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ABSTRACT

This work presents a numerical investigation of turbulent flow past a
backward-facing-step channel with a porous insert using linear and non-
linear eddy viscosity macroscopic models. The nonlinear turbulence
models are known to perform better than classical eddy-diffusivity mod-
els due to their ability to simulate important characteristics of the flow.
Turbulence-driven secondary motion and the effects of streamline curva-
ture on turbulence cannot be fully accounted for with simpler isotropic
models. Parameters such as porosity, permeability, and thickness of the
porous insert are varied in order to analyze their effects on the flow pat-
tern, particularly on the damping of the recirculating bubble after the
porous insertion. The numerical technique employed for discretizing the
governing equations is the control-volume method. The SMPLE algo-
rithm is used to correct the pressure field. The classical wall function is
utilized in order to handle flow calculation near the wall. Comparisons
of results simulated with both linear and nonlinear turbulence models
are shown.
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NOMENCLATURE
a porous insert thickness (m) up average surface velocity (m/s)
CF Forchheimer coefficient Ui fluid inlet velocity (m/s)
CINL, C2NL,  coefficients of nonlinear model Upy average surface velocity component
C3NL paralle to the interface (m/s)
Cy, Cle, turbulence model constants XR reattachment length (m)
C2e
Ck constant for macroscopic Greek symbols
turbulence model B interface stress jump coefficient
H step height (m) [0} porosity
K porous media permeability (m2) i fluid molecular viscosity (Ns/mz)
L recirculation length (m) p fluid density (kg/m3)
n coordinate normal to theinterface (m) Ok, O¢ turbulence model constants
{p) intrinsic average pressure (N/m?)

INTRODUCTION

Turbulent recirculating bubbles appear in many flows of
practical interest and are usually related to mechanical
energy losses within the fluid. Flows past a backward-fac-
ing step, over sinusoidal surfaces or inside diffusers are
examplesof such configurations. Sometimes attenuation or
even suppression of the recirculating bubble is desirable.
Inserts such as honeycombs, screens, or other devices to
redistribute the flow are frequently applied in wind tunnels
where a uniform flow with low turbulence intensity is
required at the test section. Depending on certain parame-
ters, such asinsert type, thickness, porosity, and directional
permeability, such components may be treated as a porous
medium positioned within the flow. For simulating turbu-
lence within permeable media, several macroscopic mod-
els have been developed (de Lemos & Pedras, 2001; Lage
et al., 2002), some of which based on the so-called "double
decomposition” concept. Such an idea has been applied to
simulate flow (Pedras & de Lemos, 2000, 2001a-c, 2003),
non-buoyant heat transfer (Rocamora& de Lemos, 2000a),
buoyancy effects (de Lemos & Braga, 2003, Braga & de
Lemos, 2004), masstransfer (deLemos& Mesquita, 2003)
and double-diffusive convection (de Lemos & Tofandli,
2004) in porous media In addition, many engineering
problemshaveflowsinvolving interfacesbetween aporous

medium and a clear domain. The problem of boundary
conditions at the porous medium—clear fluid interface has
been dedlt by severd authors (Beavers and Joseph, 1967,
Vafal and Tien, 1981; Vafa and Kim, 1990; Ochoa Tapia
and Whitaker, 1995). Recently, analytical (Kuznetsov,
1996, 1997, 1999) and numerical (Silva and de Lemos,
2003a) solutions for laminar flow in composite channels
have been considered, in addition to simulation of turbulent
flowsin such systems (Silva and de Lemos, 2003b).

More specificaly, the problem of flow over a porous
block in a channel and past a backward-facing step with
porousinserts has been studied by Rocamoraand deLemos
(2000b,¢) and by Chanet. a. (2000). Both works presented
laminar and turbulent results with forced convective heat
transfer. They used, for modeling turbulent flow, a two-
equation linear k—e-model with wall function for both the
fluid region and the porous medium. Rocamora and de
Lemos (2000b,c) treat the interface between the porous
medium and the clear fluid following the work by Ochoa
Tapiaand Whitaker (1995). Chan et. al. (2000) considered
the flow at the interface between the fluid and porous
medium as being continuous. The presence of the Brink-
man’'s extension model (Brinkman, 1948) in the porous
media equation eliminates the need for imposing an ex-
plicit interface condition, in accordance with Nield and
Bejan (1999).
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In thiswork, numerical resultsfor turbulent flow past a
backward-facing step in a channel with aporousinsert are
presented. Both linear and nonlinear eddy viscosity mac-
roscopic models are employed. Here, the boundary condi-
tions at the porous medium—clear fluid interface are the
same as those used by Rocamora and de Lemos (2000b,c).

Accordingly, it is well established in the literature that
clear fluid linear eddy-viscosity turbulence models
(LEVM) do not, on the whole, cope well with strong
streamline curvature arising, for example, in flows over
curved surfaces. And yet, turbulence-driven secondary mo-
tion and directional effects due to buoyancy cannot, dueto
absence of information on individua stresses, be fully
simulated with LEVM. In spite of that, they are often used
for engineering computations due to the numerical robust-
ness obtained viatheir linear stress-strain rate relationship
(Jones and Launder, 1972). This diffusion-like approach
makes the numerical solution stable, with the model easily
adaptable to existing computer code architectures. The
nonlinear eddy-viscosity models (NLEVM), which repre-
sent an extension of the LEV M, have shown good perform-
ance in flows where the Reynolds normal stresses play an
important role (Assato and de Lemos, 2000, 2001) in
correcting the deficiencies presented by the LEVM. They
basically follow the procedures used in obtaining constitu-
tive equations for laminar flow of non-Newtonian fluids
(Rivlin, 1957). An exampleisthework of Speziale (1987).
Essentialy, the observed relationship between laminar
flow of viscoel astic fluids and turbulent flow of Newtonian
substances has motivated developments of such NLEVM
(Lumley, 1970). The basic advantage of the NLEVM over
other more complex models, e.g., the algebraic stressmod-
els (ASM) (Rodi, 1972; de Lemos and Sesonske, 1985; de
Lemos, 1988), liesin the achieved computational savings
(roughly 25-50% less computing time).

Therefore, in this article comparisons of results simu-
lated with both linear and nonlinear k—¢ turbulence models
for turbulent flow through a backward-facing-step channel
are shown. Some important parameters such as porosity,
permeability, and thickness of the porousinsert are varied
and their effects on the flow are assessed.

MACROSCOPIC TRANSPORT
AND CONSTITUTIVE EQUATIONS

Thedevelopment presented in (Pedrasand de Lemos, 2001a—
¢, 2003) assumess ngle-phaseflow inasaturated, rigid porous
medium (AV; independent of time), for which atime-aver-
aged operation on a variable commutes with a space
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average. For thissituation Pedras and de Lemos (2001a)
presentthefoll owingmacroscopicequati onssystem.

M acr oscopic Continuity Equation

0p=0 )

where Up is the average surface velocity (“seepage’ or
Darcy velocity). Equation (1) represents the macroscopic
continuity equation for an incompressible fluid.

M acr oscopic M omentum Equation

where —p@u'u’ )i is the macroscopic Reynolds stress and
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the last two terms represent the Darcy—Forchheimer con-
tributions. Further, the symbol K is the porous medium
permesbility, cg isthe form drag coefficient (Forchheimer
coefficient), (p)' is the intrinsic average pressure of the
fluid, p isthefluid density, p represents the fluid viscosity,
and @ isthe porosity. Here, it is also important to acknow-
ledge a possible influence of the medium morphology on
macroscopic models that, in principle, do not explicitly
account for any effect of turbulence such asthe inclusion of
the macroscopic Reynolds Stress tensor of Eq. (2). In fact,
recent literature results by Bhattacharya et. a. (2002) pro-
pose correlations for the inertia coefficient cg as afunction
of medium and flow properties. In the path here followed,
however, one unique valuefor theinertia coefficient will be
used when presenting macroscopic results later. Here, the
explicit accounting for turbulent transport, while keeping a
unique macroscopic inertia coefficient, can be seen as an
aternative path on adjusting the Forchheimer coefficient for
large values of Re. A model! for the macroscopic Reynolds
Stresses —p@X U'U' Y, required in the present formulation, is
given below.

M acr oscopic Reynolds Stress

A macroscopic linear stress-strain rate relationship was
given by Pedras and de Lemos (2001a) as

—pQil’ U= py, (DY - %m](ml (©)

in analogy with clear flow cases. In Eq. (3) the term
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represents the mean deformation tensor and | is the unity
tensor.

M acr oscopic Eddy Viscosity
oo SR
Mto=PCu——+
0= Po ®)

wherec,, = 0.09and (k)i and (s)i aretheintrinsic averages
of the turbulent kinetic energy and its dissipation rate,
respectively.

M acr oscopic Turbulent
Kinetic Energy Equation
. -0
PIESIR ¥ [+ )0ty
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where —p@(u'u')! is defined by Eq. (3) and oy = L.0.

M acr oscopic Dissipation Rate
of Turbulent Kinetic Energy Equation

plO(Uged’)
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where 0 = 1.33, ¢ = 1.44, ¢y = 1.92, and ¢ assumes a
value equal to 0.28 found by Pedrasand de Lemos (2001a—
¢, 2003).

It is worthwhile to mention that the surface volume
average quantities are related to the intrinsic average quan-
tities through the porosity @ as

()= (9)' ®

Also, the equations given above are valid for the clear
medium aswdll, setting =1 (K - ) and discarding the
last two termsin Eq. (2).

M acr oscopic Nonlinear M odel

In this work, results produced by NLEVMs are investi-
gated. Differently from the linear stress—strain rate rela
tionship Eq. (3), a more general nonlinear constitutive
equation will be employed. These models originated in a
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genera proposal done by Pope (1975). However, in the
1980s such closures had greater progress, particularly due
to the works of Spezide (1987), Nisizima and Y oshizawa
(1987), Rubingtein and Barton (1990), and Shih et. . (1993)
among others. In these works, quadratic products wereintro-
duced invalving the strain rate and vorticity tensors with
different derivations and calibrations for each model. These
quadratic forms produce a certain anisotropy degree among
thenorma stresses, which makeit possibleto predict, among
other processes, the presence of secondary motion in noncir-
cular ducts.

The macroscopic nonlinear turbulence model here
proposed is constituted by the same system of Egs.
(1)—(7) formerly given by Pedras and de Lemos (2001a).
The sole difference between both macroscopic models
(linear and nonlinear) lies in the expression for the
macroscopic Reynolds Stress. Using indexed notation
for clarity and keeping terms to the second order, this
new macroscopic nonlinear stress-strain rate equation
can be rewritten in the form

—_— — L
—pqi]li'u'j O= (th, |:|Dij D’)
NL1

O kO 0= _ - - J
- — D DDy V- :—lDD D3 &
EplNL Mg a0 @Dk K 3 K Dl 1%

. L2
0 1 T
_EPZNLUt(p_-%g)ikD’[quv"'m ]@DS‘BV%
0 F:{l
NL3

0 0. o
—E]“GNLH@%EQWEY@ - é‘m IR (18 ij%
2 ,
‘§<I95ijp|j3(D )

where &;j isthe Kronecker delta; the superscripts L and NL
indicate linear and nonlinear contributions; L, isagain the
macroscopic_turbulent viscosity given by Eq. (5); and
(Djj)" and (Q;j)" arethedeformation and vorticity tensors,
written in the indexed form, respectively, as

_ _ [Bup, dupO

(Dyj)¥'= G+ —2g
0% 0% g

— Bup. OJup O

Qi)Y' = A+ —0) (10)
0o oXig

Table 1 showsthe different valuesof ¢, cini, Coni, and
canL proposedintheliterature. Notethat Eq. (3) isrecovered
if constants ¢y, Cone, and ey in Eg. (9) are set to zero.
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Table 1
Nonlinear turbulence models

Models Cu CINL C2NL C3NL Extraterms
Nisizima
and Y oshi zawa (1987) 0.09 -0.76 0.18 1.04
Speziale (1987) 0.09 -0.1512 0.0 0.0 TsPE
Rubinstein
and Barton (1990) 0.0845 0.68 0.14 -0.56
Shinet &l (1993 2/3 0.75 3.8 4.8
inetal. (1993) 125+5+09Q ou(1000+s)  cu(1000+S%)  cu(1000+8%)
Park and Sung (1995) 0.09 0.6 0.4 0.005
ary - . ob,0 . __ 0V, o, _
Tge =-0.3024u, ——{D, -10,,5,}, whee D, = +V, D, -—=2 D, - —= D0
* &0 ot 0%, 0X,

0 ——— 0d ————
and S_ﬁ %DD”G[D”-DI, Q= E %DQIJ]DQJ;

Itisimportant to emphasize herethat valuesin Table L were
obtained in the literature for models developed for a clear
medium, although Eq. (2) will be applied to both porous
and clear domains. Here, in the absence of better informa-
tion, no modifications are introduced in the constants or
model parameters when Eqg. (2) is used within the porous
structure.

Interface Conditions

The interface between the porous medium and the clear
fluid is treated as follows (Ochoa Tapia and Whitaker,
1995) and the interface conditions can be expressed as

UD,clear medium = UD,porous medium (12)
—\i — =\
{P>clear mediun™ <P porous medium (12)

1 ou D||,porous med. ou D||,clear med.
Q an on

=%U D||,porous med. (13)

whereUp, isthe component of the average surface vel ocity
parale to the interface, n is the coordinate normal to the
interface from the porous mediumto the clear medium, and

[ is a coefficient that expresses the stress jump condition
at the interface. For all of the cases treated in this article,
the coefficient 3 was assumed to be null, i.e,, 3 = 0. The
effect of using adifferent value of such coefficient isshown
below.

NUMERICAL METHOD

Flow over the backward-facing-step of Fig. 1, with and
without the porousinsert, was computed using the control -
volume method applied to a boundary-fitted coordinate
system. The SIMPLE agorithm was used to relax the
agebraic equations. Classical wall function was employed
to describe the flow near the wall. Results were obtained
considering an inlet Reynolds number of Re = 132,000
based on the height of the step H, which in this work was
takenasequal to 0.1 m. Inlet conditionsfor U, k, and € were
used according to values proposed by Heyerichs and Pol-
lard (1996). All boundary condition values areillustrated
in Fig. 1. The nonlinear model employed was the closure
(Shih et. al., 1993). An orthogonal mesh of size 200 x 60
was used due to the simplicity of the geometry investi-
gated. In al computations shown below normalized resi-
dues, all transport equationsinvolved were brought down
to1x 107,
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6__ } Inlet: main flow
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Figure 1. Boundary conditions for turbulent flow past a backward-facing step with porous insert.
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Figure 2. Axial mean velocity profiles along axia coordinate.

RESULTS AND DISCUSSION

Preliminary results for unobstructed flow past a backward-
facing-step wereobtained in order to assessthe performance
of the linear and nonlinear turbulence models in clear do-
mains. Numerical parametersfor this caseswerea =0, cg
=0,9=1,and K - oo. Figures 2—4 show calculations for
the axial velocity, turbulent intensity, and shear stress,

respectively, compared with experimental datareported by
Kim et. a. (1980). The figures indicate that overall beha-
vior of the mean and statistical flow is reproduced by both
linear and nonlinear theories, the latter method being of
superior quality when comparing results for the mean and
statistical quantities.

Grid independence studies were also conducted with
theaim of checking the behavior of the solution asthegrid
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Figure 3. Nondimensiona turbulence intensity along axial coordinate compared with experiments by Kim et. a. (1980).
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Figure 4. Nondimensional turbulent shear stress compared with experiments by Kim et. a. (1980).

sizewasvaried. Table 2 presents cal cul ations for the reat-
tachment length xg/H for different grids. One can see that
for grids greater than 200 x 60 grid nodes, there is no
detectable change in the calculated reattachment length.
Based on Table 2, in thiswork al computations are shown
for a mesh of size 200 x 60. With unobstructed results
validated, calculations involving the mentioned porous
insert can be better accessed.

As such, in the following figures, the effect of coeffi-
cient 3, channel length L/H, porosity, thickness, and per-
meability of a porous insert on the flow pattern will be
shown for turbulent flow, using both the linear and non-
linear models. In each figure, the streamlines are anayzed
without the porous insert and with the porous material for
the following thicknesses: a = 0.15H, a = 0.30H, and a =
0.45H, where H is the step height.
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Table 2
Separation length as a function of grid size
. . I Reattachment Percent deviation from experimental
Model Dimensions (m) Grid size length (xz/H) value of xg/H = 7.0
L_HRN 5.50 —21.43
NL_HRN 15x03 15045 6.50 —7.14
L_HRN 5.55 -20.71
NL_HRN 1503 200 60 6.45 _7.86
L_HRN 5.55 -20.71
NL_HRN 15x03 20075 6.45 —7.86
L_HRN 5.55 -20.71
NL_HRN 18x03 240 €0 6.45 —7.86
Beta=0.0
0.3 ——
w
og—= < 0.55 T 15
a)
Beta=0.5
03
S e
%6 0% T T5
b)
Beta=-0.5
03 — ey

<)

Figure 5. Calculated flow pattern using a linear model with a = 0.15H m, K = 10° m?, @=085a =00, b)p=05c)

B = -05.

The effect of using a different coefficient 8 isshownin
Fig. 5. Onecan seethat theflow pattern presents nearly the
same behavior regardless of the value used for the jump
coefficient in Eq. (13). Further calculationsfor thefriction
coefficient along the bottom wall defined as

Tw

" pU%/2

(14)

are presented in Fig. 6, where a similar behavior can be
noted. Since the flow in the geometry of Fig. 1 is mostly
perpendicular to the interface, the shear stress caused by
thefluid at that locationisnegligible. Infact, previouswork
onthestressjump condition acrossan interface for laminar
(Silvaand de Lemos, 2003a) and turbulent flow (Silvaand
de Lemos, 2003b) parallel to alayer of porous material in
a channel indicated a substantial modification of the ve-
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Figure 6. Friction coefficient at bottom surface for 3 equa to —0.5, 0.0, and 0.5.
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Figure 7. Caculated flow pattern using a linear model with a = 0.15H m, K = 108 m2, @ =0.85: a) L/H = 15, grid: 200 x
60, b) L/H = 18, grid: 240 x 60; c) L/H = 21, grid: 280 x 60.
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Friction coefficient: channel length
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Figure 8. Friction coefficient at bottom surface for different values of L/H.
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Figure 9. Comparison of streamlines between the linear and nonlinear models for backward-facing-step flow with porous insert,
K =10°m? ¢ = 0.65.
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Figure 10. Comparison of streamlines between the linear and nonlinear models for backward-facing-step flow with porous in-
sert, K = 107° m2, ¢ = 0.85.
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Figure 11. Comparison of streamlines between the linear and nonlinear models for backward-facing-step flow with porous in-
sert, K = 1077 m?, ¢ = 0.85.
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Figure 12. Mean velocity field simulated by linear and nonlinear models. Porous insert with K = 10° m?, ¢ = 0.65.
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Figure 13. Mean velocity field simulated by linear and nonlinear models. Porous insert K = 10° m?, ¢ = 0.85.
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Figure 14. Mean velocity field simulated by linear and nonlinear models. Porous insert with K = 10”7 m2, ¢ = 0.85.

locity pattern, depending on the mentioned 3 parameter.
Therein, however, the streamlines were aligned to the
interface position, corresponding to a different flow
configuration than the one explored in the present work.

An indication of the appropriateness of the channel
length value used, L/H = 15, can bedrawn from analyzing
Fig. 7 where one can see that the size and shape of the
recirculating bubble is nearly the same if the channdl is
increased. Figure 8 further indicates that no influence is

also detected on the friction coefficient, calculated by Eq.
(14), if thelength of thecomputational domainisincreased.
Preliminary results shown so far support the use of 200 x
60 grid nodes, L/H =15, and 3 = 0 in al computations to
be presented.

Therefore, Figs. 911 show comparisons of streamlines
between the linear and nonlinear closures considering the
following permeability and porosity combinations: Fig. 9)
K =10"%m? @=0.65; Fig. 10) K = 10 °m?, ¢=0.85, and
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Fig. 11) K = 10" m?, @=0.85. It can be seen that the size
of the recirculation bubble simulated by thelinear model, in
all cases with porous inserts, is shorter than the one calcu-
lated by nonlinear theories. Unfortunately, no experimental
data seems to be available in the literature documenting
measurements of flow propertiesin abackward-facing-step
with a porous insertion. Also, as the thickness of insert is
increased, the recirculation bubble decreases, and for a =
0.45H, the recirculation bubbleis nearly suppressed, inde-
pendently of the turbulence model used. A possible expla
nation for this behavior is that the presence of the porous
substrate tends to flatten the Darcy velocity profile due to
thetwo additional flow resistancesmodelled by thetwolast
terms on the right-hand side of Eq. (2). As such, after a
certain devel oping thickness within the porous matrix, the
profileis sufficiently "flat" so that the fluid is "delivered”
to the channel with auniform pressure at each cross-station
aong the longitudina x direction.

From the figures, one can further observe that the per-

meability K and the porosity @of the porousinsert also play
a role in determining the flow pattern. However, their
influence on the flow distribution past the obstacle seems
to be not asintense as the effect of the thickness a. Or say,
by justincreasing thevalue of a/H one can smooth theflow
past the expansion, damping any existing recirculating
stream.
__ Finally, Figs. 12-14 show the mean velocity field
U/Ug at some stations along the channel with the porous
insert. It can benoted that the deviationsbetween theresults
produced with linear and nonlinear theory decrease as the
thickness of insert increases. Further, for a = 0.45H, both
models produce nearly the same results.

CONCLUSIONS

In thiswork, two turbulence model s (linear and nonlinear),
using wall functions, have been used to simulate turbulent
flow past a backward-facing step with a porous insert.
Parameters such as porosity ¢, permeability K, and thick-
nessa of the porousmaterial werevariedinorder toanayze
their effects on the flow pattern.

For validation, resultswithout theinsert were compared
with experimenta data of Kim et a. (1980). The experi-
mental valuefor the separationlength givenintheliterature
isxr/H =7.0. Thelinear and nonlinear modelsresulted in
Xr/H =5.55 and xg/H = 6.45, respectively, indicating an
advantage of nonlinear closuresin predicting morerealistic
results.
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Figures9—-11 showed that therecircul ating bubblesimu-
|ated with the linear model was always shorter than theone
calculated with nonlinear theories. Also, results indicate
that the thickness of the insert had a more pronounced
effect in suppressing the recirculation bubble than other
parameters, such as the permeability or the porosity. It has
also been observed that the total damping of therecircula
tion bubble occurred for a = 0.45H, independently of the
turbulence model employed.

In summary, the following conclusions can then be
drawn from this work:

1. Thedevel oped code and numerical methodol ogy used
are in agreement with findings in the literature as far as
simulating unobstructed suddenly expanding flows in
channels.

2. For the configuration in question, which includes a
porous insert of thickness a at the sudden expansion, the
recirculating bubble calculated with linear models gave
shorter reattachment lengths than those simulated via a
nonlinear stress-strain rate relationship.

3. For the cases analyzed here, the thicker theinsert, the
lower the differencesin the value of xr calculated with the
two models. This behavior might be explained by the fact
that inside the porous material additional forces exerted by
the solid on the fluid tend to flatten the Darcy velocity
profiles. As such, as the porous matrix gets thicker, recir-
culating bubbles tend to disappear regardless of the turbu-
lence model used.
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