlines
between the linear and nonlinear closures considering the
following permeability and porosity combinations: Fig. 9)
K = 10–6 m2, φ = 0.65; Fig. 10) K = 10–6 m2, φ = 0.85, and
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Figure 14. Mean velocity field simulated by linear and nonlinear models. Porous insert with K = 10–7 m2, φ = 0.85.



Fig. 11) K = 10–7 m2, φ = 0.85. It can be seen that the size
of the recirculation bubble simulated by the linear model, in
all cases with porous inserts, is shorter than the one calcu-
lated by nonlinear theories. Unfortunately, no experimental
data seems to be available in the literature documenting
measurements of flow properties in a backward-facing-step
with a porous insertion. Also, as the thickness of insert is
increased, the recirculation bubble decreases, and for a =
0.45H, the recirculation bubble is nearly suppressed, inde-
pendently of the turbulence model used. A possible expla-
nation for this behavior is that the presence of the porous
substrate tends to flatten the Darcy velocity profile due to
the two additional flow resistances modelled by the two last
terms on the right-hand side of Eq. (2). As such, after a
certain developing thickness within the porous matrix, the
profile is sufficiently "flat" so that the fluid is "delivered"
to the channel with a uniform pressure at each cross-station
along the longitudinal x direction. 

From the figures, one can further observe that the per-
meability K and the porosity φ of the porous insert also play
a role in determining the flow pattern. However, their
influence on the flow distribution past the obstacle seems
to be not as intense as the effect of the thickness a. Or say,
by just increasing the value of a ⁄ H one can smooth the flow
past the expansion, damping any existing recirculating
stream.

Finally, Figs. 12–14 show the mean velocity field
U
__

 ⁄ U0 at some stations along the channel with the porous
insert. It can be noted that the deviations between the results
produced with linear and nonlinear theory decrease as the
thickness of insert increases. Further, for a = 0.45H, both
models produce nearly the same results.

CONCLUSIONS

In this work, two turbulence models (linear and nonlinear),
using wall functions, have been used to simulate turbulent
flow past a backward-facing step with a porous insert.
Parameters such as porosity φ, permeability K, and thick-
ness a of the porous material were varied in order to analyze
their effects on the flow pattern.

For validation, results without the insert were compared
with experimental data of Kim et al. (1980). The experi-
mental value for the separation length given in the literature
is xR

 ⁄ H = 7.0. The linear and nonlinear models resulted in
xR

 ⁄ H = 5.55 and xR
 ⁄ H = 6.45, respectively, indicating an

advantage of nonlinear closures in predicting more realistic
results.

Figures 9–11 showed that the recirculating bubble simu-
lated with the linear model was always shorter than the one
calculated with nonlinear theories. Also, results indicate
that the thickness of the insert had a more pronounced
effect in suppressing the recirculation bubble than other
parameters, such as the permeability or the porosity. It has
also been observed that the total damping of the recircula-
tion bubble occurred for a = 0.45H, independently of the
turbulence model employed.

In summary, the following conclusions can then be
drawn from this work:

1. The developed code and numerical methodology used
are in agreement with findings in the literature as far as
simulating unobstructed suddenly expanding flows in
channels.

2. For the configuration in question, which includes a
porous insert of thickness a at the sudden expansion, the
recirculating bubble calculated with linear models gave
shorter reattachment lengths than those simulated via a
nonlinear stress-strain rate relationship.

3. For the cases analyzed here, the thicker the insert, the
lower the differences in the value of xR calculated with the
two models. This behavior might be explained by the fact
that inside the porous material additional forces exerted by
the solid on the fluid tend to flatten the Darcy velocity
profiles. As such, as the porous matrix gets thicker, recir-
culating bubbles tend to disappear regardless of the turbu-
lence model used.
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