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This work examines the performance of linear and nonlinear eddy-viscosity models when

used to predict the turbulent flow in periodically sinusoidal-wave channels. Two geometries

are investigated, namely a converging-diverging channel and a channel with concave-convex

walls. The numerical method employed for the discretization of the equations is the

control-volume method in a boundary-fitted nonorthogonal coordinate system. The

SIMPLE algorithm is used for correcting the pressure field. The classical wall function

and a low Reynolds model are used to describe the flow near the wall. Comparisons between

those two approaches using linear and nonlinear turbulence models are done. Here, a new

implicit numerical treatment is proposed for the nonlinear diffusion terms of the momentum

equations in order to increase the robustness. Results show that by decomposing and treat-

ing terms as presented, solutions using nonlinear models and the high Reynolds wall treat-

ment, which combine accuracy and economy, are more stable and easier to be obtained.

INTRODUCTION

The analysis of flow over wavy boundaries and time-varying boundary
conditions is of great interest in engineering and has motivated a number of recent
studies, including flow in corrugated ducts [1–5], in spatially periodic channels [6, 7],
and with time-oscillating or spatially-varying boundary conditions [8–12]. Further,
several phenomena involving wavy boundaries occur in nature, such as generation
of wind waves over water, evolution of sand dunes in deserts, and sediment dunes
in rivers, to mention a few [13]. Some industrial devices make use of sinusoidal walls
as well. Development of high-performance thermal systems has received much atten-
tion recently. Modified surfaces are required to reduce the size and weight of heat
exchange devices such as those encountered in electronic cooling, air-conditioning,
automobiles, aircrafts, spacecrafts, etc.

According to Habib et al. [14], there are many different ways of increasing heat
and mass transfer using distinct surfaces for generating turbulence (zigzag-type,
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cavity-type, grooved-type, staggered ribs-type, etc.). Various researchers experimen-
tally studied turbulent flow over wavy boundaries. Hsu and Kennedy [15] investi-
gated axisymmetric flow in a circular pipe where the diameter varied in a
sinusoidal form along its length. Zilker et al. [16] and Buckels et al. [17] measured
the shear stress and velocity profiles in a channel with a wavy wall at the bottom
of a sine shape. Saniei and Dini [18] measured pressure drop, velocity profile, and
local heat transfer for the case of periodical converging-diverging rectangular chan-
nels using three different aspect ratios and Reynolds number ranging from 104 to
105. Hanratty et al. [19] numerically studied the turbulent flow in a channel with
sinusoidal surface at the bottom and Patel et al. [13] investigated a rectangular chan-
nel using different amplitudes. Habib et al. [14] simulated the flow in sinusoidal
converging-diverging channel. They used the linear k� e model and presented
velocity, streamlines, turbulent kinetic energy, pressure drop, friction factor, and
local, average, and maximum Nusselt numbers for Re from 4� 104 to 105.

Accordingly, it seems to be accepted in the literature that linear eddy-viscosity
turbulence models (LEVM) do not cope well with strong streamline curvature aris-
ing from flow over curved surfaces or imparted swirling. Yet, turbulence-driven sec-
ondary motion and directional effects due to buoyancy cannot, due to absence of
information on individual stresses, be fully simulated with LEVMs. In spite of that,
they are often used for engineering computations due to the numerical robustness
obtained via its linear stress-strain rate relationship [20]. This diffusion-like
approach makes the numerical solution stable, with the model easily adaptable to
existing computer code architectures. Models involving other types of constitutive
equations have been lately developed with the perspective of applying CFD to com-
plex flows. These techniques aim at a wider range of applicability, similar to that of
Reynolds stress models [21] while keeping computational costs down to LEVM cost
levels. Theories employing other type of representation of individual Reynolds stresses=
fluxes, including addition of nonlinear terms to the basic constitutive equation, try to

NOMENCLATURE

cm coefficient of turbulent

model

c1, c2 constants in turbulent

model

c1NL, c2NL, c3NL coefficients of nonlinear

terms

k turbulent kinetic energy

per unit mass, u0iu
0
i=2

P mean pressure

Pk production of turbulent

kinetic energy

s dimensionless strain

s/ source term

Sij strain rate tensor

U, V mean velocity components

x coordinate in the streamwise

direction

y coordinate normal to the

streamwise direction

e dissipation rate of k,

nðqu0i=qk0iÞðqu0jqxjÞ
g� n generalized coordinate

j Von K�aarm�aan’s universal
constant

m, mt dynamic viscosity and eddy

dynamic viscosity

q density of the fluid

C/ transport coefficient

rk, re model constants for turbulent

diffusion of k and e
sij reynolds stress tensor, �qu0iu

0
j

sw wall shear stress

X dimensionless vorticity tensor

Xij vorticity tensor
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capture the sensitivity to flow curvatures and buoyancy, a feature missing in basic
LEVMs.

To the best of the authors’ knowledge, most published work on nonlinear mod-
els [22–26] are either written for Cartesian coordinates and=or treat additional non-
linear terms in a fully explicit manner. The literature refers to the difficulties of
convergence of the solution when nonlinear turbulence models are used in complex
flows [27–29]. Here, a new numerical treatment is proposed to handle a general non-
linear constitutive equation into a boundary-fitted computer code. Nonlinear dif-
fusion fluxes are linearized for increase of robustness of the method. Common
practices in the literature simply treat those additional terms as sources, reducing
relaxation parameters to avoid divergent solutions. Therefore, the numerical meth-
odology proposed herein contributes to the robustness of the solution method and
increases the applicability of such nonlinear models to numerical grids fully com-
placent with irregular computational domains. The treatment consists in splitting
the nonlinear diffusive fluxes in an implicit term in the coefficients matrix, as well
as an explicit part hold in the source term.

None of the publications above reviewed compared different turbulence mod-
els when analyzing the flow, which is the subject of this contribution. Further, there
seems to be no published proposal like the one here, which is related to a new
attempt to discretized the flow equations in order to enhance the degree of implicit-
ness of the numerical solution. Therefore, the objective of this work is two-fold: 1) to
investigate the computational robustness of a new implicit numerical treatment for
nonlinear diffusion terms, and 2) to analyze the performance of linear and nonlinear
eddy-viscosity models in predicting turbulent flow in periodical sinusoidal-wave
channels, using both the classical wall function and low Reynolds damping functions
for handling wall proximity.

MEAN AND TURBULENT FIELDS

The governing equations to be solved are the continuity and the
Reynolds-averaged Navier-Stokes equations, which take the following form:

qUi

qxi
¼ 0 ð1Þ

qUj
qUi

qxj
¼ qsij

qxj
� qP
qxi

ð2Þ

where Ui is the mean velocity component in the i-direction, and q is the density of the
fluid. For ease of computation, the total pressure P ¼ pþ 2

3qk also involves a term
containing the turbulent kinetic energy k ¼ u0iu

0
i=2 where u0i is the fluctuating part

of the instantaneous velocity in the i-direction. The stress sij represents the sum
of the turbulent stress, stij , plus the laminar viscous stress, s‘ij ¼ mSij, where the
deformation tensor is given by

Sij ¼
qUi

qxj
þ qUj

qxi

� �
ð3Þ
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Different constitutive equations for the Reynolds stress will be discussed later and
they shall be classified basically in linear and nonlinear relationships.

The modeled transport equations for the turbulent kinetic energy k and its
dissipation rate e, respectively, are given by

Ui
qk
qxi

¼ q
qxi

mt
qrk

qk
qxi

� �
þ Pk � e ð4Þ

Ui
qe
qxi

¼ q
qxi

mt
qre

qe
qxi

� �
þ c1

e
k
Pk � c2f2

e2

k
ð5Þ

The symbols Pk and mt, respectively, represent the turbulence kinetic energy
production rate and the eddy viscosity, and are defined as

Pk ¼ stij
qUi

qxj
; mt ¼ cmfmq

k2

e
ð6Þ

In the present work, both high and low Reynolds models are compared. Their
basic difference lies in the distinct form of the damping functions f2 and fm, with
distinct expressions for them, shown in Table 1 [30]. When calculating the wall shear
stress with the high Reynolds method [31], E in Table 1 may be varied to simulate the
surface roughness. Also, j¼ 0.41 is the numerical value used for the von K�aarm�aan
constant and subscript P refers to the node next to the wall. Thus, uP and kP are,
respectively, the value of the velocity and turbulent kinetic energy in this point,
and yP is the normal distance to the wall. The symbol n in the low Reynolds model
represents the normal distance to the wall. The constants cm, c1, c2, rk, and re for the
high Reynolds model are set as 0.09, 1.44, 1.92, 1.0, and 1.33, respectively, and for
the low Reynolds model given by 0.09, 1.5, 1.9, 1.4, and 1.3, respectively.

Table 1. High and low Reynolds models

High Reynolds model proposed

by Launder and Spalding [31]

Low Reynolds model

proposed by Abe et al. [30]

fm 1.0

1� exp �ðneÞ0:25n
14n

" #( )2

1þ 5

ðk2=neÞ0:75
exp � ðk2=neÞ

200

� �2
" #( )

f2 1.0

1� exp �ðneÞ0:25n
3:1n

" #( )2

1� 0:3 exp � ðk2=neÞ
6:5

� �2
" #( )

sw
uPqc

1
4
mjk

1
2

P

ln
Eqc

1
4
mk

1
2
P
yP

m

 ! m
qu
qy
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In this work, the linear and nonlinear eddy-viscosity models are analyzed. For
the linear k� e model of turbulence, the Reynolds stress tensor is assumed to be of
the following form:

stij ¼ mtSij �
2

3
qdijk ð7Þ

As mentioned before, the last term in Eq. (7) was compacted into an expression
for the total pressure P.

Nonlinear eddy-viscosity models originated in a general proposal done by Pope
[32]. However, only in the past two decades such models have had great progresses
with the works of references [22–25], among others. In these works, quadratic
products were introduced involving the strain and vorticity tensors with different
derivations and calibrations for the models. These quadratic forms produce a certain
anisotropy degree among the normal tensions, which make possible to predict, among
other processes, the presence of secondary motion in noncircular ducts.

A general nonlinear expression for the Reynolds stress, kept to second order,
can be written as

stij ¼ mtSij

� �L� c1NLmt
k

e
SimSmj �

1

3
SmlSmldij

� �� �NL1

� c2NLmt
k

e
XimSmj þ XjmSmi

� �� �NL2

� c3NLmt
k

e
XimXjm � 1

3
XlmXlmdij

� �� �NL3

ð8Þ

or

stij ¼ sLij þ sNL1
ij þ sNL2

ij þ sNL3
ij ð9Þ

where the c’s are constants or coefficients, dij is the Kronecker delta, the superscripts
in equations above indicate linear and nonlinear contributions, Sij is the deformation
tensor given by Eq. (3) and Xij represents the vorticity tensor written as

Xij ¼
qUi

qxj
� qUj

qxi

� �
ð10Þ

Equation (8) already assumes that the term 2
3qdijk is combined into the total

pressure P. In this work, the nonlinear model proposed by Shih et al. [25] was used
and has the following expressions.

cm ¼ 2=3

1:25þ sþ 0:9X
; c1NL ¼ 0:75

cm 1000þ s3ð Þ ;

c2NL ¼ 3:8

cm 1000þ s3ð Þ ; c3NL ¼ 4:8

cm 1000þ s3ð Þ

where

s ¼ k

e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
SijSij

r
and X ¼ k

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
XijXij

r
ð11Þ
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NUMERICAL METHOD AND PROCEDURE

Figure 1 shows a typical control-volume with detailed notation, distances, and
indexing used when transforming the original equations into the g� n coordinate
system. Boundary conditions for the channel included periodic flow at entrance
and exit in Figure 2 and nonslip conditions at the walls.

Figure 1. Control-volume and notation.

Figure 2. Geometries of periodically sinusoidal-wave channels. (a) Symmetric converging-diverging

channel and (b) channel with concave-convex walls.
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The grids in Figure 3 were generated using a boundary fitted nonorthogonal
coordinated system. The equations above were discretizing using the control-
volume approach [33] applied over the generated collocated grid. Pressure-velocity
coupling was handled by the SIMPLE method [33]. A hybrid scheme, upwind dif-
ferencing scheme (UDS) and central differencing scheme (CDS), was used for
interpolating the convection fluxes. The system of algebraic equation were relaxed
using the strong implicit procedure by Stone [41]. Convergence was monitored in
terms of the normalized residue for each variable. The maximum residue allowed
for convergence check was set to 10�6, being the variables normalized by appropri-
ate reference values. Constraints for turbulent flows in porous media are similar to
the clear channel flow.

For the high Reynolds model, damping functions fm, f2 in Eqs. (5) and (6)
take the null value, and the wall shear stress sw is calculated using the wall log-
law (Table 1) instead of having grid nodes inside the viscous-affected wall region
(Figure 3a). For the low Reynolds model, detailed computations are performed
close to the wall using more nodal points as the wall is approached, so that the
viscous sublayer and the buffer zone are resolved (Figure 3b).

NOVEL SEMI-IMPLICIT TREATMENT

Although it is recognized that the use of well established algorithms do not
characterize a novelty by itself, one should point our that the main idea here is
to propose a new treatment when solving the discretized diffusion terms rather
than optimizing known algorithms. Also, the work herein aims at increasing the
robustness of the numerical method without resorting to techniques that operate
simultaneously on more than one dependent variable, as is the case of block-
implicit methods [34–36]. Here, implicit handling of individual momentum equa-
tions is considered.

Figure 3. Computational grids of symmetric converging-diverging channel for 2a=k¼ 0.27. (a) High

Reynolds model (50� 22) and (b) low Reynolds model (50� 46).
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With the help of Figure 1, the following operators can be identified.

Dxeg ¼ ðxne � xseÞ; Dxen ¼ ðxE � xPÞ; Dyeg ¼ ðyne � yseÞ; Dyen ¼ ðyE � yPÞ ð12Þ
Dxnn ¼ ðxne � xnwÞ; Dxng ¼ ðxN � xPÞ; Dynn ¼ ðyne � ynwÞ; Dyng ¼ ðyN � xPÞ ð13Þ
Pe ¼ DyegDx

e
n � DyenDx

e
g

DUe
n ¼ ðUE �UPÞ; DUe

g ¼ ðUne �UseÞ ð14Þ
DVe

n ¼ ðVE � VPÞ; DVe
g ¼ ðVne � VseÞ ð15Þ

pea ¼ DyegðUE �UPÞ � DyenðUne �UseÞ ¼ DyegDU
e
n � DyenDU

e
g

peb ¼ DxenðUne �UseÞ � DxegðUE �UPÞ ¼ DxenDU
e
g � DxegDU

e
n

pec ¼ DyegðVE � VPÞ � DyenðVne � VseÞ ¼ DyegDV
e
n � DyenDV

e
g

ped ¼ DxenðVne � VseÞ � DxegðVE � VPÞ ¼ DxenDV
e
g � DxegDV

e
n ð16Þ

Further, the vector form of the area of the control-volume at east and north
faces, respectively, are given by

~AAe ¼ Dyeg~ii � Dxeg~jj ~AAn ¼ �Dynn~ii þ Dxnn~jj ð17Þ

Governing Equations

For a general dependent variable u a discrete form of Eqs. (1), (2), (4), and (5)
can be written as:

Ie þ Iw þ In þ Is ¼ Su ð18Þ

where Ie, Iw, In, and Is are the overall fluxes (convection plus diffusion) of u at the
east, west, north, and south control-volume faces, respectively, and Su is the corre-
sponding source term.

For the east face the total flux can be written for a general variable ~uu as

Ie ¼
Z
Ae

ð~nn �~uuÞdA � ð~nne �~uueÞAe ð19Þ

where Ae is the control-volume east face area,~nne is the unit vector normal to Ae, and
~uue is the average value of ~uu prevailing over Ae. Also, for coherence in the discretiza-
tion process, the continuity of fluxes at any interface implies that

ðIwÞP ¼ �ðIeÞW ðIsÞP ¼ �ðInÞS ð20Þ

The numerical treatment of convection and diffusion mechanisms is handled
separately. When Eq. (18) is written for the x-direction, the convective flux, ICx ,
has contributions from both faces east e and north n in the following way.

ICx
e � FeUe ICx

n � FnUn ð21Þ
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where

Fe ¼ q½UeDy
e
g � VeDx

e
g�

Fn ¼ q½VnDx
n
n �UnDy

n
n�

ð22Þ

The flux blended deferred correction scheme [37], indicated here as DCS, is
employed to perform nodal interpolation. In this scheme, interface quantities are
approximated as linear combination of central differencing scheme (CDS) and
upwind differencing scheme (UDS) values [33] according to

/DCS
face ¼ k/CDS

face þ ð1� kÞ/UDS
face ¼ /UDS

face þ k /CDS
face � /UDS

face

� �o ð23Þ

where the quantities with superscript o in parenthesis (last equality) are numerical
values from the previous iteration. The interpolation factor k may vary from 0 (pure
UDS) to 1 (pure CDS).

For the diffusive flux in the same x-direction, IDx , both faces are also
considered.

IDx
e � �ðs11~ii þ s12~jjÞe � ~AAe ð24Þ
IDx
n � �ðs11~ii þ s12~jjÞn � ~AAn ð25Þ

Here, in accordance with Eq. (9), the diffusion flux in each face for each direc-
tion can be split into linear and nonlinear parts as

IDx
e ¼ �ðs11~ii þ s12~jjÞLe � ~AAe � ðs11~ii þ s12~jjÞNL1

e � ~AAe

� ðs11~ii þ s12~jjÞNL2
e � ~AAe � ðs11~ii þ s12~jjÞNL3

e � ~AAe

ð26Þ

or

IDx
e ¼ IDx

e

� �Lþ IDx
e

� �NL1þ IDx
e

� �NL2þ IDx
e

� �NL3 ð27Þ

Likewise, for the north face,

IDx
n ¼ IDx

n

� �Lþ IDx
n

� �NL1þ IDx
n

� �NL2þ IDx
n

� �NL3 ð28Þ

Thus, a discrete form for Eq. (27) will be

IDx
e

� �L¼ � met
Pe

fDUe
n ½2ðDyegÞ

2 þ ðDxegÞ
2� � DUe

g½2DyenDyeg þ DxenDx
e
g� � pecDx

e
gg ð29Þ

IDx
e

� �NL1¼c1NLmet k

Peð Þ2e
�Dyeg

8

3
pea
� �2þ1

3
pebþpec
� �2�4

3
ped
� �2� �

þ2Dxeg peaþped
� �

pebþpec
� �� �
 �

ð30Þ

IDx
e

� �NL2¼ 2c2NL
met
Peð Þ2

k

e
�Dyeg ðpebÞ

2 � ðpecÞ
2

h i
þ Dxeg½ðped � peaÞðpeb � pecÞ�

n o
ð31Þ
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IDx
e

� �NL3¼ c3NL
met
Peð Þ2

k

e
�Dyeg

1

3
ðpeb � pecÞ

2

� �
 �
ð32Þ

where the velocity difference operators are defined by Eqs. (14) and (15). At north
face n the diffusive fluxes have an analogous form. For the y-momentum equation,
the diffusive fluxes at both east and north faces are also obtained in a similar fashion.

In the numerical treatment presented by references [38–40], as well as in the
majority of similar nonlinear calculations in the literature, the diffusion term was
totally explicit in the sense that all terms in Eq. (28) were accommodated into the source
term. In the present work, a different methodology is proposed, as shown below.

New Semi-Implicit Treatment for Diffusive Terms

It is a well known feature in the literature that increasing the degree of solution
implicitness the robustness of the relaxation process is enhanced [33]. Source term
linearization is a common practice among CFD practitioners and, at the end, intends
to increase the main diagonal dominance of the matrix of coefficients.

Accordingly, to improve numerical stability, the diffusive terms given by
Eqs. (29)–(32) are further rewritten as a combination of implicit and explicit parts
in the following form.

IDx
e

� �L¼ �DUe
n Dx;y

e

� �Lþ S�x
e

� �L ð33Þ

IDx
e

� �NL1¼ DUe
n Dx;y

e

� �NL1þ S�x
e

� �NL1 ð34Þ

IDx
e

� �NL2¼ DUe
n Dx;y

e

� �NL2þ S�x
e

� �NL2 ð35Þ

IDx
e

� �NL3¼ DUe
n Dx;y

e

� �NL3þ S�x
e

� �NL3 ð36Þ

where the velocity difference operator, DUe
n , is defined in Eq. (14). Equations (33)–

(36) are written for the x-component diffusion flux of the east face of Figure 1 and
basically represent the main idea on source linearization discussed in reference [33].
Similar expressions can be written for all other faces and for the y-component of the
diffusion flux. It is interesting to emphasize that even for a standard linear model,
source term linearization given by reference (33) applies.

The first term on the right hand side of Eqs. (33)–(36) is the term treated
implicitly and the second one that it handled in as explicit form. The coefficient
Dx;y

e is the same for both equations in x and y components and is given by

Dx;y
e ¼ Dx;y

e

� �Lþ Dx;y
e

� �NL1þ Dx;y
e

� �NL2þ Dx;y
e

� �NL3 ð37Þ

where

Dx;y
e

� �L¼ ðmþ met Þ
Pe

ðDyegÞ
2 þ ðDxegÞ

2
h i

ð38Þ

310 M. ASSATO AND M. J. S. de LEMOS

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
d
e
 
L
e
m
o
s
,
 
M
a
r
c
e
l
o
 
J
.
 
S
.
]
 
A
t
:
 
1
9
:
1
5
 
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Dx;y
e

� �NL1¼ c1NL
met
Peð Þ2

k

e
�2ðDyegÞ

2pea þ 2Dxeg
4

3
Dyegðpeb þ pecÞ � Dxegp

e
d

� �
 �
ð39Þ

Dx;y
e

� �NL2¼ 2c2NL
met
Peð Þ2

k

e
fDxegDyeg½DxenDUe

g � DyenDV
e
g�g ð40Þ

Dx;y
e

� �NL3¼ c3NL
met
Peð Þ2

k

e
fDxegDyeg½ðpeb þ pecÞ�g ð41Þ

where DVe
n and DVe

g are given in Eq. (15).
As mentioned, by means of Eqs. (33)–(36), enhancement of matrix main

diagonal dominance is achieved, contributing to the robustness of the entire
numerical relaxation scheme.

The parts treated explicitly S�x
e make use of velocity values at grid points

calculated in the previous iteration. For the east face and x-direction one has.

ðS�x
e ÞL ¼ �ðmþ mtÞe

Pe
ðDUe

nÞ
�ðDyenÞ

2 � ðDUe
gÞ

� 2DyenDy
e
g þ DxenDx

e
g

h i
� pecDx

e
g

n o
ð42Þ

S�x
e

� �NL1¼�2c1NLmet k

Peð Þ2e

Dyeg
1
3 pea
� �2þ DUe

g

� o
�Dyenp

e
aþDxen

1
3p

e
cþ1

6Dx
e
n DUe

g

� o� � 
�2

3 ped
� �2þ1

6 pec
� �2h i

�Dxeg
1
6Dx

e
g DUe

n

� o
peaþ DUe

g

� o
Dxenp

e
d�Dyen pecþ7

6p
e
b�1

6Dx
e
n DUe

g

� o� � 
þpecp

e
d

h i
8><
>:

9>=
>;

ð43Þ

S�x
e

� �NL2¼ � 2c2NLmet k

Peð Þ2e

Dyeg Dxen

� 2
DUe

g

� o� 2
� pec
� �2� �

� Dxeg
Dyeg

� 2
DUe

n

� o
DVe

n

� o
þ

peb � pec
� �

Dyen DUe
g

� o� 
þ ped

2
64

3
75

8><
>:

9>=
>;

ð44Þ

S�x
e

� �NL3¼ c3NLmet k

Peð Þ2e

�
Dyeg
3

Dxeg peb þ 3pec � Dxeg DUe
n

� o� 
DUe

n

� o
�2pebp

e
c þ pec

� �2
þ Dxen

� 2
DUe

g

� o� 2
2
64

3
75

8><
>:

9>=
>;

ð45Þ

As before, the superscript o of velocity differences indicates that the values are
taken from the previous iteration. Here, splitting Eqs. (33)–(36) using coefficients
(37)–(41) and explicit terms (42)–(45) represents a new proposal that, to the best
of the authors’ knowledge, is not found in the open literature.
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Final Form of Discretized Momentum Equation

After all fluxes and source terms are incorporated in to the momentum equa-
tion, the algebraic equivalent of Eqs. (2), (4), and (5) is finally assembled. Variables
at faces (e, w, n, s) and corners (ne, nw, se, sw) are interpolated forming an equation
connecting the variable at P with the its neighbor points (see Figure 1). Using
expression (23) for interpolation the face values with UDS and CDS formulation,
the final form can be written as

aUDS
P /P ¼

X
nb

aUDS
nb /nb þ S�

/ þ k
X
nb

aCDS
nb /nb � aUDS

P /P

 !o

;

where / ¼ U ;V and nb ¼ E;W ;N;S

ð46Þ

Coefficients aP and anb contain variables in the faces of the control volume
obtained by interpolation of their respective nodal points values. For the east face,
the coefficient reads

aUDS
E ¼ Dx;y

e þmaxð�Fe; 0Þ ð47Þ

aCDS
E ¼ �maxð�Fe; 0Þ � Fefx;P ð48Þ

where Dx;y
e is calculated by means of Eq. (37), Fe is given by Eq. (22), and f is a

interpolation factor defined by (see Figure 1 for details)

fx;P ¼ xe � xP
xE � xP

ð49Þ

The source term S�
U in the x-momentum equation can be assembled as

S�
U ¼ S�x

e � S�x
w þ S�x

n � S�x
s

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Explicit part of linear term

þ S�x
e � S�x

w þ S�x
n � S�x

s

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Explicit part of 1st. nonlinear term

þ S�x
e � S�x

w þ S�x
n � S�x

s

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Explicit part of 2nd. nonlinear term

þ S�x
e � S�x

w þ S�x
n � S�x

s

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Explicit part of 3rd. nonlinear term

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
These terms are null for standard linear models

þ SPx

z}|{Pressure term

ð50Þ

where expressions similar to Eqs. (42)–(45) are used at the four control volume faces.

Sensitivity Analysis

Before presenting the numerical results themselves, a discussion on the sensi-
tivity of the discretized terms seems timely. It is important to emphasize that coeffi-
cients Dx;y

e

� �NL1
, Dx;y

e

� �NL2
, and Dx;y

e

� �NL3
, given by Eqs. (39)–(41), respectively, have

different numerical values on each control volume and depend on geometric
distances, within the grid, as well as on the surrounding velocity values. As such, they
can be greater or less that zero. On the other hand, the linear coefficient given by
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Eq. (38), Dx;y
e

� �L
, is composed by positive quantities only. Consequently, for positive

nonlinear coefficients Dx;y
e

� �NL1
, Dx;y

e

� �NL2
, and Dx;y

e

� �NL3
the advantages of the

implicit treatment here proposed are not be as evident since numerical instabilities
might occur during the relaxation process [33]. To make this idea clear, remember
that the overall flux I was defined on the left-hand side of Eq. (18), and when
transposed to the right for a source-like view, it is written as

� IDx
e

� �Lzfflfflfflfflffl}|fflfflfflfflffl{Source-like term

¼ DUe
n|ffl{zffl}

UE�UP

Dx;y
e

� �Lzfflfflfflffl}|fflfflfflffl{always positive

� S�x
e

� �L|fflfflfflfflffl{zfflfflfflfflffl}
Explixit term

ð51Þ

Likewise, when Eq. (34) is written on the right of Eq. (18), one has

� IDx
e

� �NL1¼ �DUe
n|fflfflffl{zfflfflffl}

UP�UE

Dx;y
e

� �NL1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{Less than ‘‘0’’ for stability

� S�x
e

� �NL1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Explicit term

ð52Þ

A similar argument can be used for expressions (35) and (36) involving Dx;y
e

� �NL2
and

Dx;y
e

� �NL3
, respectively.

Therefore, whenever positive values are detected in each control volume for
Dx;y

e

� �NL1
, the diffusive flux in question is handled back in an explicit form. In this

case, Eq. (34) is replaced by

IDx
e

� �NL1¼ �DUe
n � Dx;y

e

� �NL1
; 0

��� ���þ DUe
n

� o
Dx;y

e

� �NL1
; 0

��� ���þ S�x
e

� �NL1 ð53Þ

Similar expressions hold for the second and third nonlinear terms. With all
the contributions due to diffusion properly accounted for in the D’s coefficients
(see Eq. (37)), in light of the restrictions imposed by Eq. (53), the coefficient aE in
Eq. (47) is calculated.

The modifications above due to Eq. (53) affect the way the velocity at the
volume faces are calculated when applying the SIMPLE algorithm [33]. In this
method, the basic idea is to solve a pressure correction equation derived from
the momentum and continuity equations. It can be shown that the resulting pressure
correction equation is [33],

aPP
0
P ¼ aWP0

P þ aEP
0
P þ aSP

0
P þ aNP

0
P � Sm ð54Þ

where the primes indicate corrections and Sm is known as the mass imbalance. Face
velocities, interpolated from values at main nodes, are used to compute Sm in
Eq. (54). Therefore, the way the non-linear diffusion term is handled in Eq. (53)
will influence computations of this mass source via the momentum equations. This
influence, however, tends to decrease as the solution approaches convergence since
both sides of Eq. (54) tend to zero.

TURBULENT FLOW IN WAVY CHANNELS 313

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
d
e
 
L
e
m
o
s
,
 
M
a
r
c
e
l
o
 
J
.
 
S
.
]
 
A
t
:
 
1
9
:
1
5
 
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Also, it is important to emphasize that for Cartesian grids, with g¼ x and w¼ y,
or meshes with a high degree of orthogonality, the geometric distances Dxeg is null or
nearly zero, respectively. This term appears in the formulae for the coefficients
Dx;y

e

� �NL1
, Dx;y

e

� �NL2
, and Dx;y

e

� �NL3
, Eqs. (39)–(41), respectively. If Dxeg � 0, only

the first term in Eq. (39), if positive, will contribute to the main coefficient in Eq. (46).
Therefore, for an orthogonal or quasi-orthogonal grid, Eqs. (39)–(41) become

Dx;y
e

� �NL1� c1NL
met k

Peð Þ2e
�2 Dyeg

� 2DUe
n

Dxen

( )
; Dx;y

e

� �NL2� 0; Dx;y
e

� �NL3� 0 ð55Þ

RESULTS AND DISCUSSION

The geometries analyzed are shown in Figure 2. The geometrical parameters
are the channel height, Hmax¼ 10.16 cm, the channel wavelength, k¼ 6.667 cm,
and aspect ratio 2a=k¼ 0.27, where a represents the wave amplitude. The results
presented in this section were obtained using a total of four different models. The
following turbulence closures were applied: the linear and nonlinear k-e models
using the high Reynolds approach, designated here by L HRN and NL HRN,
respectively, and the same models applying the low Reynolds approximation,
named, respectively, by L LRN and NL LRN. The nonlinear model employed
was the Shih et al. [25] closure. Also, validation of results here presented is done
by comparing simulations with experiments by Habib et al. [14] and Saniei and Dini
[18]. Inaccuracies of numerical simulations are then better accessed and evaluated
when presenting computations along with laboratory measurements of references
[14, 18]. To the best of the authors’ knowledge, the numerical results herein are con-
sidered to be validated and the computer code checked against possible program-
ming errors.

Figures 3 and 4 show the geometries given above and computational grids
when using the high and low Reynolds number formulations, respectively. Grid inde-
pendency studies were carried out in order to assure that calculated flow properties
and integral parameters were not affected by the grid size. Due to lack of space, these
results are not presented here. Instead, comparisons with experimental data, as
shown next, give a view of the accuracy of the results. Roughly, doubling the grid
in both direction changes the pressure loss across one section of length k¼ 6.667 cm
cm by less than 4%. Grids of sizes given in Figures 4 were then assumed to suffice for
evaluating the implicit procedure here proposed.

Comparisons for the pressure drop along one section of the duct with length
k¼ 6.667 cm of the symmetric converging-diverging channel considering the present
calculations and the experimental data by Saniei and Dini [18] are shown in Table 2.
When simulations are compared to experiments, it can be noticed that smaller devia-
tions appear when using the low Reynolds number formulation. Further, it is also
seem that best predictions are obtained by the NL LRN model using the constitutive
Eq. (8) instead of Eq. (7). In this work, calculations were performed only for
Reynolds number based on hydraulic diameter of Re¼ 40000 so that conclusions
drawn herein may not be valid for a large range of Re. The reason for liming the
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Reynolds number is two-fold: to match experimental conditions used by Habib et al.
[14], and due to the fact that the main motive of this work is to observe how the pro-
posed implicitness of turbulent diffusion terms, which are calculated with four differ-
ent models, affects the robustness of the solution. Each one of these models can be
sensitive to a wide range of parameters, particularly the Reynolds number and chan-
nel dimensions. Sensitivity on Re and=or channel geometry, however, were not the
object of this study and shall be the target in future investigations. Here, the pro-
posed implicit treatment is studied in light of the turbulence model applied.

Figure 5 shows the mean velocity field U=Uavg in several stations along
the converging-diverging channel compared with experiments of Habib et al. [14].

Figure 4. Computational grids of channel with concave-convex walls for 2a=k¼ 0.27. (a) High Reynolds

model (50� 28) and (b) low Reynolds model (50� 58).

Table 2. Pressure drop for a section of length k in periodically

symmetric converging-diverging channel

Results

Pressure drop

DP [N=m2] Deviations [%]

Saniei and Dini [18] 12.5 —

L HRN 9.824 �21.4

NL HRN 10.016 �19.87

L LRN 11.243 �10.06

NL LRN 13.553 8.42
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All models present small differences among their results, except in first (x=k¼ 0) and
last station (x=k¼ 1). These specific positions correspond to the throat at entrance
and exit of the periodic section. Due to the periodic boundary conditions here
employed, the numerical solution give, as expected, the same calculated values.
Included in Figure 5 are the results obtained numerically by Habib et al. [14], which
are closer to the ones given by the NL LRN model. Interesting to note is that mea-
surements at x=k¼ 0 do not perfectly match those at x=k¼ 1, possibly indicating
that the flow is still under development or suffering some sort of instability.

Figure 5. Normalized axial velocity profiles.
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Figures 6 and 7 show, respectively, dimensionless axial velocity and turbulent
kinetic energy distributions, for the symmetric converging-diverging channel, using
the four turbulence models seen before. It can be noticed that bigger deviations
among the results occur when changing the wall treatment from high to the low
Reynolds number approach, and not so much for the use of more elaborated
stress-strain relationships. By that, one mean that when results for HRNs
(Figures 6a, 6b, 7a, and 7b) are compared with those for LRNs (Figures 6c, 6d,
7c, and 7d), differences are greater than when solutions are compared for the same
model class (HRN or LRN) and different type of stress-stain relation (linear or
nonlinear). The difference between HRN and LRN models lies in the use of dis-
tinct damping functions fm, f2 in Eqs. (5) and (6), and the use of different formulae
for the wall shear stress sw (see Table 1 for comparison). Consequently, the number
of grid points close to the wall will differ substantially whether one is bypassing the
wall viscous layer (Figures 3a and 4a), or else one is computing the fine flow by
clustering computational nodes inside the wall viscous region (Figures 3b and 4b).
On the other hand, the use of linear or nonlinear expressions for st, Eqs. (7) and
(8), respectively, will not affect the solution as much as the wall treatment does
(HRN or LRN). This can be clearly seen when comparing the flow pattern in
Figures 6a and 6b for HRN (or Figures 6c and 6d for LRN), with Figures 6a

Figure 6. Dimensionless velocity distribution U for the symmetric converging-diverging channel.

(a) L HRN; (b) NL HRN; (c) L LRN; and (d) NL LRN.
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and 6c for linear models (or with Figures 6b and 6d for nonlinear models). There-
fore, the way the wall region is handled, using either a wall-log law (HRN) or a
fine grid close to the wall (LRN), affects the results to a greater extent than com-
puting the flow using distinct models for st , Eqs. (7) or (8). In fact, for internal
flows the location of the first grid node close to the wall greatly affects the solu-
tions when the HRN is applied [42]. This is because this first nodal point has to
located outside the viscous sublayer, in the fully turbulent region, so that the
use of a wall law is applicable. Therefore, when using HRN with accelerating
and decelerating flows in the periodic channels of Figure 2, such effect might be
even more pronounced since the boundary layers is enlarged in decelerating flows
and compressed when the flow is pushed towards the wall. As such, control over
the first grid point location seems to be more involving when HRN is applied in
ducts with accelerating=decelerating flows. The same behavior is observed for the
channel with concave-convex walls shown in Figures 8 and 9.

An evaluation on residue histories seems timely for identifying under which
circumstances the explicit treatment here proposed give some advantage on the over-
all solution process. To this end, Figure 10 shows residue history for U along the
solution relaxation process, for the symmetric converging-diverging channel, using

Figure 7. Dimensionless k distribution for the symmetric converging-diverging channel. (a) L HRN; (b)

NL HRN; (c) L LRN; and (d) NL LRN.
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the NL HRN and NL LRN models. In the figure, calculations using the semi-
implicit approach of Eqs. (34)–(36) were employed in addition to having all non-
linear diffusive terms being treated in an explicit form. For this case, convergence
is easily achieved regardless of the method used and the semi-implicit technique
did not benefit the overall stability of the solution. Although not shown in
Figure 10, the explicit formulation converged at a rate similar to the one obtained
with the semi-implicit approach. Also interesting to note is the much higher com-
puter effort is demanding when using Low Reynolds model. Nearly ten times as
much iterations are necessary to bring down residues at the same levels as those in
Figure 10a. Overall, Figure 10 has the purpose of showing that not all cases require
a high degree of implicitness is necessary for convergence to be achieved.

Finally, Figure 11 shows residue histories for the solution of the flow in the
concave-convex wall channel of Figure 2b using both the NL HRN and NL LRN
models. Great difficulty was observed for this particular geometry and a large num-
ber of iterative cycles were necessary for the turbulent flow to achieve the fully

Figure 8. Dimensionless velocity distribution U for the channel with concave-convex walls. (a) L HRN;

(b) NL HRN; (c) L LRN; and (d) NL LRN.

Figure 9. Dimensionless k distribution for the channel with concave-convex walls. (a) L HRN;

(b) NL HRN; (c) L LRN; and (d) NL LRN.
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developed condition. As can be seem in Figure 11a, the use of the high Reynolds
model along with the semi-implicit treatment caused the solution to converge,
whereas employment of the explicit approach yielded unstable and diverging
solutions (note line with open circles for RU after only a few iterations). Applying
further the low Reynolds model to the same geometry, both the explicit method
(not shown in Figure 11b) and the implicit treatment converged at a same rate. When
looking at all results so far, one can speculate about an intricate interplay of the dis-
tinct solution characteristics, such as the sophistication of the turbulence model, and

Figure 10. Residue for velocity U. Case symmetric converging-diverging channel. Semi-implicit treatment.

(a) NL HRN and (b) NL LRN.

Figure 11. Residue for velocity U for the channel with concave-convex walls. (a) NL HRN – Fully explicit

versus semi-implicit treatment and (b) NL LRN – semi-implicit treatment.
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the degree of implicitness of the discretization equation and the geometry of the
flow. One can say that, when using cheaper and less involving HRNs, a higher degree
of implicitness might be necessary in order to obtain stable solutions. Figure 11, in
the end, shows that a higher degree of implicitness might be mandatory to achieve
convergence in certain situations, as in the cases of concave-convex channels
computed with HRN closures.

CONCLUSION

In this work, the performance of four turbulence models was investigated.
The analysis was conducted to predict the turbulent flow field at Reynolds number
of 40,000 in two periodically sinusoidal-wave channels. The low Reynolds number
formulation utilized in the linear and nonlinear k-e models presented better agree-
ment (for pressure drop) with the experimental data by Saniei and Dini [18], as
shown in Table 2. The smallest deviations were obtained with NL LRN model.

An analysis of residue for the velocity component U along the solution relax-
ation process was done. It has been observed that for the symmetric converging-
diverging channel, the semi-implicit treatment of nonlinear diffusive terms did not
benefit the stability characteristics of the solution in relation to the fully explicit
treatment when using either the high or the low Reynolds formulation. Both treat-
ments converged at the same rate. For the second geometry investigated, namely
the concave-convex wall channel of Figure 2b, great difficulty was experimented
when pursuing the numerical solutions by means of the nonlinear model. Results
indicate that when the high Reynolds wall-treatment is employed, the only way to
get a converged solution is to apply the implicit technique here described, which
constitutes an advantage of the method herein proposed. For the low Re model,
either the explicit or the semi-implicit discretization techniques provided converged
solutions with similar rates of convergence.

Ultimately, this work has shown that many factors affect the accuracy and
stability of the solution, namely the sophistication of the turbulence model, the
degree of implicitness of the solution procedure and the domain geometry, among
possible other factors. Further, the semi-implicit approach here proposed has
shown to be advantageous in situations were a fully explicit treatment of the dif-
fusive term was inadequate for solution stability. Finally, results herein indicate
that for certain classes of flows, appropriate models and discretization techniques
may suffice, whereas for flows with strong pressure variation along the flow, such
as the one in Figure 2b, strong flow deceleration and posterior acceleration may
require care when selecting a proper discretization technique for solutions stability
and convergence. Therefore, the semi-implicit method here proposed represents an
alternative path to numerical analysts when engaged in solving turbulent flows of
hard convergence characteristics.

In essence, the main contribution of this work was to show that by implicitly
treating sources and diffusion fluxes, solutions using nonlinear models and high
Reynolds wall treatment are more stable and easier to be obtained, even with coarser
grids and greater relaxation parameters. Ultimately, the technique described here
contributes to the always desirable combination of accuracy and economy of
numerical solutions of turbulent flows.
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