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SUMMARY

Non-linear turbulence models can be seen as an improvement of the classical eddy-viscosity concept due
to their better capacity to simulate characteristics of important flows. However, application of non-linear
models demand robustness of the numerical method applied, requiring a stable discretization scheme for
convergence of all variables involved. Usually, non-linear terms are handled in an explicit manner leading to
possible numerical instabilities. Thus, the present work shows the steps taken to adapt a general non-linear
constitutive equation using a new semi-implicit numerical treatment for the non-linear diffusion terms.
The objective is to increase the degree of implicitness of the solution algorithm to enhance convergence
characteristics. Flow over a backward-facing step was computed using the control volume method applied
to a boundary-fitted coordinate system. The SIMPLE algorithm was used to relax the algebraic equations.
Classical wall function and a low Reynolds number model were employed to describe the flow near
the wall. The results showed that for certain combination of relaxation parameters, the semi-implicit
treatment proposed here was the sole successful treatment in order to achieve solution convergence. Also,
application of the implicit method described here shows that the stability of the solution either increases
(high Reynolds with non-orthogonal mesh) or preserves the same (low Reynolds number applications).
Additional advantages of the procedure proposed here lie in the possibility of testing different non-linear
expressions if one considers the enhanced robustness and stability obtained for the entire numerical
algorithm. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well established in the literature that eddy-viscosity turbulence models (EVMs) do not, on the
whole, cope well with strong streamline curvature whether it arises from flow over curved surfaces
or imparted swirling [1]. Yet, turbulence-driven secondary motion and directional effects due to
buoyancy cannot, due to the absence of information about individual stresses, be fully simulated
with EVMs. In spite of that, they are often used in engineering computations due to the numerical
robustness obtained via its linear stress–strain rate relationship [2]. This diffusion-like approach
makes the numerical solution stable, with the model easily adaptable to existing computer code
architectures. Another route to follow is the solution of transport equations for the individual
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Aeronáutica—ITA, 12228-900 São José dos Campos, SP, Brazil.
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turbulent stresses. Such Reynolds Stress Models (RSMs), [3] are not based on a turbulent stress–
mean strain rate relationship. Thus, the connection between mean and turbulent fields is somewhat
‘loose’ in the sense that turbulence is also associated with mechanisms of convection and diffusion,
in its own transport equation set, rather than the simpler diffusion term plugged into the mean flow
equation.

Models involving other types of constitutive equations have been lately developed with the
perspective of applying Computational Fluid Dynamics (CFD) to complex flows. These techniques
aim, at a wider range of applicability, similar to that of RSMs, while keeping computational costs
down to EVM cost levels. Theories employing other type of representation of individual Reynolds
stresses/fluxes, including addition of non-linear terms to the basic constitutive equation, try to
capture the sensitivity to flow curvatures and buoyancy, a feature missing in basic EVMs.

Developments in this area can be roughly classified into two major groups. The first comes
from the direct modelling of the Reynolds Averaged Navier–Stokes (RANS) equations with some
approximation for the net transport of the stresses ([Convection]−[Diffusion]). In that, algebraic,
instead of transport equations, are devised to predict individual stresses. These algebraic relations
can be either of an implicit characteristic leading to the so-called Algebraic Stress Model (ASM),
[4–6] or else, involve approximations yielding to an explicit expression for −�u′

i u
′
j [7]. In both

cases, the algebraic formulae are a direct consequence of the RANS equations.
The other major approach is usually of an ad hoc nature and basically follows the procedures

used in obtaining constitutive equations for the laminar flow of non-Newtonian fluids [8]. An
example is the work of Speziale [9]. Essentially, the observed relationship between the laminar flow
of viscoelastic fluids and the turbulent flow of Newtonian substances has motivated developments
in such direction [10]. The basic advantage of this approach over the former lies on the achieved
computational savings when compared with ASMs (roughly 25–50% less computing time).

To the best of the authors’ knowledge, most of the published work on non-linear models
[9, 11–14] are either written for the Cartesian coordinates and/or treat additional non-linear terms in
a fully explicit manner. The recent literature has recognized the difficulty in obtaining convergence
when running non-linear models in complex flows. The work of Bauer et al. [15] concludes that
the convergence is only obtained after a ‘quasi-linear’ truncation of non-linear terms. Further,
Abid et al. [16] and Rahman et al. [17] also reported difficulties when applying the non-linear
model of Gatski and Speziale [14]. Therefore, engineering applications of non-linear models can
benefit from the development of numerical artifices to enhance solution stability and robustness.
Ultimately, solving complex flows on non-orthogonal grids using advanced non-linear models is
not an easy job. Frequently, calculations require severe under relaxation and the implementation
of convergence acceleration schemes.

Based on this demand, this work presents the steps taken to adapt a non-linear model into a
generalized coordinate system, where a new numerical treatment is proposed to handle a general
non-linear constitutive equation into a boundary-fitted computer code. The numerical methodology
proposed here contributes to the robustness of the solution method and increases the applicability of
such non-linear models to numerical grids, fully complacent with irregular computational domains.
In addition, two methods are used to describe the flow near the wall, namely the classical wall
function approach and a low Reynolds number model. The results for backward-facing step problem
are shown.

Here, transport equations are first presented followed by a description of non-linear models.
Details of the numerical method employed are shown prior to the description of the implicit
numerical procedure.

2. TRANSPORT EQUATIONS

In this work, the equations to follow are based on the use of statistical tools, like time-averaging,
in order to obtain the so-called RANS equations. Thus, the general equations describing the flow

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld



A NUMERICAL TREATMENT FOR NON-LINEAR TURBULENCE MODELS 1477

Table I. Transport coefficients and source terms.

� k ε

��
�t
�k

�t
�ε

S� Pk−�ε ε
k (c1Pk −c2 f2�ε)

where Pk =�tij
�Ui
�x j

, �t =�c� f�
k2
ε

of fluids can be written in the following form:

Mass : div(� �v)=0, (1)

Momentum : div(� �vUi −�ti )=sui . (2)

Additional transport equation for scalar transport reads:

Scalar : div(� �v�− �q�)=s�, (3)

where �v is the time-mean velocity vector, �ti in Equation (2) contains the stresses acting in the
i-direction and sui represents all source terms given by:

�ti =�ij ·�i j , (4)

sui =−�P
�xi

, P= p+�gh+ 2

3
�k. (5)

In Equation (3), � represents a scalar quantity, �q� is its diffusive flux and s� the source or sink
of �. The two scalars of concern in this work are the turbulent kinetic energy k and its dissipation
rate ε. The general expression for �q� is given as:

�q� =�� grad�= �t
��

(
��

�y j
�i j
)

, (6)

where �� is a constant and y j are the Cartesian coordinates. The transport coefficient, ��, and
the sources terms, s�, for the k−ε equations are expressed in Table I. The symbols Pk and �t , in
Table I, represent the turbulence kinetic energy production rate and the eddy viscosity, respectively.

The total pressure P in (5) also involves a term containing the turbulent kinetic energy k=u′
i u

′
i/2,

where u′
i is the fluctuating part of the instantaneous velocity in the i-direction and h is the height in

the definition of hydrostatic pressure. Although the use of (5) is not mandatory for the computation
of pressure field with iterative processes, such proposition makes the stress–strain relationship
much simpler, similar to that of handling Newtonian fluids in laminar flows. The stress, �ij, in
Equation (4) represents the sum of the Reynolds stress, �tij, plus the viscous stress ��

ij=�Sij, where
the deformation tensor is given by

Sij=
(

�Ui

�x j
+ �Uj

�xi

)
, (7)

where Ui and Ui are the velocity components in the i and j directions, respectively. Different
constitutive equations for �tij for turbulent flow will be discussed later and they shall be classified
basically in Linear and Non-Linear relationships.

In the present work, both high and low Reynolds number models are compared with each other.
High Reynolds number model is an approach that considers the use of wall functions for bypassing
the viscous regions close to the walls. On the other hand, low Reynolds number models compute
the flow within the viscous region. Their basic difference lies in the distinct form of the damping
functions f� and f2 which are referred in Table I and defined in Table II. These functions and a
slightly different set of constants are used in conjunction with the k-ε equations. The two sets of
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Table II. Damping functions and constants for high and low Reynolds models.

High Reynolds model proposed by Low Reynolds model proposed by
Launder and Spalding [18] Abe et al. [19]

f� 1.0
{
1−exp

[
− (�ε)0.25n

14�

]}2{
1+ 5

(k2/�ε)0.75
exp

[
−
(

(k2/�ε)
200

)2]}

f2 1.0
{
1−exp

[
− (�ε)0.25n

3.1�

]}2{
1−0.3exp

[
−
(

(k2/�ε)
6.5

)2]}
�k 1.0 1.4
�ε 1.33 1.3
c1 1.44 1.5
c2 1.92 1.9

�w
uP�c

1
4
� �k

1
2
P

ln

(
E�c

1
4
� k

1
2
P yP

�

) � �u
�y

constants employed here are also presented in Table II and encompass the two forms of turbulence
models considered here.

While calculating the wall shear stress with the high Reynolds method [18], E , a parameter
shown in Table II, may vary to simulate the surface roughness. Also, in Table II the von Kármán
constant has the value �=0.41. Subscript P refers to the node next to the wall. Thus uP and kP
are, respectively, the value of the velocity and turbulent kinetic energy in this point, and yP is
the normal distance to the wall. The symbol n in the low Reynolds number model represents the
normal coordinate to the wall.

3. NON-LINEAR EDDY-VISCOSITY MODELS

The so-called Boussinesq approximation for the linear stress–strain rate relationship is written in
its general form as

�tij=�t Sij+ 2
3�	ijk. (8)

As mentioned before, the last term in (8) was compacted into an expression for the total pressure
P given in Equation (5). Here, the advantages in the composition of P in (5) is seen, since a much
simpler stress–strain relationship is obtained not only for the laminar flow but also for turbulent
regime.

Non-linear eddy-viscosity models originated in a general proposal was done by Pope [20].
However, only in the past two decades such models had greater progress, particularly with the
works of Speziale [9], Nisizima and Yoshizawa [11], Rubinstein and Barton [12], Shih et al. [13],
among others. In these works, quadratic products were introduced involving the strain and vorticity
tensors with different derivations and calibrations for each model. These quadratic forms produce
a certain anisotropy degree among the normal tensions, which make possible to predict, among
other processes, the presence of secondary motion in non-circular ducts.

A general non-linear expression for the Reynolds stress, kept to second order, can be written as:

�tij = −(�t Sij)
L+

(
c1NL�t

k

ε

[
Si m Sm j − 1

3
Sm l Sm l	i j

])NL1

+
(
c2NL�t

k

ε
[�i m Sm j +� j m Sm i ]

)NL2

+
(
c3NL�t

k

ε

[
�i m� j m− 1

3
�l m�l m	i j

])NL3

, (9)

�tij=�Lij+�NL1ij +�NL2ij +�NL3ij , (10)
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Table III. Constants and expressions for non-linear turbulence models.

Models c� c1NL c2NL c3NL Extra term

Nisizima and Yoshizawa [11] 0.09 −0.76 0.18 1.04
Speziale [9] 0.09 −0.1512 0.0 0.0 TSPE
Rubinstein and Barton [12] 0.0845 0.68 0.14 −0.56

Shih et al. [13] 2/3
1.25+s+0.9�

0.75
c�(1000+s3)

3.8
c�(1000+s3)

4.8
c�(1000+s3)

Park and Sung [21] 0.09 0.6 0.4 0.005

TSPE=−0.3024�t k/ε{S̃ij− 1
3 S̃mm	i j }, where S̃ij= �Sij

�t + �V ·Sij− �Vi
�xk

Sk j− �Vj
�xk

Ski ,s= k
ε

√
1
2 SijSij,�= k

ε

√
1
2�ij�ij.

where 	ij is the delta Kronecker; the superscripts in Equation (9) indicate Linear and Non-Linear
contributions, Sij is the deformation tensor given by (7) and �ij represents the vorticity tensor
written as:

�ij=
(

�Ui

�x j
− �Uj

�xi

)
. (11)

Equations (9) and (10) already assume that the term 2/3�	ijk is combined into the total pressure P
shown in (5). The different values of c�, c1NL, c2NL and c3NL, proposed in the literature are shown
in Table III. In most of the models their values remain constant, except in the model proposed
by Shih et al. [13], where they vary spatially within the flow. The theory of Speziale [9], has an
origin different from the others. In his development, Speziale [9], based his model on a similarity
between the mean turbulent flow of a Newtonian fluid and the laminar flow of a viscoelastic fluid.

Combining the quadratic terms in Equation (9), one has further:

(�ij)
NL1=c1NL�t

k

ε

[
Aij+Bij+Cij+Dij− 1

3
	ijElm

]
, (12)

(�ij)
NL2=2c2NL�t

k

ε
[Bij−Cij], (13)

(�ij)
NL3=c3NL�t

k

ε

[
−Aij+Bij+Cij−Dij− 1

3
	ijFlm

]
, (14)

which, expanded in their general two-dimensional form (l=1,2 and m=1,2), becomes,

Aij = �Ui

�xm

�Um

�x j
or Aij= �Ui

�x1

�U1

�x j
+ �Ui

�x2

�U2

�x j
for m=1,2,

Bij = �Ui

�xm

�Uj

�xm
or Bij= �Ui

�x1

�Uj

�x1
+ �Ui

�x2

�Uj

�x2
for m=1,2,

Cij = �Um

�xi

�Um

�x j
or Cij= �U1

�xi

�U1

�x j
+ �U2

�xi

�U2

�x j
for m=1,2,

Dij = �Um

�xi

�Uj

�xm
or Dij= �U1

�xi

�Uj

�x1
+ �U2

�xi

�Uj

�x2
for m=1,2,

Eml =
(

�Um

�xl
+ �Ul

�xm

)2

or Eml=4

(
�U1

�x1

)2

+4

(
�U2

�x2

)2

+2

(
�U1

�x2
+ �U2

�x1

)2

for l=1,2 and m=1,2,

Flm =
(

�Um

�xl
− �Ul

�xm

)2

or Fij=2

(
�U1

�x2
− �U2

�x1

)2

for l=1,2 and m=1,2.

(15)
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Note that in Equation (7) Ui and Ui are the instantaneous velocity components in the general
i and j directions, respectively, whereas in Equation (15) is considered only the time-averaged
two-dimensional flows characterized by the Cartesian x (or 1) and y (or 2) components.

The development to follow is restricted to two dimensions because the testing cases presented
are all relative to two-dimensional flows. In fact, for didactic purposes, the use of simpler two-
dimensional derivations make it easier to convey to readers the ideas embodied in the novel
numerical treatment presented here. Extension to full 3D discretization is naturally possible, but
such development is not the objective of the present contribution. Turbulence is a recognized
transient three-dimensional phenomenon, but here it is simulated with statistical tools and with the
consideration of a two-dimensional geometry only. Thus, the flows considered below are those in
which variables do not substantially vary in the third direction relatively to their variation along
the first two coordinate axes.

4. NUMERICAL METHOD

4.1. Grid notation and transformation of coordinates

The numerical method employed for discretizing the governing equations is the control volume
approach with a collocated grid. Figure 1 shows a typical control volume with the detailed notation,
including the distances and indexing used when transforming the original equations into the 
−�
coordinate system. The discretization methodology presented here has also been used in a previous
work and has proved to be highly stable and robust [22].

For the sake of clarity and completeness, the derivations to follow are kept in the running text,
instead of in the appendices, as in essence, they are the key information in the paper. Further,
although the Finite volume method is a well-known and documented method, in most textbooks it is

Figure 1. Control volume and notation.
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presented for orthogonal coordinate systems, which differs from the coordinate system considered
here. Thus, with the help of Figure 1, the following operators can be identified:

�xe
 =(xne−xse), �xe� =(xE −xP), �ye
 =(yne− yse), �ye� =(yE − yP), (16)

�xn� =(xne−xnw), �xn
 =(xN −xP), �yn� =(yne− ynw), �yn
 =(yN −xP). (17)

The vector form of the area of the control volume at east and north faces, respectively, are
given by:

�Ae=�ye
�i−�xe
 �j, �An =−�yn��i+�xn� �j . (18)

The velocity derivatives and cross derivatives with respect to x and y appearing in Equations
(9) and (11) can be expressed in terms of curvilinear coordinates in the following way:

�U
�x

= ��

�x
�U
��

+ �


�x
�U
�


= 1

J

[
�y
�


�U
��

− �y
��

�U
�


]
,

�U
�y

= �


�y
�U
�


+ ��

�y
�U
��

= 1

J

[
�x
��

�U
�


− �x
�


�U
��

]
,

(19)

where J is the Jacobian of the transformation (x, y)= f (�,
), defined as:

J = �x
��

�y
�


− �x
�


�y
��

. (20)

In order to obtain the discrete forms of the governing equations, both the velocity derivatives
and the Jacobian have to be approximated at faces of the control volume of Figure 1. For face ‘e’,
derivatives of a general dependent variable � can be approximated as:(

��

��

)
e
≈ �E −�P

�E −�P
;

(
��

�


)
e
≈ �ne−�se


ne−
se
. (21)

Here, for ease of notation, the following parameters are introduced based on the distances shown
in Figure 1 for east face ‘e’:

�e=�ye
�x
e
� −�ye��x

e

;

�Ue
� =(UE −UP); �Ue


 =(Une−Use). (22)

�V e
� =(VE −VP); �V e


 =(Vne−Vse). (23)

ea = �ye
(UE −UP)−�ye�(Une−Use)=�ye
�U
e
� −�ye��U

e

 ;

eb = �xe�(Une−Use)−�xe
(UE −UP)=�xe��U
e

 −�xe
�U

e
� ;

ec = �ye
(VE −VP)−�ye�(Vne−Vse)=�ye
�V
e
� −�ye��V

e

 ;

ed = �xe�(Vne−Vse)−�xe
(VE −VP)=�xe��V
e

 −�xe
�V

e
� .

(24)

Similar expressions hold for the north face ‘n’. Using (24) to represent (20) at the east face,
one has:

Je= �ye
�x
e
� −�ye��x

e



(�E −�P)(
ne−
se)
= �e

(�E −�P)(
ne−
se)
, (25)

yielding for Equation (19) at face ‘e’:

�U
�x

∣∣∣∣
e
≈ (yne− yse)(UE −UP)−(yE − yP)(Une−Use)

(xE −xP)(yne− yse)−(xne−xse)(yE − yP)
= ea

�e
,

�U
�y

∣∣∣∣
e
≈ (xE −xP)(Une−Use)−(xne−xse)(UE −UP)

(xE −xP)(yne− yse)−(xne−xse)(yE − yP)
= eb

�e
,

(26)
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�V
�x

∣∣∣∣
e
≈ (yne− yse)(VE −VP)−(yE − yP)(Vne−Vse)

(xE −xP)(yne− yse)−(xne−xse)(yE − yP)
= ec

�e
,

�V
�y

∣∣∣∣
e
≈ (xE −xP)(Vne−Vse)−(xne−xse)(VE −VP)

(xE −xP)(yne− yse)−(xne−xse)(yE − yP)
= ed

�e
.

(27)

4.2. Governing equations

For a general dependent variable �, in a steady state flow, a discrete form of Equations (1)–(3)
can be written as:

Ie+ Iw + In+ Is = S�, (28)

where Ie, Iw, In , Is are the overall fluxes (convection plus diffusion) of � at the east, west, north
and south control volume faces, respectively, and S� the corresponding source term.

For the east face the total flux can be written for a general variable �� as:

Ie=
∫
Ae

(�n · ��)dA≈(�ne · ��e)Ae, (29)

where Ae is the control volume east face area, �ne is the unit vector normal to Ae and ��e is
the average value of �� prevailing over Ae. Also, for coherence in the discretization process, the
continuity of fluxes at any interface implies that:

(Iw)P =−(Ie)W , (Is)P =−(In)S. (30)

The numerical treatment of convection and diffusion mechanisms is handled separately. When
Equation (28) is written for the x-direction, the convective flux, I Cx , has contributions from both
faces east ‘e’ and north ‘n’ in the following way:

I Cx
e ≈FeUe, I Cx

n ≈FnUn, (31)

where

Fe = �[Ue�ye
 −Ve�x
e

],

Fn = �[Vn�xn� −Un�yn� ]. (32)

The flux-blended deferred correction scheme [23], indicated here as DCS, is employed to perform
nodal interpolation. In this scheme, interface quantities are approximated as linear combination of
central differencing scheme (CDS) and upwind differencing scheme (UDS) values [24] according to

�DCS
face =��CDS

face +(1−�)�UDS
face =�UDS

face +�(�CDS
face −�UDS

face )
◦
, (33)

where the quantities with superscript ‘◦’ in parenthesis (last equality) are the numerical values
from the previous iteration. The combination factor � may vary from 0 (pure UDS) to 1 (pure
CDS). One should emphasize that the objective of this work was neither to investigate the use of
high-order discretization schemes, nor to determine an optimal value for �, but rather to propose
a new implicit scheme to enhance the stability, and not the accuracy of the solution. Although it
is recognized that the accuracy is always important, or say, the numerical solution should always
provide reliable, physically realistic numbers that satisfy the original differential equation set, one
can always increase the grid size to minimize the possible low-order effects resulting from the
low-order discretization scheme. Nevertheless, one should mention that the use of (33) makes the
resulting coefficient matrix positive with diagonal dominance, a factor that enhances stability [23].

For the diffusive flux in the same x-direction, I Dx , both faces are also considered:

I Dx
e ≈−(�11�i+�12 �j)e · �Ae, (34)

I Dx
n ≈−(�11�i+�12 �j)n · �An. (35)
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Here, in accordance with Equation (10), the diffusion flux in each face for each direction can
be split into linear and non-linear parts as:

I Dx
e = −(�11�i+�12 �j)Le · �Ae−(�11�i+�12 �j)NL1e · �Ae

−(�11�i+�12 �j)NL2e · �Ae−(�11�i+�12 �j)NL3e · �Ae, (36)

or

I Dx
e =(I Dx

e )L+(I Dx
e )NL1+(I Dx

e )NL2+(I Dx
e )NL3. (37)

Likewise, for the north face:

I Dx
n =(I Dx

n )L+(I Dx
n )NL1+(I Dx

n )NL2+(I Dx
n )NL3. (38)

Thus, a discrete form for (37) will be

(I Dx
e )L=− �et

�e
{�Ue

� [2(�ye
)
2+(�xe
)

2]−�Ue

 [2�ye��ye
 +�xe��x

e

]−ec�x

e

}, (39)

(I Dx
e )NL1= c1NL�et k

(�e)2ε

{
−�ye


[
8

3
(ea)

2+ 1

3
(eb+ec)

2− 4

3
(ed)

2
]
+2�xe
[(ea+ed)(

e
b+ec)]

}
, (40)

(I Dx
e )NL2=2c2NL

�et
(�e)2

k

ε
{−�ye
[(eb)2−(ec)

2]+�xe
[(ed −ea)(
e
b−ec)]}, (41)

(I Dx
e )NL3=c3NL

�et
(�e)2

k

ε

{
−�ye


[
1

3
(eb−ec)

2
]}

, (42)

where the velocity difference operators are defined by Equation (22).
At north face ‘n’ the diffusive fluxes have an analogous form. For the y-momentum equation,

the diffusive fluxes at both east and north faces are also obtained in a similar fashion.
In the numerical treatment presented by Assato and de Lemos [25], as in the majority of similar

non-linear calculations in the literature, the diffusion term is totally explicit in the sense that all
terms in (38) are accommodated into the source term. In the present work, a different methodology
is proposed as shown below.

4.3. Pressure source term

The source term due to integration of the pressure gradient over the control volume of Figure 1
gives for the x-direction:

SPx =−
(

�P
�x

)
	V, (43)

where

	V =(yn− ys)(xe−xw)−(ye− yw)(xn−xs), (44)

�P
�x

≈ (Pe−Pw)(yn− ys)−(Pn−Ps)(ye− yw)

(yn− ys)(xe−xw)−(ye− yw)(xn−xs)
. (45)

Integration of (43) yields the following discrete form:

SPx ≈−(Pe−Pw)(yn− ys)+(Pn−Ps)(ye− yw). (46)

Analogously, for the y-direction one has:

SPy ≈−(Pn−Ps)(xe−xw)+(Pe−Pw)(xn−xs). (47)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld



1484 M. ASSATO AND M. J. S. DE LEMOS

4.4. Treatment of equations for k and ε

The eddy-viscosity �t appearing in both Linear and Non-Linear parts of Equation (9) is calculated
according to the equation shown in Table I. The function f� is presented in Table II, where E is a
constant coming from the standard wall-log-law and n is the distance from the closest grid node to
the wall. Governing equations for the non-linear k−ε model are the same as for the linear model,
except for differences in the Reynolds stresses expressions when calculating the production rate
of k, Pk . The source terms for k and ε are given by

Sk = Pk−�ε; Sε =c1
ε

k

(
Pk− c2

c1
�ε

)
, (48)

where c1 and c2 are the constants also shown in Table II. Here, according to Equation (10), Pk in
(48) is also split into a linear and a non-linear part in the form,

Pk =�tij
�Ui

�y j
=(�Lij+�NL1ij +�NL2ij +�NL3ij )

�Ui

�y j
= PL

k +PNL1
k +PNL2

k +PNL3
k , (49)

where �tij is given by Equation (9). As done for the pressure gradient term, integration of S�

(Equation (48), �=k,ε) over the cell volume surrounding point P in Figure 1 gives [24],

S�
∼=
∫

	V
S�	V = S∗

�−S∗∗
� �P . (50)

The dependence on �P is sometimes artificially introduced when a negative part of S� does not
exist [24]. After integrating Sk in the form of (50) one has:

S∗
k =(PL

k +PNL1
k +PNL2

k +PNL3
k )	V ; −S∗∗

k k=−�ε	V =−
(

�ε◦	V
k◦

)
k. (51)

Again, the values of k and ε with superscript ‘◦’ in (51) are taken from the previous iteration
and, when the solution finally converges, k◦ →k and the two values cancel out. For Sε, the choices
for S∗

ε and S∗∗
ε are S∗

ε =c1εS∗
k /k; S

∗∗
ε =c2S∗∗

k , respectively.
The production rate Pk needs to be evaluated at the central point P . To this end, derivatives

of the mean velocities with respect to Cartesian coordinate directions are transformed similarly to
expressions (26) and (27), but now written for central nodal points rather than for control volume
faces, as,(

�U
�x

)
P

= (yn− ys)(Ue−Uw)−(ye− yw)(Un−Us)

(yn− ys)(xe−xw)−(ye− yw)(xn−xs)
= �yP
 ·�U P

� −�yP� ·�U P



�yP
 ·�x P
� −�yP� ·�x P



= P

a

�P
,

(
�U
�y

)
P

= (Un−Us)(xe−xw)−(Ue−Uw)(xn−xs)

(yn− ys)(xe−xw)−(ye− yw)(xn−xs)
= �U P


 ·�x P
� −�U P

� ·�x P



�yP
 ·�x P
� −�yP� ·�x P



= P

b

�P
,

(52)

(
�V
�x

)
P

= (yn− ys)(Ve−Vw)−(ye− yw)(Vn−Vs)

(yn− ys)(xe−xw)−(ye− yw)(xn−xs)
= �yP
 ·�V P

� −DeltayP� ·�V P



�yP
 ·�x P
� −�yP� ·�x P



= P

c

�P
,

(
�V
�y

)
P

= (Vn−Vs)(xe−xw)−(Ve−Vw)(xn−xs)

(yn− ys)(xe−xw)−(ye− yw)(xn−xs)
= �V P


 ·�x P
� −�V P

� ·�x P



�yP
 ·�x P
� −�yP� ·�x P



= P

d

�P
,

(53)

where the s, as before, are used for ease of notation. With the expressions above, the linear part
in Equation (49) then has the following discrete expression:

PL
k = �P

t

(�P)2
[2(P

a )2+2(P
b )2+(P

c +P
d )2], (54)
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and for the non-linear counterparts:

PNL1
k =−c1NL

�P
t

(�P)3

k

ε

{
8

3
(P

a )3+ 8

3
(P

b )3+ 7

3
(P

a +P
b )[(P

c +P
d )2− 4

7
(P

c ·P
d )]
}

, (55)

PNL2
k =0, (56)

PNL3
k =−c3NL

�P
t

(�P)3

k

ε

[
1

3
(P

a +P
b )(P

c −P
d )2

]
. (57)

Values of the velocity components at cell face, as well as the coordinates of these locations, are
calculated from the nodal values by means of linear interpolation.

5. NEW IMPLICIT TREATMENT

It is a well-known feature that increasing the degree of solution implicitness, the robustness of the
relaxation process is enhanced [24]. Source-term linearization is a common procedure among the
CFD practitioners and, in the end, intends to increase the main diagonal dominance of the matrix
of coefficients. The work here aims at increasing the robustness of the numerical method without
resorting to the techniques that simultaneously operate on more than one dependent variable, as
is the case of block-implicit methods [1, 26, 27]. Here, implicit handling of individual momentum
equations is considered. Accordingly, to improve numerical stability, the diffusive terms given by
Equations (39)–(42) are further rewritten as a combination of implicit and explicit parts in the
form,

(I Dx
e )L=−�Ue

� (Dx,y
e )L+(S∗x

e )L, (58)

(I Dx
e )NL1=�Ue

� (Dx,y
e )NL1+(S∗x

e )NL1, (59)

(I Dx
e )NL2=�Ue

� (Dx,y
e )NL2+(S∗x

e )NL2, (60)

(I Dx
e )NL3=�Ue

� (Dx,y
e )NL3+(S∗x

e )NL3, (61)

where the velocity difference operator, �Ue
� , is defined in (22). Equations (58)–(61) are written

for the x-component diffusion flux of the east face of Figure 1 and basically represent the main
idea of (50). Similar expressions can be written for all other faces and for the y-component of
the diffusion flux. It is interesting to emphasize that even for a standard linear model, source term
linearization given by (58) applies.

The first terms on the right-hand side of Equations (58)–(61) are the terms treated implicitly
whereas the second terms are handled in an explicit manner. The coefficient Dx,y

e is the same for
both the equations in x and y components, and is given by

Dx,y
e =(Dx,y

e )L+(Dx,y
e )NL1+(Dx,y

e )NL2+(Dx,y
e )NL3, (62)

where

(Dx,y
e )L= (�+�et )

�e
[(�ye
)

2+(�xe
)
2], (63)

(Dx,y
e )NL1=c1NL

�et
(�e)2

k

ε

{
−2(�ye
)

2ea+2�xe


[
4

3
�ye
(

e
b+ec)−�xe


e
d

]}
, (64)

(Dx,y
e )NL2=2c2NL

�et
(�e)2

k

ε
{�xe
�ye
[�xe��Ue


 −�ye��V
e

 ]}, (65)

(Dx,y
e )NL3=c3NL

�et
(�e)2

k

ε
{�xe
�ye
[(eb+ec)]}, (66)

where �V e
� and �V e


 are given in (23).

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld



1486 M. ASSATO AND M. J. S. DE LEMOS

As mentioned before, by means of Equations (58)–(61), enhancement of matrix main diagonal
dominance is achieved, contributing therefore towards the robustness of the entire numerical
relaxation scheme.

The parts treating S∗x
e explicitly make use of velocity values at grid points calculated in the

previous iteration. For the east face and x-direction one has:

(S∗x
e )L=− (�+�t )e

�e
{(�Ue

� )◦(�ye�)
2−(�Ue


 )◦[2�ye��ye
 +�xe��x
e

]−ec�x

e

}, (67)

(S∗x
e )NL1 = −2c1NL�et k

(�e)2ε

{
�ye


[
1

3
(ea)

2+(�Ue

 )◦

(
−�ye�

e
a+�xe�

(
1

3
ec+

1

6
�xe�(�U

e

 )◦
))

−2

3
(ed)

2+ 1

6
(ec)

2
]

−�xe


[
1

6
�xe
(�U

e
� )◦ea+(�Ue


 )◦
(

�xe�
e
d −�ye�

(
ec+

7

6
eb− 1

6
�xe�(�U

e

 )◦
))

+ec
e
d

]}
, (68)

(S∗x
e )NL2 = −2c2NL�et k

(�e)2ε
{�ye
[(�xe�)2((�Ue


 )◦)2−(ec)
2]

−�xe
[(�ye
)
2(�Ue

� )◦(�V e
� )◦+(eb−ec)(�ye�(�U

e

 )◦)+ed ]}, (69)

(S∗x
e )NL3 = c3NL�et k

(�e)2ε

{
−�ye


3
[�xe
(eb+3ec−�xe
(�U

e
� )◦)(�Ue

� )◦−2eb
e
c+(ec)

2

+(�xe�)
2((�Ue


 )◦)2]
}

. (70)

Here, the decomposition of Equations (58)–(61) using coefficients (62)–(66) and explicit terms
(67)–(70) represents a new proposal that, to the best of the authors’ knowledge, is not found in
the literature.

5.1. Final form of discretized momentum equation

After all fluxes and source terms are incorporated in the momentum equation, the algebraic
equivalent of (2) is finally assembled. Variables at faces (e,w,n,s) and corners (ne, nw, se, sw)
are interpolated forming an equation connecting the variable at P with its neighboring points (see
Figure 1). Using expression (33) for interpolation the face values with UDS and CDS formulations,
the final form can be written as,

aUDSP �P =∑
nb

aUDSnb �nb+S∗
�+�

(∑
nb

aCDSnb �nb−aUDSP �P

)◦

where �=U,V and nb=E,W,N , S. (71)

Coefficients aP and anb contain variables in the faces of the control volume obtained by interpolation
of their respective nodal point values. For the east face, the coefficient reads,

aUDSE =Dx,y
e +‖−Fe,0‖, (72)

aCDSE =−‖−Fe,0‖−Fe fx,P , (73)
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where the operator ‖A, B‖ is greater between A and B, as in the FORTRAN language. Also, Dx,y
e

is calculated by means of (62) and Fe is given by (32) and f is an interpolation factor defined by
(see Figure 1 for details),

fx,P = xe−xP
xE −xP

. (74)

The source term S∗
U in the x-momentum equation can be assembled as:

S∗
U =

Explicit part of linear term︷ ︸︸ ︷
S∗x
e −S∗x

w +S∗x
n −S∗x

s

+
Explicit part of 1st non-linear term︷ ︸︸ ︷

S∗x
e −S∗x

w +S∗x
n −S∗x

s +
Explicit part of 2nd non-linear term︷ ︸︸ ︷

S∗x
e −S∗x

w +S∗x
n −S∗x

s +
Explicit part of 3rd non-linear term︷ ︸︸ ︷

S∗x
e −S∗x

w +S∗x
n −S∗x

s︸ ︷︷ ︸
These terms are null for standard linear models

+
Pressure term︷︸︸︷

SPx , (75)

where expressions similar to (67)–(70) are used at the four control volume faces and the pressure
term is given by (46). The 5th to the 16th term in Equation (75) are null for standard linear models
due to the fact that they are the result of the discretization of non-linear terms, which are presented
in Equation (9).

The algorithm applied for solving the system of algebraic equations was the well-known pressure-
based SIMPLE method by Patankar [24]. In such methods, linearization of the system of algebraic
equations is handled by solving for each variable at a time while holding the other unknowns still.

6. RESULTS AND DISCUSSION

6.1. Preliminary discussion

Before presenting the numerical results, a discussion on the sensitivity of the discretized terms
is essential. It is important to emphasize that coefficients (Dx,y

e )NL1, (Dx,y
e )NL2 and (Dx,y

e )NL3,
given by (64)–(66) respectively, have different numerical values on each control volume and
depend on geometric distances, as well as on the surrounding velocity values. As such, they can
be greater or less than zero. On the other hand, the linear coefficient given by (63), (Dx,y

e )L, is
composed of positive quantities only. Consequently, for positive non-linear coefficients (Dx,y

e )NL1,
(Dx,y

e )NL2 and (Dx,y
e )NL3, the advantages of the implicit treatment proposed here are not evident

since numerical instabilities might occur during the relaxation process [24]. To make this idea
clear, one remembers that the overall flux I , which was defined for each control volume face on
the left-hand side of Equation (28), can be moved to the right-hand side for a source-like treatment.
For the east face, it can be written in the form,

Source-like term︷ ︸︸ ︷
−(I Dx

e )L = �Ue
�︸︷︷︸

UE−UP

always positive︷ ︸︸ ︷
(Dx,y

e )L −(S∗x
e )L︸ ︷︷ ︸

Explicit term

, (76)

where (Dx,y
e )L, as mentioned, is composed of positive quantities. Likewise, when (59) is accounted

for as part of the diffusion term, as in Equation (37), and moved to the right of (28), one has,

−(I Dx
e )NL1=−�Ue

�︸ ︷︷ ︸
UP−UE

Less than ‘0’ for stability︷ ︸︸ ︷
(Dx,y

e )NL1 −(S∗x
e )NL1︸ ︷︷ ︸

Explicit term

, (77)
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A similar argument can be used for expressions (60) and (61) involving (Dx,y
e )NL2 and (Dx,y

e )NL3,
respectively.

Therefore, whenever positive values are detected in each control volume for (Dx,y
e )NL1, the

diffusive flux in question is handled back in an explicit form. In this case, Equation (59) is
replaced by

(I Dx
e )NL1=−�Ue

�‖−(Dx,y
e )NL1,0‖+(�Ue

� )o‖(Dx,y
e )NL1,0‖+(S∗x

e )NL1, (78)

Similar expressions hold for the second and third non-linear terms. With all the contributions
due to diffusion properly accounted for in the Ds coefficients (see (62)), and applying expression
(78) to the other non-linear diffusion coefficients (Dx,y

e )NL2 and (Dx,y
e )NL3, the coefficient aE in

Equation (72) is calculated.
The modifications above due to Equation (78) affect the way the velocity at the volume faces

are calculated when applying the SIMPLE algorithm [28]. In this method, the basic idea is to
solve a pressure correction equation derived from the momentum and continuity equations. It can
be shown that the resulting pressure correction equation is [28],

aP P
′
P =aW P ′

P +aE P
′
P +aS P

′
P +aN P ′

P −Sm, (79)

where the primes indicate corrections and Sm is known as the mass ‘imbalance’. Face velocities,
interpolated from values at main nodes, are used to compute Sm in (79). Therefore, the way the
non-linear diffusion term is handled in (78) will influence computations of this mass source via
the momentum equations. This influence, however, tends to decrease as the solution approaches
convergence since both sides of (79) tend to zero. Also, it is important to emphasize that, for
Cartesian grids or meshes with a high degree of orthogonality, the geometric distances �xe
 is

null or nearly zero, respectively. This term appears in the formulae for the coefficients (Dx,y
e )NL1,

(Dx,y
e )NL2 and (Dx,y

e )NL3, Equations (64)–(66), respectively. If �xe
 ≈0, only the first term in
(64), if positive, will contribute to the main coefficient in (71). Therefore for an orthogonal or
quasi-orthogonal grid, Equations (64)–(66) become,

(Dx,y
e )NL1≈c1NL

�et k

(�et)2ε

{
−2(�ye
)

2
�Ue

�

�xe�

}
, (Dx,y

e )NL2≈0, (Dx,y
e )NL3≈0. (80)

The solution method employed was the SIMPLE algorithm [28], as mentioned above. The algebraic
equation systems, obtained after discretizing of the governing transport equations, were solved with
an incomplete LU decomposition, known as Strongly Implicit Procedure [29]. This method has
been tested in the developed code and applied to a number of geometries and flow configurations
[30, 31].
6.2. Numerical results

The results presented in this section were obtained using four different models. The following turbu-
lence closures were applied: the linear and non-linear k−ε models combined with both the high
and low Reynolds number approaches. Therefore, high Reynolds number models were designated
by L HRN and NL HRN, for linear and non-linear closures, respectively, whereas low Reynolds
models were named, respectively, by L LRN and NL LRN. For comparison, measurements of
Kim et al. [32] were considered.

Results were obtained considering an inlet Reynolds number Re=132000 based on the height
of the step H together with inlet conditions forU , k and ε, according to Heyerichs and Pollard [33].
All boundary conditions are illustrated in Figure 2, where the symbol ‘i’ identifies the turbulence
intensity of the incoming flow. The non-linear model employed was Shih et al. [13], closure. For
high Reynolds model, orthogonal and non-orthogonal meshes of size 200×60 were used. For the
low Reynolds number version, an orthogonal mesh of 227×100 was employed.

Table IV shows the separation length calculated by all four turbulence models. It can be noticed
that smaller deviations are presented by the non-linear theory, with the best prediction obtained
with the NL LRN model.
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Figure 2. Boundary conditions for turbulent flow past a backward-facing step.

Table IV. Separation length xR/H calculated with different models.

Models Grid Separation length: xR/H Deviations: % Experimental: xR/H =7.0

Orthogonal
L LRN 227×100 5.65 19.29

Orthogonal
NL LRN 227×100 6.55 6.43

Orthogonal
L HRN 200×60 5.55 20.71

Orthogonal

NL HRN 200×60 Expl.:6.45
Impl.andExpl.:6.45 7.86

Non-orthogonal
L HRN 200×60 5.55 20.71

Non-orthogonal

NL HRN 200×60 Expl.:6.45
Impl.andExpl.:6.45 7.86

Figure 3 shows the mean velocity field Ū/U0 in several stations along the channel. It can be
seen that, in the recirculation region, better agreement for the mean velocity field occurs when the
non-linear models are applied, with small advantage to the NL LRN version. At x/H =8.0 (after
the reattachment section) the non-linear models predicted the worst results, with velocities lower
than those measured experimentally.

Accordingly, for the turbulent flow past a backward-facing step it was verified that, in the
recirculation zone, the non-linear models presented results for the mean velocity field which are
closer to the experimental data (specially the NL LRN model, see Figure 3). However, in the
redeveloping zone, they showed a weak performance. Experiments by Kim et al. [32], show that
in the section, right after the reattachment point, the velocity profiles do not follow the logarithmic
law. Here, difficulties in the flow simulation were observed even with the low Reynolds number
model. Results were better for axial positions far downstream from the reattachment point.

Figure 4(a),(b) shows better predictions for dimensionless turbulent intensity fields (u′u′)1/2 and
dimensionless turbulent shear stress uv when using non-linear models. It is interesting to observe
that the NL LRN closure is more accurate in the range 0.5<Y/H<0.8, whereas improved results
with the NL HRN version occur only for 0.7<Y/H<1.0.

In order to investigate the implicit numerical treatment proposed here and detect any contribution
in the numerical stability of the solution, Figure 5 shows residue history for fictitious mass along
the solution relaxation process using the NL HRN model, which happens to be very similar to
the residue history of component U (not shown here in this article). The figure compares both

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld



1490 M. ASSATO AND M. J. S. DE LEMOS
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Figure 3. Dimensionless mean velocity profiles for the backward-facing step
problem. Experiments by Kim et al. [32].
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Figure 4. (a) Dimensionless turbulence intensities u′u′ and (b) dimensionless
turbulent shear stress, u′v′. Experiments by Kim et al. [32].

semi-implicit and fully explicit formulations for discretizing the diffusion fluxes. Consequently,
error-smoothing history is compared when discretization of the diffusion terms follows either
(58)–(61) (semi-implicit or explicit–implicit) or a fully explicit formulation. Also presented is
such behavior for two different grids, namely orthogonal and non-orthogonal meshes, which are
presented in Figure 6. For the sake of clarity, not all nodes are presented in Figure 6. For both
orthogonal and non-orthogonal cases, internal grid points are computed after the determination of
boundary grid location, which are located according to the stretching functions applied along the
boundaries. Incoming fluid from the left enters the computational domain by a gap of size given in
Figure 5. Interior node coordinates are calculated by standard elliptical grid generation methods, in
which partial differential equations are resolved once boundary node coordinates are known. Note
that, for orthogonal grids, as expected, solution convergence is faster due to the absence of cross-
derivatives in the discretized equation set. As may be seen by Equations (67)–(70), cross derivatives
are handled explicitly, delaying convergence by increasing the stiffness of the algebraic equation
system. In spite of difficulties due to grid type, no advantage with the semi-implicit formulation
is noted if the relaxation parameters are low enough to decelerate the solution (sub-relax set A in
Figure 5).
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0

Iteration counter

1x10-12

1x10-10

1x10-8

1x10-6

1x10-4

1x10-2

1x100

1x102

1x104

1x106

1x108

R
m

as
s

Residue for mass
Expl., orthog. grid, sub-relax A
Impl. and expl., orthog. grid, sub-relax A
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Equations:             U         V         P         k          ε
Sub-relax.  A:     0.55   0.55    0.15    0.65    0.65
Sub-relax.  B:     0.75   0.75    0.25    0.85    0.85
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Figure 5. Residue history for fictitious mass for back-step case. Fully explicit and
semi-implicit treatment using orthogonal and non-orthogonal grids of Figure 6. High

Reynolds formulation with model of Shih et al. [13].
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Figure 6. Orthogonal (a) and non-orthogonal grids (200×60) (b) used on high Reynolds residue history
of Figure 5. Case back-step (not all points are shown for clarity).

In order to further investigate the advantages in using the proposed semi-implicit formulation,
different relaxation factors for all the variables involved, namely, U,V, P,k and ε also were
computed. Figure 5 also indicates that when the relaxation parameter is increased (sub-relax
set B), even for a non-orthogonal mesh convergence is obtained, whereas with the fully explicit
formulation, divergence is clearly observed.

Figure 7 further indicates the benefit of the numerical formulation proposed here when
discretizing non-linear fluxes with the use of wall functions (high Reynolds approach). The model
of Craft et al. [34], with constant coefficients c1NL, c2NL and c3NL is used and, regardless of the
values of the relaxation parameters used, convergence is obtained only with the implementation
proposed by Equations (58)–(61). The use of a low Reynolds number model in conjunction with a
non-linear model has also been investigated here (see Table IV) and in other works [35, 36] leading
to similar conclusions about the advantages in using the proposed implicit scheme. For such low
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Figure 7. Residue for velocity component U . Case back-step. Fully explicit versus semi-implicit treatment
for high Reynolds case and Craft et al. [34] model.

Reynolds number closure, both semi-implicit and fully explicit formulations presented the same
convergence rate, independently whether the mesh was orthogonal or not and if a different set of
relaxation values was used.

Finally, testing calculations herein showed that implicit handling of diffusion terms consumes
only about 10% more computing time for the cases where solution is obtained with low relaxation
parameters (note that the results in Figure 5 are plotted in terms of number of iterations, not
computing time). Performance of the proposed formulation is clearly superior when using higher
relaxation parameters, avoiding excessive computational effort and, in many cases, allowing for
convergence to be achieved. However, the fully implicit method herein was beneficial to the
numerical stability of the equation set when non-orthogonal meshes were employed. For orthogonal
grids, �xe
 is of null value and terms of the non-linear fluxes, which are implicitly treated, are
reduced in their numerical value (see Equation (80)). For orthogonal meshes, the gain in stability
is not pronounced because only a small part of the first non-linear term contributes to diagonal
dominance of the matrix of coefficients. Also observed was that the proposed implicit treatment
only brought advantages to the robustness of the equation set when the high Reynolds formulation
was used. For the low Reynolds number model, the use of damping functions and the need of a
much finer grid always yielded convergence, and at the same rate, when both implicit and explicit
handling of the non-linear diffusion terms were computed.

7. CONCLUSIONS

In this work a new numerical treatment was presented for linear and non-linear diffusion fluxes to
avoid convergence difficulties. Improvements in the prediction of turbulent flows, where the normal
Reynolds stresses play an important role, also were shown. The model that presented smaller
deviations from the experimental data was the NL LRN model. For the back-step case shown
in Figure 4, all models reproduced reasonably well experimental values, with better predictions
given by NL LRN model within the range 0.5<Y/H<0.8. With the NL HRN closure, better
performance was obtained for 0.7<Y/H<1.0. Figures 5 and 7 show that the proposed implicit
numerical treatment for non-linear diffusion fluxes enhances the numerical stability of the code,

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld



A NUMERICAL TREATMENT FOR NON-LINEAR TURBULENCE MODELS 1493

allowing for the use of higher relaxation parameters without solution divergence. Consequences
are that numerical solution stability is achieved when compared to solving the same problem using
the standard fully explicit formulation.

Ultimately, application of the implicit method described here showed that the stability of the
solution either increases (high Reynolds with non-orthogonal mesh) or remains the same (low
Reynolds number applications). Therefore, one of the disadvantages of the proposed method,
when using in conjunction with LRN models, for the cases here analyzed, is that it produces
solutions of comparable stability at expense of increasing the number of floating point operations,
which is demanded by using a more complex non-linear stress–strain relationship. Nevertheless,
the semi-implicit handling of non-linear terms described here, after fully tested in more complex
and real world problems, may represents an alternative path when robust fluid flow solutions are
sought for engineering flows of practical relevance and of general difficult convergence. Additional
advantages of the procedure proposed here lie in the possibility of testing different non-linear
expressions if one considers the enhanced robustness and stability obtained for the entire numerical
algorithm. More complex constitutive equations may use the proposition described here for testing
the calculations in more complex and computational demanding flows.

ACKNOWLEDGEMENTS

The authors thank CNPq, Brazil, for their financial support during the preparation of this work.

REFERENCES

1. de Lemos MJS. A block-implicit numerical procedure for simulation of buoyant swirling flows in a model
furnace. International Journal for Numerical Methods in Fluids 2003; 43(3):281–299.

2. Jones WP, Launder BE. The prediction of laminarization with two-equation model of turbulence. Internatinal
Journal of Heat and Mass Transfer 1972; 15:301–314.

3. Launder BE, Reece GJ, Rodi W. Progress in the development of a Reynolds stress turbulence closure. The
Journal of Fluid Mechanics 1975; 68:537.

4. Rodi W. The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. Ph.D.
Thesis, University of London, 1972.

5. de Lemos MJS, Sesonske A. Turbulence modeling in combined convection in liquid-metal pipe flow. International
Journal of Heat and Mass Transfer 1985; 28(6):1067–1088.

6. de Lemos MJS. Anisotropic turbulent transport modeling for Rod-Bundle. International Journal of Heat and
Technology 1988; 6(1–2):27–37.

7. Warsi ZUA, Amlicke B. Improved algebraic relation for the calculation of Reynolds stresses. AIAA Journal 1976;
14:1779.

8. Rivlin RS. The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Quarterly of
Applied Mathematics 1957; 15:212.

9. Speziale CG. On nonlinear k−1 and k−ε models of turbulence. The Journal of Fluid Mechanics 1987;
176:459–475.

10. Lumley JL. Toward a turbulent constitutive relation. The Journal of Fluid Mechanics 1970; 41:413.
11. Nisizima S, Yoshizawa A. Turbulent channel and Couette flows using an anisotropic k−ε model. AIAA Journal

1987; 25(3):414.
12. Rubinstein R, Barton JM. Renormalization group analysis of the stress transport equation. Physics of Fluids

1990; A2:1472.
13. Shih TH, Zhu J, Lumley JL. A realizable Reynolds stress algebraic equation model. NASA TM-105993, 1993.
14. Gatski TB, Speziale CG. On explicit algebraic stress models for complex turbulent flows. The Journal of Fluid

Mechanics 1993; 254:59–78.
15. Bauer W, Haag O, Hennecke DK. Accuracy and robustness of nonlinear eddy viscosity models. International

Journal of Heat and Fluid Flow 2000; 21:312–319.
16. Abid R, Rumsey C, Gatski TB. Prediction of nonequilibrium turbulent flows with explicit algebraic stress models.

AIAA Journal 1995; 33(11):2026–2031.
17. Rahman M, Rautaheimo P, Siikonen T. Numerical study of turbulent heat transfer from a confined impinging jet

using a pseudo-compressibility method. In Turbulence, Heat and Mass Transfer 2, Hanjalic K, Peeters T (eds).
Delf University Press: Delft, 1997; 511–520.

18. Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied
Mechanics and Engineering 1974; 3:269–289.

19. Abe K, Nagano Y, Kondoh T. An improved k−ε model for prediction of turbulent flows with separation and
reattachment. Transactions of JSME, Series B 1992; 58:3003–3010.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld



1494 M. ASSATO AND M. J. S. DE LEMOS

20. Pope SB. A more general effective-viscosity hypothesis. The Journal of Fluid Mechanics 1975; 72:331.
21. Park TS, Sung HJ. A nonlinear low-Reynolds-number k−ε model for turbulent separated and reattaching flows.

International Journal of Heat and Mass Transfer 1995; 38:2657–2666.
22. Pedras MHJ, de Lemos MJS. Simulation of turbulent flow in porous media using a spatially periodic array and

a low Re two-equation closure. Numerical Heat Transfer, Part A: Applications 2001; 39(1):35–59.
23. Khosla PK, Rubin SG. A diagonally dominant second-order accurate implicit scheme. Computers and Fluids

1974; 2(12):207.
24. Patankar SV. Numerical Heat Transfer and Fluid Flow. Mc-Graw Hill: New York, 1980.
25. Assato M, de Lemos MJS. Development of a non-linear turbulence model for recirculating flows using generalized

coordinates. ENCIT98—Proceedings of the 7th Brazilian Congress of Engineering and Thermal Sciences, vol. 2,
Rio de Janeiro, RJ, 3–6 November 1998; 1386–1391.

26. de Lemos MJS. Flow and heat transfer in rectangular enclosures using a new block-implicit numerical method.
Numerical Heat Transfer, Part B: Fundamentals 2000; 37(4):489–508.

27. de Lemos MJS. A block-implicit method for numerical simulation of swirling flows in a model combustor.
International Communications in Heat And Mass Transfer 2003; 30(3):369–378.

28. Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional
parabolic flows. International Journal of Heat and Mass Transfer 1972; 15:1787–1806.

29. Stone HL. Iterative solution of implicit approximations of multi-dimensional partial differential equations. SIAM
Journal on Numerical Analysis 1968; 5:530–558.

30. Braga EJ, De Lemos MJS. Turbulent natural convection in a porous square cavity computed with a macroscopic
k−� model. International Journal of Heat and Mass Transfer 2004; 47(26):5639–5650.

31. Santos NB, de Lemos MJS. Flow and heat transfer in a parallel-plate channel with porous and solid baffles.
Numerical Heat Transfer, Part A: Applications 2006; 49:546–556.

32. Kim J, Kline SJ, Johnston JP. Investigation of a reattaching turbulent shear layer: flow over a backward-facing
step. ASME Journal of Fluids Engineering 1980; 102:302–308.

33. Heyerichs K, Pollard A. Heat transfer in separated and impinging turbulent flows. International Journal of Heat
and Mass Transfer 1996; 39(12):2385–2400.

34. Craft TJ, Launder BE, Suga K. Extending the applicability of eddy-viscosity models through the use of deformation
invariants and non-linear elements. Proceedings of the Fifth International Symposium on Refined Flow Modeling
and Turbulence Measurements, Paris, 1993.

35. Assato M, Pedras MHJ, de Lemos MJS. Numerical solution of turbulent channel flow past a backward-facing
step with a porous insert using linear and nonlinear k−� models. Journal of Porous Media 2005; 8(1):13–29.

36. Assato M, de Lemos MJS. Turbulent flow in wavy channels simulated with nonlinear models and a new implicit
formulation. Numerical Heat Transfer, Part A: Applications 2009; 56(4):301–324.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:1475–1494
DOI: 10.1002/fld


